Skip to main content
. Author manuscript; available in PMC: 2017 Sep 26.
Published in final edited form as: Water Resour Res. 2016 Jul 24;52(7):5506–5515. doi: 10.1002/2016WR018783

Table 2.

Comparison of the study results to literature data

Porous
media
Porosity Flow scenarios Sna Anwb
(cm−1)
Amc
(cm−1)
Calculation method Source of
data
Glass beads 0.42 PDd 0.23–0.51h 6.9–16.7 32.3±4i (R2=0.99)j Linear regressionk This study
0.42 SIe 0.44-0.14 15.3–4.1 35.7±5 (R2=0.99) Linear regression This study
0.38 Residualg 0.09±0.02 2.9±2.4 35.0±30 Mean of 4 replicates Narter et al., 2010
Sand-45/50 0.37 PD 0.34–0.53 105–136 274±38 (R2=0.99) Linear regression This study
0.37 SI 0.41–0.21 89–52 235±27 (R2=0.99) Linear regression This study
0.37 SDf 0.35–0.51 192–323 581±160 (R2=0.99) Linear regression This study
0.37 Residual 0.20 68±19 341±96 Mean of 4 replicates Brusseau et al., 2008
0.40 Residual 0.15 68±15 455±102 Mean of 4 replicates Brusseau et al., 2008
Vinton soil 0.39 PD 0.21 1575 7629 Single runl This study
0.39 SI 0.17 1330 7623 Single run This study
0.42 Residual 0.14 1098±501 8075±3794 Mean of 4 replicates Brusseau et al., 2010
a

Sn = saturation of organic liquid.

b

Anw = interfacial area calculated employing equation (3) in text.

c

Am = the extrapolated maximum interfacial area employing equation Anw=AmSn.

d

PD = primary drainage.

e

SI = secondary imbibition.

f

SD = secondary drainage.

g

Residual NW saturation created during secondary imbibition.

h

minimum and maximum values.

i

95% confidence interval by using the uncertainty for the regression slope variable.

j

R = Correlation coefficient of linear regression Anw=AmSn.

k

Fit Anw=AmSn to the data points of various Sn

l

Am obtained using Anw=AmSn assumption