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a b s t r a c t

In the development of the cellular slime mold Dictyostelium discoideum, two chlorinated compounds, the
differentiation-inducing factors DIF-1 and DIF-2, play important roles in the regulation of both cell dif-
ferentiation and chemotactic cell movement. However, the receptors of DIFs and the components of DIF
signaling systems have not previously been elucidated. To identify the receptors for DIF-1 and DIF-2, we
here performed DIF-conjugated affinity gel chromatography and liquid chromatography–tandem mass
spectrometry and identified the glutathione S-transferase GST4 as a major DIF-binding protein. Knockout
and overexpression mutants of gst4 (gst4– and gst4OE, respectively) formed fruiting bodies, but the
fruiting bodies of gst4– cells were smaller than those of wild-type Ax2 cells, and those of gst4OE cells were
larger than those of Ax2 cells. Both chemotaxis regulation and in vitro stalk cell formation by DIFs in the
gst4 mutants were similar to those of Ax2 cells. These results suggest that GST4 is a DIF-binding protein
that regulates the sizes of cell aggregates and fruiting bodies in D. discoideum.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The cellular slime mold Dictyostelium discoideum is an excellent
model organism for analyses of both chemotaxis and cell differ-
entiation. These vegetative amoebae grow by ingesting bacteria
and, on starvation, start morphogenesis; during morphogenesis,
the cells gather to form a slug-shaped multicellular aggregate, in
which cells differentiates into two distinct cell types, prespore and
prestalk cells. Eventually, the cells form a fruiting body consisting
of spores and a multicellular stalk [1,2].

Cyclic AMP and chlorinated alkylphenones, specifically differ-
entiation-inducing factors 1 and 2 (DIF-1 and DIF-2) (Fig. 1A), play
pivotal roles in the development of D. discoideum. Extracellular
cAMP is not only essential for cell differentiation, but it also acts as
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a chemoattractant when the cells gather to form a multicellular
aggregate [1,2]. DIF-1 and DIF-2 initially were identified as the
factors that induce in vitro stalk cell differentiation in D. dis-
coideum [3–6]. DIF-1 is more active than DIF-2 in inducing stalk
cell differentiation under submerged assay conditions; DIF-2 has
�40% of the specific activity of DIF-1 [6,7]. In addition, DIF-1 has
been shown to inhibit prespore differentiation [8,9] and prestalk-
to-prespore conversion [10], promote prespore-to-prestalk con-
version [8,11,12], and induce basal disc formation [13,14].

Recently, we demonstrated that DIF-1 and DIF-2 also function
as negative and positive modulators, respectively, of chemotactic
cell movement toward cAMP and that the mechanisms by which
DIFs modulate chemotaxis differ—at least in part—from those
used to induce cell differentiation [15,16]. Despite the importance
of DIF-1 and DIF-2 in D. discoideum development, the cellular
signaling systems involving DIFs, including their receptors, remain
to be elucidated.

To identify the receptor(s) for DIFs, we here performed affinity
chromatography by using DIF-conjugated resin and recovered
several DIF-binding proteins in D. discoideum, one of which was
identified as glutathione S-transferase 4 (GST4), by using liquid
chromatography–tandem mass spectrometry (LC/MS/MS). Knock-
out and overexpression mutants of gst4 (gst4– and gst4OE cells,
respectively) formed fruiting bodies, but gst4– fruiting bodies were
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. (A) Chemical structures of DIF-1, DIF-2, and THPH. DIF-1, 1-(3,5-dichloro-
2,6-dihydroxy-4-methoxyphenyl)hexan-1-one; DIF-2, 1-(3,5-dichloro-2,6-dihy-
droxy-4-methoxyphenyl)pentan-1-one; THPH, 1-(2,4,6-trihydroxyphenyl)hexan-1-
one. (B) Scheme of the coupling reaction for DIF-1-NH2 [6-amino-1-(3,5-dichloro-
2,6-dihydroxy-4-methoxyphenyl)hexan-1-one hydrochloride] and Affi-Gel 10 re-
sin. DIF–Affi-Gel 10 resin (DIF–beads) was prepared as described previously [18].
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smaller than those of wild-type cells, and the fruiting bodies of
gst4OE were larger than those of wild-type cells. Our results sug-
gest that GST4 is a DIF-binding protein that regulates the sizes of
cell aggregates and fruiting bodies during D. discoideum
development.
2. Materials and methods

2.1. Cells and reagents

D. discoideum Ax2 cells were used in this study. Affi-Gel 10
resin was purchased from Bio-Rad (Hercules, CA, USA). DIF-1, DIF-
2, and THPH (Fig. 1A) were synthesized as described previously
[17], dissolved in ethanol or dimethyl sulfoxide (DMSO), and
stored at �20 °C. DIF-1-NH2 (Fig. 1B) was synthesized as described
previously [18].

2.2. Coupling of DIF-1-NH2 to Affi-Gel 10 resin

DIF-1-NH2 was coupled to Affi-Gel 10 resin at 4 °C to produce
DIF–Affi-Gel 10 (DIF–beads) according to the manufacturer's in-
structions (Fig. 1B) as described previously [18]. The DIF–beads
were washed well with 0.1 M phosphate-buffered saline and kept
at 4 °C until use.

2.3. Preparation of cell extracts for DIF-affinity chromatography

Ax2 cells were grown axenically at 21 °C in HL-5 medium. Cells
were collected by centrifugation (500� g, 3 min) and allowed to
develop for 7 h on a 2% (w/v) agar plate (90 mm) at 21 °C (5�108

cells/plate). Then the cells (at loose aggregate stage) were har-
vested by using a salt solution (10 mM NaCl, 10 mM KCl), placed
into 1.5-mL microcentrifuge tubes, and collected by centrifugation
(800� g, 30 s). Cell pellets were washed with 1 mL of salt solution
and then stored at –70 °C until use. The frozen cells in a micro-
centrifuge tube (�2.5�108 cells) were lysed with 1 mL of TBS-T
(10 mM Tris-HCl pH 7.4, 150 mM NaCl, 0.05% Tween 20, and the
Complete protease inhibitor cocktail [Roche Diagnostics,
Mannheim, Germany]) for 10 min at 4 °C on a rotating platform.
Lysates were spun (12,000� g, 10 min) twice to remove cell debris,
and the resulting supernatant (cell extract) was used for affinity
purification of DIF-binding proteins.

2.4. DIF-affinity chromatography, SDS-PAGE, and protein
identification

DIF-binding proteins were purified as described in Fig. 2A.
Briefly, Affi-Gel 10 resin (control beads) and DIF–beads (approxi-
mately 0.6 mL of each) were placed in 1.5-mL microcentrifuge
tubes, washed well with TBS-T, and then washed several times
with TBS-T containing 100 nM THPH (a non-bioactive analog of
DIF-1). Then, 1 μL of 0.1 mM THPH was added to 1 mL of cell ex-
tract in TBS-T (final THPH concentration, 100 nM) to block the non-
specific binding of cell proteins to beads, and 0.5 mL of cell extract
was applied to control beads and DIF–beads in tubes, which were
rotated gently for 1 h on a microcentrifuge tube rotator (MTR-103,
As One Corporation, Osaka, Japan) at 4 °C. The beads were then
pelleted, the supernatants were removed, and the beads were
washed 7 times with 0.7 mL of TBS-T containing 100 nM THPH.
Control and DIF–beads were incubated for 1 h (with rotation at
4 °C) with 0.5 mL each of TBS-T containing 100 nM THPH and 20
μM DIF-1, to elute the bound proteins. After the beads were pel-
leted, 0.45 mL of each supernatant (eluate) from the control and
DIF–beads was collected in each of two 1.5-mL microcentrifuge
tubes.

To concentrate the eluted proteins, 4.5 μL of 2% (w/v) deox-
ycholate was added to each eluate; the tubes were mixed well and
allowed to stand at 4 °C for 30 min. Then, 50 μL of 100% (w/v)
trichloroacetic acid was added to the eluates, mixed well, and al-
lowed to stand at 4 °C for 1 h. After centrifugation (12,000� g,
20 min, 4 °C), supernatants were discarded and, to remove re-
maining trichloroacetic acid, the precipitated proteins were sus-
pended in 1 mL of cold acetone and incubated on ice for 5 min.
After centrifugation (12,000� g, 20 min, 4 °C), supernatants were
discarded, and the precipitated proteins were air-dried and sus-
pended in 30 μL of SDS sample buffer [80 mM Tris–HCl pH 6.8, 2%
(w/v) SDS, 0.1 M dithiothreitol, 20% (w/v) glycerol, the Complete
protease inhibitor cocktail] containing 3 mM NaOH (for neu-
tralization of any remaining trichloroacetic acid).

The sample proteins were separated by SDS–PAGE (5–20%
gradient) and stained with Coomassie brilliant blue (CBB) solution
(0.25% [w/v] CBB, 45% [v/v] methanol, 10% [v/v] acetic acid). The
gel was washed in 45% methanol, 10% acetic acid several times and
then in 10% methanol, 10% acetic acid to remove excess CBB. The
protein bands specifically present in the eluate of DIF–beads
(Fig. 2B) were harvested. Each protein-containing gel slice was
digested with trypsin, and the gel digests were analyzed by LC/MS/
MS as described previously [19], except that we used an LTQ Or-
bitrap XL mass spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA). Product ion data were searched against all biological
kingdoms in the NCBI non-redundant protein sequence (nr) da-
tabase by using the Mascot search engine (Matrix Science, Boston,
MA, USA).

2.5. Generation of gst4-null and gst4-overexpression mutants

The gene-targeting construct for generating the gst4-null mu-
tant was prepared as follows. First, the target region of gst4 was
amplified from genomic DNA by using the primers described in
Fig. 3C. The blasticidin S resistance gene-expression cassette (bsr)
was then inserted into the gst4 coding region by using a fusion PCR
technique, and the linear construct was amplified by PCR [20]. To
construct the overexpression vector, the full-length gst4 gene was
amplified from cDNA prepared from aggregation-stage mRNA by



Fig. 2. (A) Scheme for the identification of DIF-binding proteins in D. discoideum. Ax2 cells were developed on agar plates for 7 h, lysed in 0.05% Tween 20 in Tris-buffered
saline (TBS-T), and incubated with control beads or DIF–beads in the presence of 0.1 μM THPH to reduce non-specific protein binding to beads. After beads were washed with
TBS-T containing THPH, the bound proteins were eluted by using TBS-T containing 2 μM DIF-1. The affinity-purified proteins were separated by SDS-PAGE and stained with
Coomassie brilliant blue. The proteins that were specifically present in the DIF-beads eluate were identified by using LC/MS/MS. (B) Photo of the SDS-PAGE gel stained with
Coomassie brilliant blue. Total cell extracts, eluates of control and DIF–beads, and molecular mass standards (Std) were subjected to SDS-PAGE, and the resulting gel was
stained; arrows indicate a major band and minor bands unique to the DIF-beads lane. The �25-kD protein band present in the DIF-beads lane was harvested, and the
proteins in the band were analyzed by LC/MS/MS. Ultimately, the major protein in the band was identified as the glutathione S-transferase GST4.
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using an oligo-dT primer and verified by DNA sequencing. The PCR
product was inserted into the cloning site of pHK12neo, as de-
scribed previously [21].

Ax2 cells were electroporated with 10 μg of the generated DNA
fragment or empty vector, and transformants were selected by
using either blasticidin S (Funakoshi, Tokyo, Japan) for gene-tar-
geting experiments or G418 (Sigma-Aldrich, Buchs, Switzerland)
for the overexpression assays, as described previously [22].

Expression of gst4 mRNA in the wild-type and transformed
cells was assessed by semi-quantitative RT-PCR as follows. Total
RNA was prepared by using RNeasy mini kits (Qiagen, Düsseldorf,
Germany) followed by cDNA synthesis by using Superscript II
(Invitrogen, Carlsbad, CA, USA) with random DNA hexamers as
primers. RT-PCR was performed by using the primers shown in
Fig. 3D, as described previously [15].

2.6. Comparison of the phenotypes of Ax2 and gst4 mutants

All cells were grown in HL5 medium at 21 °C. Blasticidin S
(10 μg/mL) or G418 (20 μg/mL) was added to cultures of gst4– or
gst4OE cells in HL5 medium, respectively. To observe fruiting body
formation in the presence of bacteria (Fig. 4A), each strain was
inoculated on a 5LP plate (0.5% [w/v] lactose and 0.5% [w/v] DIFCO
peptone with 1.5% [w/v] agar) with Klebsiella aerogenes and in-
cubated for 4–5 days at 21 °C. The fruiting bodies were observed
through a stereomicroscope (model SZX12, Olympus, Tokyo, Ja-
pan). For the time-course observation of development (Fig. 4C and
Supplemental Fig. 2), cells in the early exponential growth phase
were harvested and washed 3 times with a phosphate buffer
solution (10 mM Na2HPO4, 10 mM KH2PO4, pH 6.5) and then pla-
ted on 1.5% (w/v) non-nutrient agar plates at 5�106, 1�106, and
2�105 cells/cm2. Developmental processes were observed
through the stereomicroscope at the indicated time points.

2.7. Chemotaxis assay: small-population assay

Chemotaxis toward cAMP was assessed by using Ax2, gst4–, and
gst4OE strains, as described previously [15].

2.8. Stalk cell induction assay

Ax2, gst4–, and gstOE cells were grown, starved, and incubated
at 21 °C in 35-mm tissue culture dishes (5�106 cells/dish) in 2 mL
of stalk salt solution (2 mM NaCl, 10 mM KCl, 1 mM CaCl2,
50 μg/mL penicillin, 100 μg/mL streptomycin sulfate, and 10 mM
Mes-KOH [pH 6.2]) containing 5 mM cAMP. After 20 h of incuba-
tion, cells were washed 3 times with stalk salt solution and in-
cubated for an additional 28 h in 2 mL of stalk salt solution in the
presence of 0.2% (v/v) DMSO (vehicle) or DIF-1 (10 or 100 nM) or
DIF-2 (10 or 100 nM). At 48 h, the stalk cell population (% stalk
cells among total cells) was assessed by using phase-contrast mi-
croscopy; generally, more than 150 cells/dish were evaluated.

2.9. Statistical analysis

Statistical analysis was performed by using the unpaired Stu-
dent's t-test (two-tailed). P values less than 0.05 were considered
to indicate significant differences.



Fig. 3. (A) Deduced amino acid sequences of GST3 and GST4. GST3 and GST4 were aligned by using the ClustalW program. Identical (red) and similar (blue) amino acid
residues are indicated. The identity between the two GSTs was calculated to be 29.5%, their similarity was 55.9%, and the E-value was 2e�28 in BlastP. (B) Sequence alignment
around the predicted GSH binding site. Asterisks mark the key conserved residues of the predicted GSH binding site [23]. (C) Generation of the gst4� mutant. gst4– cells were
generated by using the indicated gene-targeting construct. Ax2 cells and 2 clones of the gst4– mutant underwent genomic PCR amplification. The PCR products were
separated on an agarose gel and visualized by ethidium bromide staining. One of the clones, gst4– (2), was used for the present study. Int., intron; Std, molecular size
standard. (D) Generation of the gst4OE mutant. The gst4OE mutant was generated as described in the Materials and Methods section, and gst4 mRNA expression in Ax2 cells
and the gst4 mutants was assessed by semi-quantitative RT-PCR amplification with the indicated primers.
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3. Results

3.1. Identification of DIF-binding proteins in Ax2 cells: DIF-affinity
chromatography and LC/MS/MS

For DIF-affinity chromatography, we first synthesized a che-
mically responsive derivative of DIF-1, DIF-1-NH2, which we used
to generate DIF–beads (DIF-conjugated resin) as described in Fig. 1
[18].

D. discoideum cells at the aggregation and mound stages are
expected to express DIF-binding proteins (or DIF receptors), be-
cause DIF-1 and DIF-2 regulate cell differentiation and chemotaxis
toward cAMP at these stages [6,15,16]. Therefore, to obtain DIF-
binding proteins, we extracted the cellular proteins from Ax2 cells
that had developed for 7 h, exposed control and DIF–beads to the
protein extracts, and then applied eluted proteins to SDS-PAGE.
Several bands were present specifically in the DIF-beads lane
(Fig. 2B: arrows), which we then analyzed by LC/MS/MS. Several of
these unique bands are still under investigation; however, we
identified a major protein in the gel (�25 kD band) as a glu-
tathione S-transferase (GST), GST4 (dictyBase gene ID,
DDB_G0271892 [http://dictybase.org]). There are 21 potential GSTs
in the D. discoideum genome [23]. The open reading frame of the
gst4 gene consists of 684 nucleotides (Supplemental Fig. 1); GST4
comprises 227 amino-acid residues (Fig. 3A) and has a molecular
mass of 26 kD. Accordingly, we anticipate that GST4 is a DIF-
binding protein or a protein that is associated with a DIF-binding
protein.

3.2. Phenotypes of gst4 mutants

To investigate the physiologic role(s) of GST4 in D. discoideum
development, we prepared two mutant strains, gst4-null (gst4–)
and gst4-overexpression (gst4OE) cells, according to the strategies
described in Fig. 3C and the Materials and Methods section. We
then compared the fruiting body formation of the mutants and the
parental strain, Ax2, in association with bacteria (Fig. 4A). Both
mutants formed fruiting bodies that were normal in shape, but the
gst4– fruiting bodies were significantly smaller than those of Ax2,
whereas gst4OE fruiting bodies were significantly larger than those
of Ax2 (Fig. 4B). next evaluated the developmental processes of
Ax2 and the mutant strains at various cell densities on agar

http://dictybase.org


Fig. 4. Developmental phenotypes of gst4 mutants. (A) Ax2, gst4–, and gst4OE cells were grown and developed in association with bacteria on agar to form fruiting bodies.
Two representative photos of the fruiting bodies are shown. Bar¼0.5 mm. (B) Comparison of the size of fruiting bodies. The lengths of the fruiting bodies of Ax2, gst4–, and
gst4OE in the photos were measured, and the relative lengths [mean7SD (bars); n¼50] are shown. **, Po0.01;***, Po0.001 versus Ax2 cells. The fruiting bodies of gst4–

were smaller than those of Ax2, whereas the fruiting bodies of gst4OE were larger than those of Ax2. (C) Ax2, gst4–, and gst4OE cells were grown in an axenic medium, and
starved cells were plated on agar (at the high cell density of 5�106 cells/cm2) and allowed to develop to form fruiting bodies. The cells were evaluated at the indicated time
points, and representative photos are shown. Note that photos are not necessarily those of the same cell drops because continual time-course observation of a cell drop
causes it to dry out and disturbs development and morphogenesis. Bar¼1 mm.
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(Fig. 4C and Supplemental Fig. 2). Again, the fruiting bodies of
gst4– were smaller than those of Ax2, whereas those of gst4OE were
larger than those of Ax2 (Fig. 4C). These results suggest that GST4
regulates the sizes of cell aggregates and fruiting bodies via in-
teraction with DIFs. In addition, at low cell densities, the mor-
phogenesis (i.e., aggregation) of gst4– cells was somewhat slower
than that of Ax2 cells, whereas that of gst4OE cells was more rapid
(Fig. 4C and Supplemental Fig. 2). These findings imply that GST4
is involved in chemotactic cell movement or another cellular sig-
naling system.

3.3. Effects of DIF-1 and DIF-2 on chemotaxis and in vitro stalk cell
formation in gst4 mutants

To investigate the potential role of GST4 in the DIF signaling
systems, we examined the effects of DIF-1 and DIF-2 on chemo-
taxis and in vitro stalk cell formation in the gst4 mutants (Fig. 5).
As described previously [15,16], DIF-1 suppressed the chemotactic
movement of Ax2 cells in shallow cAMP gradients, whereas DIF-2
promoted this behavior (Fig. 5A); the same pattern occurred in
both gst4 mutants (Fig. 5BCE). In contrast, no significant differ-
ences in in vitro stalk cell induction in response to DIF-1 and DIF-2
were noted among Ax2 cells and the gst4 mutants (Fig. 5D). These
results suggest that GST4 itself is not a DIF receptor that regulates
chemotaxis or stalk cell differentiation.
4. Discussion

4.1. Functions of DIFs in D. discoideum

DIFs were first identified as the factors that induce prestalk and
stalk cell differentiation in D. discoideum [3–6]. To date, the sig-
naling systems underlying the actions of DIFs have been only
partially elucidated. The transcription factors DimA and DimB are
involved in prestalk cell induction by DIF-1 [24–26], and DIF-1 has



Fig. 4. (continued)
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been suggested to induce prestalk–stalk cell differentiation, at
least in part, by raising intracellular calcium or proton con-
centrations [27–31]. In contrast, DIFs also are known to function as
modulators of chemotactic cell movement in shallow cAMP gra-
dients, at least in part, by affecting intracellular cGMP levels
[15,16]. However, the receptors that mediate the functions of DIFs
currently are unknown.

In the present study, to identify the receptors for DIF, we per-
formed DIF-conjugated affinity gel chromatography and LC/MS/
MS: we identified GST4 as a major DIF-binding protein. In addi-
tion, we found that GST4 in combination with DIF-1 or DIF-2 (or
both) may regulate the size of fruiting bodies. If confirmed, this
regulatory role regarding the size of fruiting bodies would be a
novel function of DIFs in D. discoideum.
4.2. Role of GST4 in D. discoideum development and morphogenesis

GSTs are generally categorized into four major groups: cyto-
solic, microsomal, mitochondrial (also known as kappa class GSTs),
and bacterial fosfomycin-resistance GSTs [32–34]. GSTs are well
known as major phase II detoxification enzymes that catalyze the
conjugation of glutathione (GSH) to xenobiotic and endobiotic
substrates in both prokaryotic and eukaryotic cells [35–37]. In
addition, GSTs have diverse cellular functions, including those in
anti-oxidative stress responses and the catalysis of conjugation
with endogenous ligands and of various metabolic reactions other
than detoxification.

In D. discoideum, GSH is required for cell growth, transition
from the growth to the developmental phase, and GSH levels can



Fig. 5. Effects of DIF-1 and DIF-2 on chemotaxis and stalk cell formation in Ax2, gst4–, and gst4OE. (A–C) Ax2 (A), gst4– (B), and gst4OE (C) cells were starved for 6 h, and cell
droplets were placed on PB agar containing 3 mM caffeine (control) plus 10 nM DIF-1 or DIF-2. Cells were assayed for chemotaxis toward the indicated doses of cAMP (10 cell
droplets were examined for each cAMP concentration). Data are the mean7SD (bars) for triplicate samples. *, Po0.05 versus control cells. (D) Ax2, gst4–, and gst4OE cells
were incubated for 20 h with cAMP (5 mM), washed free of the additive, and further incubated for 28 h with DMSO (0.2%) or DIF-1 (10 and 100 nM) or DIF-2 (10 and
100 nM). Stalk cell formation was assessed by phase-contrast microscopy, and the mean values7SD (bars) from four independent experiments are presented. No significant
difference in stalk cell formation was noted between the strains.
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affect the culmination of cellular development and the determi-
nation of cell fate [38–41]. Although the detailed roles of 21 po-
tential cytosolic GSTs in D. discoideum remain to be elucidated, the
enzyme DIF dechlorinase that directly binds to and degrades DIF-1
was recently identified to be GST3/DrcA (DIF reductive de-
chlorinase encoded by the gene drcA, DDB_G0293840) [23]. In
addition, experiments using tritium-labeled DIF-1, recombinant
GST3/DrcA, and drcA mutants showed that GST3 likely is essential
and sufficient for DIF-1 dechlorination [23]; this finding indicates
that GST4 is unlikely to be a DIF-1 dechlorinase.

In contrast, GST3/DrcA belongs to the Ure2p-like class of pro-
teins [23]. Ure2p is a Saccharomyces cerevisiae transcription factor
whose C-terminal region adopts a cytosolic GST fold, whereas the
N-terminal region is implicated in amyloid fibril formation and
heritable prion activity [34,36,42]. In addition, Ure2p has perox-
idase activity in its native and amyloid fibrillar forms [43]. Given
that GST4 also belongs to the Ure2p-like class [23] and contains
5 of the 6 key conserved amino acid residues of the GSH-binding
site (Fig. 3AB), we surmise that GST4 is a DIF-binding protein.
However, Cys54 of GST3/DrcA is strongly implicated as being re-
quired for DIF-1 dechlorination [23]. In contrast, GST4 has an as-
paragine (Asp20) in place of cysteine at the corresponding position
(Fig. 3B), another feature that supports the idea that GST4 is not a
DIF-1 dechlorinase.

Taken together, our findings suggest various possible roles for
GST4. First, GST4 could be an as-yet-unidentified DIF-2 de-
chlorinase (although GST3/DrcA may also be a DIF-2 dechlorinase).
Second, GST4 may be a direct or indirect regulator (such as a DIF-
binding protein or a protein that associates with a DIF-binding
protein, respectively) for the physiologic activities of DIF-1 or DIF-
2 (or both), even though the gst4mutants did not demonstrate any
marked defects in chemotaxis or stalk cell formation under the
assay conditions (Fig. 5). Regardless, DIFs in combination with
GST4 may regulate the sizes of cell aggregates and fruiting bodies.
Third, GST4 by itself (without DIFs) may function as a regulator of
the size of cell aggregates and fruiting bodies—e.g., GST4 may af-
fect cAMP oscillation in some way.

In conclusion, by using DIF-affinity chromatography and LC/
MS/MS, we here identified GST4 as a candidate DIF-binding pro-
tein that may modulate the developmental regulation of cell ag-
gregation in D. discoideum. Although the potential mechanisms we
have suggested remain to be verified, our current results may
provide new insights into DIF signaling systems and GST functions
in D. discoideum.
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