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Introduction
Sarcomas are highly diverse mesenchymal malig-
nancies of the bone, cartilage, muscle, peripheral 
nerves and adipose or fibrous connective tissues.1 
Although the ultimate cells of origin of sarcoma 
subtypes remain unclear, there is increasing evi-
dence that they arise de novo from mesenchymal 
pluripotent stem cells.2,3 An extension of this the-
ory would be that alteration(s) in mesenchymal 
stem cell genetics can give rise to several sarco-
mas, including osteosarcoma, Ewing’s sarcoma, 
synovial sarcoma, chondrosarcoma, rhabdomyo-
sarcoma, fibrosarcoma and liposarcoma.4 At pre-
sent, sarcoma classification is based on the tissue 
type it resembles. This form of classification is, 
however, challenging for sarcoma subtypes that 

do not show any clear similarities to normal tissue, 
such as clear cell and epithelioid sarcomas. More 
recently, classifications have been revised to 
include molecular features and genetic profiles of 
sarcomas.5–7 From a molecular point of view, sar-
comas may be broadly classified into two types: 
(1) sarcomas with simple karyotypes characterized 
by chromosomal translocations or specific muta-
tions; and (2) sarcomas with complex aneuploidy 
karyotypes, consisting of numerous losses, gains 
and amplifications.8 Approximately 15–20% of 
sarcomas fall into the simple karyotype subgroup, 
while the vast majority fall into the complex karyo-
type subgroup.9,10 There is, however, room for 
improvement in the identification of biomarkers 
for sarcoma subtypes and determination of 
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optimal subtype-specific treatment strategies. The 
need for alternative treatments such as targeted 
therapies and immunotherapies is underscored by 
observations that several sarcoma subtypes are 
poorly responsive to chemotherapy and radiation.

This review will focus on the current treatment 
strategies for sarcoma and the emerging field of 
targeted therapies for sarcoma.

Local control in sarcoma

Surgery
Complete excision, when possible, is the standard 
therapy in the management of most subtypes of 
localized soft tissue sarcoma, and when possible, 
this confers the greatest possibility of cure. In 
order to adequately ensure removal of all tumour 
microsatellites, the tumour must be resected with 
a perimeter of healthy tissue.11 This lowers the 
risk of local recurrence and allows for better prog-
nosis. Surgical removal of tumours takes into 
account limb and function-sparing while accom-
plishing suitable biological margins.12 The width 
of margin clearance necessary is subject to con-
troversy and is affected predominantly by the 
anatomical location of the tumour and its size at 
presentation. Tumours located in the retroperito-
neum, for example, cannot be removed with the 
same excisional margin as similar neoplasms aris-
ing from the thigh or buttock.13 What is unequiv-
ocal is that a resection with a microscopically 
involved margin carries a higher risk of recurrence 
than another where the margins are clear, even if 
by a few millimetres. In pursuit of clear margins, 
surgical resections require aggressive removal of 
involved tissue and sometimes reconstruction 
with grafts is necessary. Surgery for sarcoma car-
ries major morbidity and is best performed in 
centres familiar with sarcoma management and 
with access to multimodality treatment. In addi-
tion, the outcome of patients treated at specialist 
sarcoma centres is better than patients treated at 
generalist units.14

The current gold standard for the treatment of 
bone sarcomas is limb salvage surgery with the 
aim of preserving a limb with sufficient function-
ality and without compromising the patient’s 
overall survival. It implicates clear-margin resec-
tion of the tumour followed by reconstruction of 
the bone defect with endoprosthetics, allografts 
or autografts.15 Surgery used in combination with 
chemotherapy increases the overall survival and 

progression-free survival significantly.16,17 Even 
though localized sarcomas have a high cure rate 
with surgery, when they recur and/or metastasize 
they have a poor prognosis with a median survival 
of approximately 12 months.18–20

Radiation therapy
Radiation is frequently used to treat soft tissue 
sarcoma of the extremity. However, although 
neoadjuvant (before surgery) and adjuvant (after 
surgery) radiation significantly improve local 
control of non-metastatic low-grade and high-
grade sarcomas of the extremity, in many studies 
there is no statistically significant benefit for 
overall survival.21 In this group of patients, radio-
therapy (RT) has been used both neoadjuvantly 
and adjuvantly, with no difference in progres-
sion-free survival between these approaches. 
However, adjuvant RT is associated with a higher 
incidence of late normal tissue toxicity. For this 
reason, neoadjuvant RT is often used as an alter-
native, despite the increased incidence of wound-
healing problems.22 The main advantages of 
neoadjuvant RT are that target volume definition 
is easier with the visible tumour in situ, normal 
tissues are displaced out of the field and doses 
required are lower than with adjuvant treatment. 
In addition, the tumour may decrease in size, 
facilitating resection.20

Soft tissue sarcomas of the retroperitoneum pre-
sent a different problem. These tumours are fre-
quently very large at presentation and are more 
difficult to remove surgically than extremity 
tumours. Local control of these tumours remains 
a challenge and the role of RT in treating these 
tumours remains controversial. No large rand-
omized trials exist because of the rarity of these 
tumours, but results from smaller series are at 
odds, with some showing no benefit from the 
addition of RT23 and others showing some benefit 
in terms of delaying local recurrence24 but little 
effect on overall survival. Both preoperative and 
postoperative RT are challenging in this site 
because of the proximity of the tumour to sensi-
tive intra-abdominal organs. Preoperative RT, 
especially for tumours with borderline resectabil-
ity, may be associated with fewer complications.

For bone sarcomas, the role of RT is also not well 
defined. The most common subtypes of bone sar-
coma are osteosarcoma and Ewing’s sarcoma. 
Both of these are considered systemic diseases 
and the mainstay of treatment involves 
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chemotherapy and surgery. In osteosarcoma, the 
role of RT is confined to unresectable tumours, 
postsurgery in the case of positive margins and 
palliation. In Ewing’s sarcoma, RT has a greater 
role to play and may be curative in certain patients 
where tumours are unresectable, clear margins 
are not achievable or the tumour is deemed high 
risk.

Advanced RT techniques such as intensity-mod-
ulated radiation therapy (IMRT) and volumetric 
modulated arc therapy may play a role in the cur-
rent clinical challenges of radiogenic wounds and 
associated toxicities, and are becoming main-
stream in many departments when treating diffi-
cult cases. These techniques use a combination of 
advanced hardware and software which allow 
radiation dose to conform to complex tumour 
shapes. The advantage of this is that the optimal 
amount of radiation can be directed to the tumour 
or tumour bed, while sparing normal tissue as 
much as possible.25,26 Sladowska and colleagues 
and Paumier and colleagues demonstrated that, 
compared to conventional RT, IMRT improves 
dose distribution, target coverage and normal tis-
sue sparing in soft tissue sarcomas of the thigh 
and retroperitoneal sarcoma.27,28

Particle therapy, which uses charged particles 
such as protons and carbon ions, may also have 
a role to play in RT for sarcomas. Indeed, there 
is some evidence to suggest that particle ther-
apy may be a more effective modality in the 
management of bone and soft tissue sarcomas 
not eligible for surgical resection, providing 
good local control and offering a survival advan-
tage without unacceptable morbidity.29–31 
Particle therapy utilizes the Bragg peak effect to 
deliver high-dose radiation to the tumour while 
minimizing the dose delivered to adjacent nor-
mal tissue.32 Particle therapy is, however, 
extremely expensive, and not routinely availa-
ble for all cases.

Systemic control in sarcoma

Chemotherapy
The role of chemotherapy in the management of 
sarcoma is variable and, in some cases, controver-
sial. Significant benefit is seen in a limited group 
of chemosensitive sarcoma subtypes, including 
embryonal and alveolar rhabdomyosarcoma, 
Ewing’s sarcoma and osteosarcoma, and it is thus 
an integral part of the management of these 

sarcomas. Indeed, chemotherapy has drastically 
improved the long-term survival of these patients 
and offers possibility of cure, even in some cases 
with metastatic disease.33–36 There are also exam-
ples of more recently described chemotherapies 
that appear effective in specific sarcoma subtypes; 
these will be discussed later. Other sarcoma sub-
types vary from fairly sensitive to completely 
chemotherapy-unresponsive; in the majority of 
these cases, patients with metastatic disease face a 
dismal prognosis.

Single-agent chemotherapy.  Doxorubicin (also 
known as Adriamycin), epirubicin and ifosfamide 
are the only single-agent chemotherapeutic drugs 
that consistently achieve response rates of >20% 
in metastatic sarcomas.37 However, the range of 
activity of these agents varies greatly for different 
histological subtypes and there is individual vari-
ability for drug efficacy.38

Doxorubicin and epirubicin are anti-cancer 
antibiotics that belong to the anthracycline class 
of drugs. They are a four-membered ring system 
containing an anthraquinone chromophore and 
an aminoglycoside.39 Doxorubicin (Figure 1) 
was first used as a single-agent chemotherapeu-
tic treatment in the 1970s.40 Upon intravenous 
injection, doxorubicin is rapidly taken up into 
the nucleus of cells, where it binds to DNA with 
high affinity. It acts by intercalating between 
DNA base pairs and binding to DNA-associated 
enzymes, such as topoisomerase enzymes I and 
II and DNA and RNA polymerases. This 
induces DNA damage and the cessation of  
DNA replication and mRNA transcription.41 
Furthermore, cells arrest in G1 and G2 in an 
attempt to repair the damage, but when the 
damage is irreparable the apoptotic cell death 
pathway is triggered. Other actions of doxoru-
bicin include the generation of free radicals, 
causing additional DNA damage, inhibition of 

Figure 1.  Doxorubicin.
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macromolecule production, DNA unwinding 
and an increase in alkylation.42 The reported 
response rates of sarcomas to doxorubicin vary 
significantly, ranging from 10% to 25%, with 
the majority of cases showing a partial respo
nse.43–48 In osteosarcoma, studies have demon-
strated that cells are sensitized to doxorubicin 
treatment when autophagy, a process important 
for cell survival, is inhibited by blocking the 
high-mobility group box 1 protein (HMGB1).49 
It is therefore possible that treatment of sarco-
mas with doxorubicin may be more successful 
when combined with an inhibitor of autophagy. 
Adverse effects of doxorubicin include both 
acute and chronic cardiotoxicity, reversible 
myelosuppression, alopecia, mucositis, nausea 
and vomiting.50,51

Multiple trials have compared the effects and 
responses of doxorubicin and epirubicin in sarcoma 
treatment. In most cases no clear benefit for one 
over the other drug was seen. However, patients on 
the doxorubicin schedule demonstrated worse car-
diovascular and haematologic toxicity and hence 
epirubicin is often favoured over doxorubicin.52 
While epirubicin (Figure 2) acts in a similar way to 
doxorubicin, the spatial orientation of the hydroxyl 
group at the 4′ carbon of the sugar is different and 
this opposite chirality has been proposed to account 
for its reduced toxicity.52,53

Ifosfamide (Figure 3) is a nitrogen mustard 
alkylating agent that terminates proliferating can-
cer cells by adding alkyl groups to guanine bases 
in DNA molecules. This inhibits tumour growth 
because the guanine nucleobases become cross-
linked and prevent DNA double-helix strands 
from uncoiling and replicating.54 Ifosfamide con-
sistently shows response rates comparable to 
doxorubicin and it has a 25% average response 
rate among patients who show limited responses 
on a doxorubicin-based schedule.55–63 Unlike 
doxorubicin, which is administered as a single-
day infusion,64 ifosfamide is administered intra-
venously over several days at a time65 and usually 
requires hospital admission. The toxicities asso-
ciated with ifosfamide differ to those caused by 
doxorubicin, and include haemorrhagic cystitis, 
renal tubular acidosis, salt-wasting nephropathy, 
central nervous system toxicity and usually 
encephalopathy.54,66–68 Ifosfamide shows less evi-
dence of cardiotoxicity, thus rendering it an 
attractive treatment option.58–61,63,69 Ifosfamide-
induced urotoxicity can be reduced when it is 
administered simultaneously with mesna, a thiol 

compound that binds to the urotoxic ifosfamide 
metabolite, acrolein, converting it into a non-
toxic compound.58,70,71

Other single-agent chemotherapeutic drugs that 
have shown efficacy in some sarcoma subtypes 
include gemcitabine and topotecan. Gemcitabine 
(Figure 4) is a cytotoxic agent that has been 
tested in clinical trials but efficacy data are con-
flicting.72–75 It is a nucleoside analogue where the 
hydrogen atoms on the 2′ carbon of deoxycyti-
dine are replaced by fluorine atoms. Gemcitabine 
arrests tumour growth by replacing cytidine, one 
of the building blocks of nucleic acids, during 
DNA replication. As a result, the newly forming 
DNA strand can no longer be elongated and 
apoptosis is induced. Gemcitabine also irreversi-
bly inhibits the enzyme ribonucleotide reductase 
by binding to its active site and preventing the 
production of deoxyribonucleotides for DNA 
replication and repair and thus leads to apopto-
sis.76 It is more successful in leiomyosarcoma of 
uterine and gastrointestinal origin when used in 
combination with the anti-mitotic chemothera-
peutics docetaxel or vinorelbine or the alkylating 
agent dacarbazine.77 Topotecan (Figure 5), a 
quinoline-based alkaloid extracted from the 
Asian tree Camptotheca acuminate, inhibits topoi-
somerase-I activity during DNA replication. This 
causes double-strand breaks as the DNA is not 

Figure 2.  Epirubicin.

Figure 3.  Ifosfamide.
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relieved from torsional strain by topoisomerase-I 
while replicating. These DNA strand breaks can-
not be repaired and apoptosis is triggered. This 
drug generally demonstrates low activity, but 
response rates appear to be modest in non-uter-
ine leiomyosarcoma.78 Treatment response has 
also been shown for use of this drug in Ewing’s 
sarcoma and rhabdomyosarcoma.79–81

The taxane agents, paclitaxel and docetaxel, are 
diterpenes produced by plants of the genus 
Taxus.82 Although comparatively inactive as 
single-agent treatment, taxanes, particularly 
paclitaxel, appear to show significant response 
rates in angiosarcoma.83–87 This class of drugs 
functions by disrupting microtubules and thus 
inhibiting cell division. Other conventional sin-
gle-agent chemotherapeutic drugs used for the 
treatment of sarcomas include vinorelbine, 
methotrexate, dacarbazine, temozolomide, cis-
platin and carboplatin, but the response rates 
for most of them are <20%.88–93

Novel single-agent chemotherapeutics. Trabecte-
din and eribulin are two novel marine-derived 
chemotherapeutics which have shown promise for 
the treatment of leiomyosarcoma and liposar-
coma, which together account for approximately 
30% of all soft tissue sarcomas.

Trabectedin (Figure 6) is a marine-derived alka-
loid that is characterized by three fused tetrahy-
droisoquinoline rings. Two of these rings 
covalently interact with the minor groove of the 
DNA double helix and the third ring interacts 
with nearby nuclear proteins. These chemical 
interactions stimulate a cascade of events that 
compromises DNA binding proteins, including 
several transcription factors and the DNA nucle-
otide excision repair machinery. This results in 
double-strand DNA damage followed by a G2/M 
cell cycle arrest and ultimately apoptosis.94,95 
Trabectedin also targets the tumour microenvi-
ronment by triggering apoptosis in monocytes, 
including tumour-associated macrophages 
(TAMs), which are known to promote tumour 
progression and metastasis. Furthermore, tra-
bectedin inhibits the transcription of pro-inflam-
matory mediators (cytokines and chemokines), 
which also play a role in tumour growth and 
progression.96–98

Two independent phase II clinical trials in 2004 
provided initial analysis of trabectedin in 
advanced sarcoma subtypes refractory to conven-
tional anthracycline/ifosfamide first-line chemo-
therapy and a median 6-month progression-free 
survival of 29% and 24% were achieved. The 
most profound responses were observed in leio-
myosarcoma and synovial sarcoma histologies, 
with 56% and 61% progression arrest of tumour 
growth respectively.99,100 Adverse effects of tra-
bectedin include neutropenia, transaminase ele-
vation, fatigue and emesis.101 The success of 
trabectedin in early clinical trials led to its 
approval by the European Union for advanced 
soft tissue sarcoma in 2007 and subsequently the 
drug has been approved in over 70 countries, 
especially for patients who have failed to respond 
to standard therapies.102–104 A recent phase III 
clinical trial confirmed that advanced liposar-
coma and leiomyosarcoma refractory to doxoru-
bicin and ifosfamide showed a 45% reduction in 
the risk of disease progression or death when 
treated with trabectedin in comparison with dar-
carbazine, which prompted the approval of tra-
bectedin by the US Food and Drug Administration 
(FDA).105 The reason(s) why some sarcomas are 
particularly sensitive to trabectedin is not fully 
understood. However, it is likely that it interferes 
with transcription factors that they are addicted 
to. The myxoid/round cell subtype of liposar-
coma is the most sensitive to trabectedin and 
95% of these carry a t(12;16) (q13;p11) chromo-
some translocation which results in 

Figure 4.  Gemcitabine.

Figure 5.  Topotecan.
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the oncogenic FUS–CHOP fusion-protein. 
FUS–CHOP functions as a transcription factor 
that promotes multiple aspects of tumourigene-
sis, and trabectedin was shown to compete with 
and displace it from its target promoters.106,107

Recently a phase IIb trial showed that the admin-
istration of trabectedin as a first-line chemother-
apeutic for advanced soft tissue sarcomas shows 
no significant improvement in progression-free 
survival in comparison to doxorubicin, leading to 
the conclusion that doxorubicin remains the gold 
standard for first-line treatment of advanced soft 
tissue sarcomas.108 Although trabectedin clearly 
demonstrates clinical benefit in anthracycline-
resistant advanced leiomyosarcoma and synovial 
sarcoma histologies as a second- or third-line 
treatment, its benefit in treating other sarcoma 
histologies warrants further investigation.

Eribulin (Figure 7) is a novel microtubule-tar-
geting chemotherapeutic drug. It was recently 
approved by the FDA for the treatment of 
patients with unresectable or metastatic liposar-
coma who have received a prior anthracycline-
containing chemotherapy regimen.109 It is a 
synthetic analogue of halichondrin B that was 
originally extracted from the marine sponge 
Halicondria Okaida.110 The anti-cancer proper-
ties of eribulin are distinct from other tubulin-
targeting agents in that it does not affect 
microtubule shortening but binds to a unique 
part of tubulin which results in the suppression 
of microtubule growth and sequestration into 
non-functional aggregates.111–113 In this regard, 
eribulin has been found to be especially 

efficacious in patients with tumours harbouring 
beta-tubulin mutations that are refractory to 
taxanes.114,115 In preclinical models, eribulin 
was shown to induce an irreversible mitotic 
arrest, apoptosis and tumour regression in mul-
tiple cancer cell lines with a mean IC50 that is 
2–4-fold more potent than vinblastine and pacli-
taxel.114,116,117 A broad range of sarcoma cell 
lines, including liposarcoma, leiomyosarcoma, 
Ewing’s sarcoma, synovial sarcoma and fibro-
sarcoma, have been demonstrated to be sensi-
tive to eribulin.118 The authors showed that it 
induced cellular differentiation in vitro and 
reduced tumour formation and vasculature in in 
vivo xenograft models. In a non-randomized 
phase II study, the EORTC (European 
Organisation for Research and Treatment of 
Cancer) Soft Tissue and Bone Sarcoma Group 
assessed the efficacy and safety of eribulin. This 
study showed that eribulin exhibited significant 
anti-tumour activity in metastatic liposarcoma 
and leiomyosarcoma patients, but not in syno-
vial sarcoma or any other sarcoma subtype.119 A 
phase III study also demonstrated that, com-
pared to dacarbazine, eribulin significantly 
improves overall survival of patients with refrac-
tory leiomyosarcoma and liposarcoma.120 The 
predominant side effects reported for eribulin 
are neutropenia, anaemia, fatigue, febrile neu-
tropenia, mucositis and sensory neuropathy.121

Combination chemotherapy.  Combination chemo-
therapy has been explored extensively and while 
not always used as a first-line approach to treating 
patients with metastatic sarcomas, it is an accepted 
treatment. Most combination chemotherapy regi-
mens include doxorubicin and an alkylating 
agent.122,123 Regimens that appear often in the lit-
erature include AIM (doxorubicin, ifosfamide and 

Figure 7.  Eribulin.

Figure 6.  Trabectedin.
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mesna), MAID (mesna, doxorubicin, ifosfamide 
and dacarbazine) and gemcitabine together with 
docetaxel, vinorelbine or dacarbazine.45,46,124–129 
A variety of bone and soft tissue sarcomas show 
response to these regimens, with Ewing’s sarcoma 
and rhabdomyosarcoma showing greater sensitiv-
ity to MAID schedules;58,126 myxoid liposarcoma, 
myxofibrosarcoma and synovial sarcoma showing 
sensitivity to AIM regimens;130–132 and leiomyo-
sarcoma showing better response rates to the 
gemcitabine-based regimens.133 Another combi-
nation treatment termed VAC/IE for Ewing’s sar-
coma and rhabdomyosarcoma includes 
vincristine, doxorubicin and cyclophosphamide 
alternating with ifosfamide and etoposide.134,135 
This relatively intense chemotherapeutic regimen 
shows a 16–46% overall response with complete 
responses occurring in approximately 5–10% of 
these sarcomas. About one-third of these com-
plete responders are long-term disease-free 
survivors.126,136–139

Studies comparing single-agent therapy to combi-
nation regimens have failed to provide evidence 
as to which option provides better overall survival 
benefit.

Targeted therapies
The development of molecular-targeted thera-
pies for sarcomas is a rapidly evolving field. This 
therapeutic strategy requires identification of 
key molecular drivers of sarcomas and recent 
advances in our understanding of sarcoma biol-
ogy have led to the identification of several 
molecular determinants of different sarcoma 
subtypes (Figure 8). This section will review the 
most relevant targetable pathways in soft tissue 
and bone sarcomas, as well as discuss findings 
from preclinical and clinical trials, which are 
summarized in Figure 9.

Tyrosine kinase inhibitors
Tyrosine kinase inhibitors have become the 
most influential targeted therapeutic break-
through for the treatment of sarcomas. Factors 
currently targeted in approved treatments 
include the receptors for the tyrosine kinases 
c-KIT, platelet-derived growth factor receptor 
(PDGFR) and vascular endothelial growth fac-
tor receptor (VEGFR). Other sarcoma subtype-
specific targeted therapies underway include the 
inhibition of insulin-like growth factor 1 recep-
tor (IGF1R) in Ewing’s sarcoma and MET 

receptor tyrosine kinase and Src tyrosine-pro-
tein kinase in bone sarcomas.

c-KIT, PDGFR and VEGF inhibitors.  c-KIT is a class 
III receptor tyrosine kinase and has been shown to 
impact on a variety of oncogenic cellular processes 
such as cell survival, proliferation, differentiation, 
adhesion and apoptosis by initiating multiple 
downstream signalling pathways such as the mito-
gen-activated protein kinases (MAPK), phospha-
tidylinositol 3-kinase (PI3K) and Janus kinase/
signal transducer and activator of transcription 
(JAK/STAT). PDGF-α is also a class III receptor 
tyrosine kinase and a key regulator of mesenchy-
mal cell proliferation and migration.140–142 c-KIT 
and PDGFR kinases play an important role in the 
pathogenesis of a number of tumours including 
gastrointestinal stromal tumours (GISTs). GISTs 
are the most common mesenchymal tumours of 
the gastrointestinal tract and are usually resistant 
to chemo- and radiation therapy. Approximately 
95% of GISTs arising in adults constitutively 
express active c-KIT; of these patients, 80%  
have c-KIT gene mutations which result in ligand-
independent constitutive activation of the recep-
tor.143,144 This results in uncontrolled cell 
proliferation and the stimulation of downstream 
signalling pathways involving PI3K and 
MAPK.145 Sarcomas, like other proliferating 
malignancies, are also dependent on the forma-
tion of new blood vessels (angiogenesis) to sup-
port their proliferation, invasion and metastasis.146 
VEGFR is considered to be one of the most 
important drivers of angiogenesis and are fre-
quently upregulated in soft tissue sarcomas and 
are associated with high tumour grade.147,148 A 
study by Zhang and colleagues also showed that 
overexpression of VEGF-2 in soft tissue sarcoma 
cell lines resulted in increased tumour vascula-
ture as well as pulmonary metastases in mice.149 
This section will focus on inhibitors of c-KIT, 
PDGFR and VEGFR, namely imatinib, sunitinib 
and pazopanib, which have completed all phases 
of clinical trials and which have been approved as 
standard treatment for commercial use by the 
FDA. These drugs have been shown to inhibit 
tumour growth with improved response rates and 
reduced toxicity.150–153

Imatinib was originally synthesized to target the 
fusion-protein Bcr-Abl for treatment of myelog-
enous leukaemia, but was subsequently found to 
also inhibit c-KIT and PDGFR. A study in the 
United States has demonstrated objective 
response rates in the range of 50–70% for the 
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treatment of GISTs with imatinib.150 Imatinib 
functions by binding in the cleft between the N- 
and C-terminal domains of c-KIT (Figure 10) 
which inhibits its association with downstream 
cell signalling substrates resulting in cell growth 
arrest and cell death by apoptosis.154 While most 
mutations that result in ligand-independent con-
stitutive activation of c-KIT occur in exon 11, 
there are some less frequent mutations present 
in exon 9, 13 or 17. These more rare mutations 
appear to have a different underlying mechanism 
that results in uncontrolled c-KIT signalling and 
are less responsive to imatinib treatment.155 
Hirota and colleagues also identified mutations 
causing constitutively active PDGFRs in a 
minority of GIST cases which induce cytoge-
netic changes associated with tumour progres-
sion.156 Similar to the rare c-KIT mutations, 
these mutations are characterized by insensitiv-
ity to imatinib but they are more sensitive to 
sunitinib, which inhibits multiple receptor 

tyrosine kinases including c-KIT, PDGFR, 
VEGFR, RET (rearranged during transfection) 
and FLT3 (fms-related tyrosine kin-
ase-3).155,157–159 The simultaneous inhibition of 
these targets results in reduced tumour vascu-
larization and cancer cell death. The ability of 
sunitinib to target multiple receptors renders it a 
successful second-line treatment for GIST 
patients resistant to imatinib. However, this is 
associated with adverse effects including nausea, 
diarrhoea, fatigue, hypertension, anorexia, sto-
matitis, a yellow skin discolouration and hand-
foot skin reaction.152

Based on the success rate of imatinib in GISTS, 
its therapeutic applications have been extended to 
other sarcoma subtypes that also exhibit aberrant 
expression of PDGFR or c-KIT. However, the 
response rates of these cancers to imatinib have 
been mostly poor.19 A recent phase II clinical trial 
was conducted by the Children’s Oncology Group 
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Figure 8.  Molecular determinants of different sarcoma subtypes.
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(COG) to test the efficacy of imatinib for the treat-
ment of a variety of paediatric sarcomas with high 

c-KIT or PDGFR levels. Results showed that out 
of 48 patients comprising 24 Ewing’s sarcoma, 10 
osteosarcoma, 10 desmoplastic small round cell 
sarcoma and 4 synovial sarcoma cases, only 1 
patient showed a partial response to imatinib and 
the COG concluded that the tyrosine kinases tar-
geted by imatinib are not the molecular drivers of 
these cancers.160,161 It is also possible that these 
sarcomas escape cell death induced by imatinib by 
activating alternative signalling pathways such as 
the PI3K/AKT pathway or through feedback 
loops. If this is the case then multi-targeted inhibi-
tors may be required.162 Based on the above 
reports it is clear, with the exception of most 
GISTS, that no definitive correlations can be 
drawn based on the expression levels of PDGFR/
KIT and the response to imatinib. Acquired resist-
ance to imatinib has also been reported in some 
GIST patients during chronic therapy and alter-
native strategies are therefore required to treat or 
avert imatinib resistance in these cancers.163 
IMC-3G3 (olaratumab), a humanized anti-
PDGFRα monoclonal antibody, showed 

Figure 9.  Targeted therapies in sarcomas.

Figure 10.  Imatinib, N- and C-terminal domains.
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promising preclinical efficacy in leiomyosarcoma 
and osteosarcoma cell lines. Results from a rand-
omized phase Ib/II clinical trial164 led to the accel-
erated approval of olaratumab by the FDA for the 
treatment of patients with soft tissue sarcoma not 
amenable to curative treatment with RT or sur-
gery and with a histologic subtype for which 
anthracycline-containing regime is appropriate.165

Pazopanib is another multi-targeted tyrosine 
kinase inhibitor that targets several proteins, 
including VEGFR and PDGFR, which play 
important roles in angiogenesis, tumour growth 
and cell survival.166 It binds to the ATP-binding 
site which is located in the cleft between the N- 
and C-terminal lobes of these receptor tyrosine 
kinases, rendering them inactive (Figure 11).167 
Pazopanib has shown promising anti-cancer 
activity in advanced soft tissue sarcomas with sig-
nificant responses in leiomyosarcoma and syno-
vial sarcoma.168 The outcome of a randomized, 
double-blind, placebo-controlled phase III trial 
led to FDA approval of pazopanib for the treat-
ment of advanced soft tissue sarcomas in patients 
who had received prior chemotherapy.153 This, 
however, excluded patients who received treat-
ment for adipocytic tumours or GISTs as these 
were unresponsive in the trial. The trial showed 
benefit across many treatment-resistant meta-
static sarcoma subtypes with a significant 3-month 
median increase in progression-free survival in 
the treated group versus the placebo group. The 
most common adverse effects for pazopanib 
reported were fatigue, diarrhoea, nausea, weight 
loss and hypertension.153,169 The success and 
approval of this drug lends some evidence to the 

important role of the VEGFR and related path-
ways to the growth of diverse sarcoma subtypes.

MET, Src, IGFR inhibitors. The constitutive activa-
tion of the MET signalling pathway has been 
implicated in a wide range of human malignan-
cies, including sarcomas where it promotes cell-
matrix dissociation, protease production and 
consequently invasion and metastasis.170,171 MET 
overexpression correlates with metastasis in 
osteosarcoma, and the upregulation of MET in 
primary human bone-derived cells was sufficient 
to drive their transformation into osteosarcoma 
cells in vitro.172,173 The MET inhibitor, crizotinib, 
inhibits proliferation, survival, invasion and  
clonogenicity of multiple sarcoma cell lines as 
well as in vivo growth in osteosarcoma bearing  
mice.174–176 At present, a phase II clinical trial 
[ClinicalTrials.gov identifier: NCT01524926] 
testing crizotinib in patients ⩾15 years with MET-
driven sarcomas and lymphomas is underway.

Src has been identified as an oncoprotein in sev-
eral human cancers and its role in promoting 
migration is well established in bone sarcomas.177 
Indeed, three independent studies have shown 
that the inhibition of the Src signalling pathway 
inhibits metastasis of chondrosarcoma cells and 
the treatment of Ewing’s sarcoma cells with the 
Src inhibitor dasatinib reduced their migratory 
and invasive ability.178–181 Clinically, dasatinib 
has been tested for the treatment of several solid 
tumours, including sarcomas, but it has been 
associated with acute side effects.182 Ongoing 
phase II clinical trials [ClinicalTrials.gov identi-
fier: NCT00788125] are now attempting to fur-
ther evaluate the use of dasatinib in combination 
with chemotherapies such as ifosfamide, carbopl-
atin and etoposide.

The IGF signalling pathway promotes cell sur-
vival and proliferation by activating the PI3K/
AKT/mTOR and Ras/Raf/MAPK path-
ways.183,184 Elevated levels of IGF Receptor-1 
(IGFR-1) and its ligands have been observed in 
Ewing’s sarcoma, synovial sarcoma, osteosar-
coma and chondrosarcoma, as well as some soft 
tissue sarcoma subtypes such as leiomyosarcoma 
and rhabdomyosarcoma, where it correlates with 
tumour aggression and poor prognosis.184–186 
IGFR-1 has an established oncogenic role in 
Ewing’s sarcoma, where it is a direct target gene 
of the EWS–FLI1 fusion oncoprotein, and it is 
required for Ewing’s sarcomagenesis.187,188 
Preclinical data suggest that targeting the IGF 

Figure 11.  Pazopanib, N- and C-terminal domains.
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pathway could be a promising molecular therapy 
for sarcomas. Indeed, humanized monoclonal 
antibodies targeting IGFR-1 showed promise in 
phase I and II clinical trials for the treatment of 
paediatric sarcomas, including osteosarcoma, 
Ewing’s sarcoma and rhabdomyosarcoma, with 
a modest clinical benefit in liposarcoma.189–191 
Unfortunately, most patients who initially 
respond to IGFR-1 inhibitors develop resistance 
to the therapy and suffer from relapse or recur-
rence within several months. Investigations of 
additional combination/additive treatments are 
clearly warranted and the factors/pathways 
responsible for resistance to IGFR-1 inhibitors 
remain subjects of investigation.192

mTOR inhibitors
Alterations in the mammalian target of rapamycin 
(mTOR) pathway are commonly associated with 
sarcoma formation. Therapies inhibiting this 
pathway are at preclinical and clinical trial phases. 
mTOR is a protein kinase and downstream effec-
tor of the PI3K/AKT pathway in proliferation, 
cell survival and migration.193 Several mTOR 
inhibitors have been evaluated in single-agent 
clinical trials, with ridaforolimus being the most 
extensively studied.19 However, while ridaforoli-
mus demonstrated efficacy for the treatment of 
patients with advanced metastatic sarcoma in 
phase I and II clinical trials, it did not receive 
FDA approval because of the results of a larger 
phase III clinical trial involving 711 patients with 
advanced sarcoma.194–196 In the latter trial, com-
pared to the placebo, tumour progression was 
only marginally delayed in patients on ridaforoli-
mus and the median benefit of progression-free 
survival was low (17.7 weeks for ridaforolimus 
versus 14.6 weeks for placebo).197 In addition, the 
mTOR inhibitors, everolimus, sirolimus and tem-
sirolimus have been evaluated in single-agent 
clinical trials with most of them yielding disap-
pointing results and interpatient variability.19 Due 
to the possibility of compensatory activation of 
the PI3K/AKT pathway, combination therapies 
targeting multiple components of the PI3K/AKT/
mTOR pathway have been considered, with one 
possible drawback being increased cytotoxicity to 
patients.193

Inhibitors of the cell cycle
The cell cycle is regulated at the most basic level 
by the ordered expression and activation of the 
family of Ser/Thr cyclin-dependent kinases 

(CDKs).198 As their name implies, the activity of 
CDKs is dependent on their association with cyc-
lins; when activated, cyclin–CDK complexes 
drive the cell cycle.199 CDK inhibitors (CDKIs) 
trigger checkpoints which halt the cell cycle and 
therapeutic agents that inhibit aberrant cell cycle 
activation are being tested in sarcomas.200 
Flavopiridol, a non-selective inhibitor of CDK1, 
2, 4, 6 and 7 was tested in a phase II clinical trial 
for the treatment of advanced, metastatic soft tis-
sue sarcomas including fibrosarcoma, liposar-
coma, leiomyosarcoma and synovial sarcoma, but 
no significant responses were observed.201 
Encouraging results have, however, been observed 
for palbociclib, a selective CDK4/6 inhibitor, in 
liposarcoma patients with amplified CDK4. In a 
recent phase II clinical trial, palbociclib was asso-
ciated with favourable progression-free survival  
in patients with well-differentiated or dediffer-
entiated liposarcoma.202 Histone deacetylase 
(HDAC) inhibitors can induce transcription of 
key cell cycle regulators including the CDKI p21 
which leads to growth arrest and apoptosis in sar-
coma cell lines.203,204 For example, treatment of 
chondrosarcoma cell lines with HDAC inhibitors 
was shown to result in S-phase arrest and tran-
scriptional activation of p21.205,206 Based on these 
and other promising results, HDAC inhibitors are 
also being investigated in early-phase clinical trials 
in patients with advanced soft tissue sarcomas.207 
One emerging phase II study evaluated a single-
agent HDAC inhibitor, panabinostat, in patients 
with translocation-related (myxoid liposarcoma, 
Ewing’s sarcoma, alveolar soft part sarcoma and 
synovial sarcoma) and translocation-unrelated 
(leiomyosarcoma and pleomorphic liposarcoma) 
soft tissue sarcomas. While this study did not 
reach its primary endpoint, a subset analysis 
revealed that six patients with liposarcoma, leio-
myosarcoma or Ewing’s sarcoma had prolonged 
stable disease.208

Mouse double minute 2 homolog (MDM2) is a 
ubiquitin E3 ligase that mediates the degradation 
of p53 by the proteasome 26S, and it is frequently 
amplified and activated in sarcomas.209 The inhi-
bition of MDM2 results in increased levels of 
p53 and consequently the transcriptional activa-
tion of, among other p53 targets, CDKIs, leading 
to cell cycle arrests and/or senescence and cell 
death by apoptosis.210 Numerous therapeutic 
strategies targeting MDM2 have been developed, 
including nutlin-3 and RG7112. Nutlin-3 acti-
vates the p53 signalling pathway and was shown 
to lead to major tumour regression in 
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osteosarcoma xenografts through activation of 
apoptosis.184 In a phase I study, sarcoma patients 
with MDM2-amplified liposarcoma treated with 
RG7112 showed a significant reduction in 
tumour growth.19

Aurora kinases (AURKs) constitute a family of ser-
ine/threonine kinases that are required for progres-
sion through mitosis and cell division. Indeed, they 
are important in centrosome duplication, spindle 
formation, alignment of chromosomes on the 
mitotic spindle, as well as transition through the 
mitotic checkpoints and cytokinesis.211 Aberrant 
expression of AURKA has been implicated in many 
cancers and contributes to chromosome instability 
and phosphorylation-mediated ubiquitylation and 
degradation of the tumour suppressor p53.212 In 
vitro, inhibition of AURKA by shRNA or chemical 
inhibitors reduces cell proliferation in multiple sar-
coma cell lines; results from a recent phase II clini-
cal trial revealed that alisertib, a small-molecule 
inhibitor of AURKA, significantly improved pro-
longed stable disease in angiosarcoma and chon-
drosarcoma patients.184,207,213

Immunotherapy
Immunotherapy is a treatment designed to harness 
the ability of the body’s immune system to combat 
infection or disease to either produce an immune 
response or to enhance immune resistance to dis-
ease. With an advanced understanding of the 
immune system and cancer immunology, 

immunotherapy has made a significant impact on 
the oncology world in the last few years, with 
promising treatments for diverse malignancies 
including melanoma, leukaemia, prostate cancer, 
lung cancer and renal cell carcinoma.214–219 
Unfortunately, advancements in immunotherapy 
for the treatment of sarcomas have made limited 
progress, which can partly be attributed to the rar-
ity and heterogeneity of this cancer type. Recently, 
however, sarcoma research has turned a corner 
with numerous immunotherapy research initia-
tives and multiple early-phase clinical trials under-
way which include cytokine therapies, adoptive cell 
therapy, therapeutic cancer vaccines and check-
point inhibitors/immune modulators.220,221 The 
efficacy of an immune checkpoint inhibitor in sar-
comas has only been evaluated by a phase II study 
that administered ipilimumab, a CTLA-4 inhibi-
tor, to synovial sarcoma patients. However, the 
study was closed when none of the patients had an 
objective tumour response222,223 While the check-
point inhibitor data have been disappointing, it is 
anticipated that immunotherapies will improve the 
prognosis of sarcoma patients.224,225

Mifamurtide, a novel immunomodulator for the 
treatment of osteosarcoma.  Mifamurtide (mur-
amyl tripeptide phosphatidylethanolamine or 
MTP-PE) (Figure 12) is an immunomodulator 
that exhibits anti-cancer activity through activa-
tion of monocytes and macrophages. It is a syn-
thetic analogue of the immune stimulatory 
peptidoglycan motif known as muramyl dipeptide 

Figure 12.  Mifamurtide.

https://journals.sagepub.com/home/tam


JS Bleloch, RD Ballim et al.

journals.sagepub.com/home/tam	 649

(MDP) found in the cell wall of Gram-positive 
and Gram-negative bacteria.226,227 Mifamurtide is 
encapsulated in liposomes, which favours tar-
geted delivery and enhances the compound’s abil-
ity to activate macrophages and monocytes and 
also reduces the compound’s toxicity.228–230 Intra-
cellularly, MTP-PE binds to the nucleotide-bind-
ing oligomerization domain (Nod) 2 receptor, 
which is highly expressed in antigen presenting 
cells.231,232 This binding stimulates the production 
of pro-inflammatory molecules including inter-
leukin (IL)-1, IL-6, IL-8, tumour necrosis factor 
alpha, nitric oxide and prostaglandins D23 and 
E2.

233–235 Upregulation of these molecules leads to 
activation of contact-mediated tumouricidal 
activity of macrophages and monocytes.236,237 
Immunomodulation is of particular relevance in 
the case of osteosarcoma as there are numerous 
signalling pathways such as receptor activator of 
nuclear factor kappa-B ligand (RANKL) signal-
ling, cytokines including IL-1, IL-6, IL-17 and 
transforming growth factor-β that have overlap-
ping roles in bone and the immune system.238,239 
However, there is limited understanding of the 
cross-talk between osteosarcoma cells, osteoclasts 
and cells of the immune system and how they may 
promote tumourigenesis.240,241

In 2009 mifamurtide was approved by the 
European Medical Agency for the treatment of 
high-grade non-metastatic resectable osteosar-
coma following surgical removal in children, ado-
lescents and young adults.239,242–244 This approval 
was prompted by the promising data generated 
from a large phase III randomized prospective 
intergroup trial.245 Results showed that intrave-
nous treatment with mifamurtide after complete 
surgical resection and postoperative multi-agent 
chemotherapy significantly improved the six-year 
overall survival from 70% to 78% in patients with 
newly diagnosed osteosarcoma; patients with met-
astatic disease showed improvement in five-year 
overall survival from 40% to 53%.246,247 
Mifamurtide is generally well tolerated, with 
reported adverse effects including fever, chills, 
nausea, headache, fatigue and myalgias.242,243,248 
Although mifamurtide is not yet approved in the 
US, several trials [ClinicalTrials.gov identifier: 
NCT014559484] are currently underway to fur-
ther investigate its efficacy in osteosarcoma.239

Conclusion
Sarcomas continue to present a serious therapeu-
tic challenge, mostly due to the large number of 

sarcoma subtypes, the heterogeneity within them 
and their different responses to current treat-
ments. It is anticipated that the identification of 
the key molecular drivers underlying the various 
sarcoma subtypes will reveal biomarkers for more 
reliable diagnosis of sarcomas and lead to the 
development of more effective targeted therapies.
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