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Abstract

Liver disease can alter the disposition of xenobiotics and endogenous substances. Regulatory 

agencies such as the Food and Drug Administration (FDA) and the European Medicines 

Evaluation Agency (EMEA) recommend, if possible, studying the effect of liver disease on drugs 

under development to guide specific dose recommendations in these patients. While extensive 

research has been conducted to characterize the effect of liver disease on drug-metabolizing 

enzymes, emerging data have implicated that the expression and/or function of hepatobiliary 

transport proteins also are altered in liver disease. This review summarizes recent developments in 

the field, which may have implications for understanding altered disposition, safety, and of 

efficacy of new and existing drugs. A brief review of liver physiology and hepatic transporter 

localization/function is provided. Then, the expression and function of hepatic transporters in 

cholestasis, hepatitis C infection, hepatocellular carcinoma (HCC), human immunodeficiency 

virus (HIV) infection, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis 

(NASH), and primary biliary cirrhosis (PBC) are reviewed. In the absence of clinical data, 

nonclinical information in animal models is presented. This review aims to advance the 

understanding of altered expression and function of hepatic transporters in liver disease and the 

implications of such changes on drug disposition.

INTRODUCTION

The liver is an important organ in the biotransformation, disposition, and elimination of 

endogenous (e.g., macromolecules, bile acids) and exogenous molecules (e.g., drugs). Drug 

metabolizing enzymes play a central role in hepatic drug elimination; however, efforts over 

the past decade have revealed that transport proteins are also important determinants of 

hepatic clearance. Hepatic transporters are transmembrane proteins anchored in polarized 

hepatocytes, the primary parenchymal cell type of the liver, that facilitate the transport of 

molecules to and from sinusoidal blood and hepatocytes (basolateral transporters) or from 
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hepatocytes into the biliary canaliculus (canalicular transporters). These transporters are 

classified into two superfamilies: the solute carrier (SLC) protein family and the adenosine 

triphosphate (ATP)-binding cassette (ABC) protein family.

The expression and function of transporters are subject to complex regulatory mechanisms 

and are contributing factors to interindividual variability. Characterizing sources that 

contribute to individual variability in hepatic transporter expression/function will improve 

the efficient development of new and safer pharmacological interventions and advance our 

mechanistic understanding of the genesis/progression of some diseases. The identification of 

drug-drug interactions (DDIs) and genetic polymorphisms that influence the expression 

and/or function of drug transporters have been under extensive investigation in recent years. 

However, DDIs and genetic polymorphisms represent only a portion of the total contribution 

to interindividual variability.

Liver disease may influence the expression and function of hepatic transporters. Chronic 

liver disease is a significant source of morbidity and mortality in both industrialized and 

developing nations. It is estimated that one million deaths worldwide were attributed to liver 

cirrhosis alone in 2010, while many more were due to liver cancer and hepatitis. 1 The 

etiologies of liver disease are diverse and can include chronic alcohol abuse, viral/bacterial 

infection, fatty liver disease, and drug-induced injury – all of which may have genetic 

components that can influence the development, manifestation, and severity of disease. The 

purpose of this article is to review the literature characterizing and quantifying the effects of 

liver disease on the expression and function of hepatic transporters in humans. First, a brief 

overview of hepatic transporters will be provided. Then, the effects of cholestasis, hepatitis 

C (HCV) infection, hepatocellular carcinoma (HCC), human immunodeficiency virus (HIV) 

infection, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis 

(NASH), and primary biliary cholangitis (PBC) on hepatic transporter expression and 

function will be summarized. In addition to highlighting current knowledge regarding the 

effect of liver disease on hepatic transporters, this review will identify knowledge gaps in 

our understanding of the contribution of liver disease to human variability in drug 

disposition and elimination. 2

Basolateral Uptake Transporters

Sodium-Taurocholate Co-transporting Polypeptide (NTCP)—The SLC10A1 gene 

encodes NTCP, a key transport protein involved in the enterohepatic recirculation of bile 

acids.3 NTCP is homogenously expressed throughout the liver acinus and specifically 

coordinates the sodium-dependent uptake of bile acids from the sinusoidal blood to 

hepatocytes by co-transporting two sodium ions and one bile acid molecule.4,5 NTCP 

transports a variety of bile acids but appears to have higher affinity for glycine- and taurine-

conjugated bile acids compared to their unconjugated counterparts, and a higher affinity for 

dihydroxy bile acids (e.g., chenodeoxycholate and deoxycholate conjugates) than trihydroxy 

bile acids (e.g., cholate conjugates). Although little emphasis is placed on NTCP-mediated 

interactions during drug development, NTCP has been shown to transport drugs. For 

example, drug-conjugated bile acids have been proposed as a potential strategy for drug 

delivery.6 Approximately 35% of total rosuvastatin uptake into hepatocytes was accounted 
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for by NTCP 7; however, it is not clear whether this contribution is relevant in the presence 

of systemic bile acids, which may selectively outcompete rosuvastatin in vivo. Interestingly, 

NTCP was shown to be a functional receptor for the hepatitis B virus and thus, may serve as 

a novel therapeutic target to inhibit the viral entry mechanism.8,9

Organic Anion Transporters (OATs)—OATs, members of the SLC22A superfamily, 

are a ubiquitously expressed group of organic anion transporters that have broad distribution 

in the kidney, liver, brain, pancreas, salivary glands, and skeletal muscle.10 These proteins 

generally mediate the transport of negatively charged endogenous and exogenous molecules 

in a bidirectional manner in exchange for dicarboxylate ions 11–13, although uncharged and 

even cationic molecules have been reported as substrates.14,15 OATs also transport 

endogenous substances including cGMP, bile acids, and hormone derivatives.16–18 

Prostaglandins and glutamate are examples of endogenous substrates of OAT2, whereas 

methotrexate, valproic acid, and allopurinol are examples of drug substrates.17–20 OAT7 is 

another liver-specific OAT that appears to have similar and overlapping substrate specificity 

with other OATs.18,20 Despite the expression and function of OATs in the liver, there is little 

evidence demonstrating the clinical relevance of these transporters in the context of DDIs 

and/or genetic polymorphisms, although pravastatin recently was identified as a novel OAT7 

substrate.21,22

Organic Anion-Transporting Polypeptides (OATPs)—OATPs are a class of proteins 

that belong to the SLCO superfamily with 12-transmembrane spanning domains that are 

localized on the basolateral membrane of many epithelial cells. OATPs are highly expressed 

in the liver (predominantly OATP1B1, OATP1B3, and OATP2B1).23–26 OATPs transport a 

wide variety of amphipathic and anionic substances in a bidirectional manner through 

counter transport with either bicarbonate or reduced glutathione.27–29 OATP substrates 

include endogenous compounds such as bile acids, bilirubin, thyroid hormones, and steroid 

conjugates. Several drug classes have been characterized, or even specifically designed, as 

substrates for OATPs including 3-hydroxy-3-methylglutaryl coenzyme A HMG-Co-A 

reductase inhibitors (i.e., statins), angiotensin II receptor antagonists, angiotensin converting 

enzyme inhibitors, and cardiac glycosides.29,30 The liver-specific OATP1B1, OATP1B3, and 

to a lesser extent, OATP2B1, are considered clinically relevant drug transporters by the Food 

and Drug Administration (FDA) and are routinely evaluated during drug development.30

Organic Cation Transporters (OCTs)—The first OCT (i.e., OCT1) was isolated and 

cloned from rat kidney by Gründemann et al. in 1994 and was later shown to display a 12-

transmembrane structure that mediates the bidirectional transport of various small molecules 

(~60–350 Da) in an electrogenic manner.31,32 Similar to other transporters of the SLC 

family, OCTs display broad tissue distribution in such organs as the kidney, liver, and 

intestine. Three OCT isoforms have been identified in humans. OCT1 exhibits greatest 

expression in the liver. OCTs generally mediate the transport of small hydrophilic 

compounds with at least one positive charged amine moiety, although uncharged or anionic 

substrates have been reported.32 Classic substrates include tetraethylammonium (TEA) and 

the parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP+); clinically relevant drug 

substrates include famotidine, ranitidine, and metformin.33–35
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Canalicular Efflux Transporters

Breast Cancer Resistance Protein (BCRP)—BCRP (ABCG2) was first cloned by 

Doyle et al. (2003) and although its name suggests otherwise, BCRP is expressed in a 

variety of tissues and cell types (e.g., intestine, brain, liver, cardiac muscle).36 BCRP is a 

half transporter hypothesized to function as a homodimer or potentially a tetramer.37,38 In 

the liver, BCRP is localized to the canalicular membrane with broad substrate specificity, 

which includes organic ions, sulfate conjugates, and both negatively and positively charged 

molecules. BCRP substrates have been characterized primarily in the context of oncology 

due to the resistance of certain cancer types against chemotherapeutic agents. Some 

examples include mitoxantrone, SN-38, topotecan, and doxorubicin.39–41 However, BCRP 

can transport sulfate and glucuronide bile acid conjugates and may play a compensatory role 

when the function of other transporters (e.g., MRP2) is impaired.42,43

Bile Salt Export Pump (BSEP)—ABCB11 encodes BSEP, a member of the ABC 

transporter family, which is the primary hepatocellular transporter responsible for secretion 

of bile acids into the bile canaliculus. BSEP is predominantly expressed throughout the 

human liver acinus. Bile acid transport requires the hydrolysis of ATP, which drives the 

conformational change in the transmembrane domain of BSEP, thereby translocating bile 

acids from hepatocytes to the canalicular space. In addition to bile acids, BSEP has been 

reported to transport pravastatin.44 Mono-anionic and conjugated bile acids represent the 

majority of BSEP substrates; unconjugated bile acids do not appear to be substrates as 

evidenced by in vitro and in vivo human data.45,46 Differences in substrate specificity 

between species have been reported; for example, human BSEP is able to transport 

taurolithocholate-3-sulfate although this is not true for the rodent orthologue.47 The affinity 

(i.e., Km) for bile acids is generally in the low micromolar range across species, but 

differences in rank-order and specificity have been noted. For example, human BSEP has a 

higher affinity for taurocholate than mouse BSEP (human Km: 4.25 μM compared to mouse 

Km: 15–30 μM).47

Multidrug and Toxin Extrusion Protein 1 (MATE1)—MATE1 (SLC47A1) is an H+/

organic cation transporter first identified in 2005 that mediates the electrogenic transport of 

organic cations independent of a sodium gradient.48 It is primarily expressed on the 

canalicular membrane of hepatocytes and the luminal membrane of the proximal tubules and 

is thought to play a physiological role in the excretion of toxic endogenous substances, 

although several drugs have been identified as substrates (e.g., metformin, cimetidine, and 

acyclovir).49

Multidrug Resistance-Associated Protein 2 (MRP2)—MRP2 is a member of the 

ABCC family and one of nine recognized MRPs. First identified in the canalicular 

membrane of hepatocytes, MRP2 has been characterized in the kidney, small intestine, 

gallbladder, and placenta.50–53 MRP2 is a major driving force for bile-acid independent bile 

flow through the secretion of reduced glutathione, although it transports divalent and 

glucuronide- and sulfate-conjugated bile acids into the bile canaliculus. MRP2 is responsible 

for the biliary transport of many anionic drugs/metabolites including methotrexate, 

acetaminophen-glucuronide, and etoposide.54,55 MRP2 plays an important physiological 
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role in the biliary excretion of bilirubin (specifically, the conjugated species); patients with 

Dubin-Johnson Syndrome, who harbor polymorphisms in the ABCC2 gene, exhibit 

impaired secretion of conjugated bilirubin into bile.56,57 Naturally occurring Mrp2-deficient 

rats (i.e., Eisai hyperbilirubinemic and CY/TR− mutant rat strains) have been a valuable in 
vivo model for understanding the role of Mrp2 in drug disposition.55,58

Multidrug Resistance Protein 1 (MDR1)—MDR1, commonly known as P-

glycoprotein (P-gp), was one of the first ABC proteins identified due to its important role in 

drug resistance in chemotherapy. Like other ABC transporters, P-gp is comprised of two 

membrane-bound domains each consisting of six transmembrane helices.59 Expression has 

been quantified in many tissues such as the liver, brain, testis, gut, and colon.60 Although the 

physiological role of P-gp has been debated, it likely plays a general role in the protection 

from xenobiotics and disposition of endogenous substances, as evidenced by its ability to 

transport a variety of amphipathic drugs, natural products, and peptides. P-gp transports 

immunosuppressants, hormones, calcium channel blockers, and cardiac glycosides, but P-gp 

expression and function have been studied the most in the context of cancer chemotherapy. 

Apart from being expressed in major organs governing drug disposition (e.g., the liver, gut), 

P-gp is overexpressed in many cancer cell types, which limits the distribution/exposure of 

chemotherapeutics to the site of action.61–63

Basolateral Efflux Transporters

Multidrug Resistance-Associated Protein 1 (MRP1)—The clinical relevance of 

MRP1, encoded by the ABCC1 gene, was first recognized in the transport of hydrophobic 

and hydrophilic anticancer agents such as vincristine and etoposide.64–66 Under normal 

conditions, the expression of MRP1 in the liver is low.67,68 In vitro studies have established 

that MRP1 can transport a variety of physiological organic anions including drugs and their 

conjugated metabolites. For example, MRP1 can transport endogenous substances such as 

17β-estradiol glucuronide, glutathione, leukotriene C4, folic acid, and vitamin B12, which 

may indicate a physiological role in cellular defense and oxidative stress.67,68

Multidrug Resistance-Associated Protein 3 (MRP3)—MRP3, encoded by the 

ABCC3 gene, actively transports organic ions using energy generated by the hydrolysis of 

ATP. MRP3 is localized on the basolateral membrane of hepatocytes and is expressed in 

other tissues such as the gut, kidney, and adrenal cortex.69 In the context of the liver, MRP3 

is thought to play an adaptive role in response to hepatocellular stress as evidenced by the 

upregulation of MRP3 in cholestatic conditions.70,71 MRP3 transports bulky organic anions 

from the hepatocyte to the systemic circulation and preferentially mediates the transport of 

glucuronide and, to a lesser extent, sulfate conjugates (e.g., bilirubin glucuronide, bile acid 

conjugates).72,73 Although MRP3 has been studied in the context of bile acid transport, 

several drugs and/or metabolites have been identified as MRP3 substrates including 

acetaminophen glucuronide, methotrexate, and sorafenib.74–77

Multidrug Resistance-Associated Protein 4 (MRP4)—In contrast to MRP3, MRP4 

(ABCC4) transports a dynamic range of endogenous molecules such as folate, bile acids, 

uric acid, eicosanoids, steroid hormones, and cyclic nucleotides. 72,78 Although MRP4 was 
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first characterized as a transporter that confers resistance to cytotoxic agents, MRP4 has 

since shown broad substrate specificity to drugs from many classes including antibiotics, 

antivirals, and cardiovascular agents. MRP4 is generally expressed in tissues with a barrier 

function such as the liver, brain, and intestine. In the liver, MRP4 is localized on the 

basolateral membrane and translocates molecules from the hepatocyte to the systemic 

circulation. Similar to MRP3, it is thought that the physiological role of MRP4 is to protect 

the liver from toxic accumulation of bile acids as evidenced by marked increases in MRP4 

expression in cholestasis.79 This hypothesis is further supported by the finding that Mrp4-

knockout mice exhibited more severe liver injury due to obstructive cholestasis than wild-

type mice with functional Mrp4.80

Liver Disease—The effects of liver disease on hepatic transporter expression and function 

in humans are summarized in the following section. Table 1 highlights reports of altered 

hepatic transporter expression in liver diseases where data in diseased and healthy subjects 

were compared. Table 2 summarizes published reports of altered transporter-mediated drug 

disposition in liver disease resulting in changes in pharmacokinetics and/or efficacy.

Cholestasis—Cholestasis is the impairment of bile formation (hepatocellular) and/or flow 

(obstructive) that can arise from a number of intrinsic and extrinsic factors. In response to 

accumulating bile constituents, adaptive mechanisms induce hepato-protective systems (e.g., 
bile acid transporter expression) aimed at reducing intracellular accumulation of bile acids, 

which can be hepatotoxic due to their detergent-like properties.

The functional role of transporters in cholestasis is highlighted in patients harboring 

mutations in the ABC11 (BSEP) gene known as progressive familial intrahepatic cholestasis 

2 (PFIC2). First described by Clayton et al. (1969), the PFIC-2 phenotype includes pruritus, 

jaundice, and clinical signs of cholestasis (discolored stools, dark urine), which often leads 

to fulminant liver failure and death early in life.81,82 Hepatic bile acid uptake transporters 

(e.g., NTCP, OATP1B1, OATP1B3) were downregulated compared to control samples, 

whereas OATP2B1 was unaffected based on mRNA and protein analysis.83 Interestingly, 

MRP4, but not MRP3 was strongly upregulated in PFIC-2 livers, consistent with an adaptive 

response to increased hepatocellular bile acid concentrations. Although it is not clear why 

the authors did not observe increased MRP3, as would be expected in cholestasis, it must be 

noted that the sample size was small (n=4 PFIC-2 and n=3 control samples). MRP2 was 

localized to the canalicular membrane and appeared to be downregulated in PFIC-2; 

however, this result did not reach statistical significance.83

Because the etiologies of cholestasis can be diverse, altered transporter function may be 

causal or an adaptive response to cholestasis, or both. For example, intrahepatic cholestasis 

of pregnancy (ICP) is an acute form of cholestasis that typically presents in the third 

trimester of pregnancy and is associated with premature delivery, respiratory distress, and 

intrauterine death.84 In vivo studies revealed that the transcriptional dynamics of BSEP were 

inversely correlated with serum 17β-estradiol (E2) levels, implicating E2 levels in the 

repression of BSEP, which may increase susceptibility to ICP.85,86 In the same study, 

repression of BSEP expression also was demonstrated in human primary hepatocytes.85 The 

procholestatic effects of estrogens and progesterone may also alter Mrp2; E2 administration 
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causes endocytic internalization, as well as decreased expression and function of Mrp2 in 

rodents.87,88 Downregulation of hepatic sinusoidal transporters (i.e., Oatp1a1, Oatp1a4, and 

Oatp1b2) are likely an adaptive response to increased bile acid concentrations and 

cholestasis.89,90 Although ethical considerations may preclude the quantification of hepatic 

transporter expression in ICP, the expression of OATP1B3 in placenta was decreased in 

pregnant women diagnosed with ICP, consistent with altered transporter expression revealed 

in animal studies.91 Zollner et al. (2001) reported that NTCP mRNA correlated with serum 

bile acids in patients with inflammatory cholestasis.92 Similar observations were reported 

for OATP1B1 and BSEP, but MRP2 mRNA was unchanged. 92

Given the limited availability of human samples, the application of animal models has 

provided information about the mechanisms underlying transporter expression/function in 

cholestasis. For example, ligation of the common bile duct in rodents leading to cholestasis 

decreased Mrp2 protein levels without a corresponding change in mRNA expression, 

suggestive of an impaired posttranslational modification effect.93 Immunofluorescent 

staining revealed intracellular localization of Mrp2, which may indicate that Mrp2 

trafficking to the canalicular membrane is compromised resulting in the endocytic retention 

of Mrp2 and possible lysosomal degradation. Indeed, retrieval of MRP2 from the canalicular 

membrane into the cytoplasm of hepatocytes has been reported in patients with 

cholestasis.94 Although the exact mechanism underlying this observation has yet to be fully 

elucidated, altered binding and subsequent improper anchoring in the canalicular membrane 

via radixin and/or other actin filament interactions appears to play a role.94–97

Few studies have investigated the effect of cholestasis on the pharmacokinetics and 

hepatobiliary disposition of drugs. Bile duct ligation in rats significantly increased the 

systemic concentrations of morphine-3-glucuronide, the active metabolite of the analgesic 

morphine due, in part, to increased expression of hepatic Mrp3.98 mRNA and protein 

expression of MRP3 were significantly increased by ~3-fold in patients with obstructive 

cholestasis70; hence, it is conceivable that increased systemic exposure of morphine 

glucuronide(s) could impact pharmacodynamic activity and/or toxicity in this patient 

population. In experimental intrahepatic cholestasis induced by 17α-ethynylestradiol in rats, 

the antidiabetic effect of metformin was reduced due to impaired hepatic uptake of Oct1.99 

Although clinical data are needed, these observations suggest that metformin efficacy (e.g., 
in gestational diabetes) may be impaired in diabetic patients with estrogen-associated ICP. In 

the same rodent model, systemic concentrations of doxorubicin were increased by ~60%, 

which was partially attributed to a ~67% reduction in Mrp2-mediated biliary excretion.100 

Lastly, the apparent half-life and systemic exposure of digoxin were decreased in a rodent 

model of cholestasis, presumably through impaired P-gp-mediated enterohepatic 

recirculation.101

Hepatitis C Infection—Hepatitis C virus (HCV) is a prevalent form of viral hepatitis. The 

risk of developing cirrhosis, liver cancers, or both is increased in HCV-infected patients.102 

HCV induces hepatoprotective response pathways in response to fibrosis and hepatocellular 

injury that can affect normal gene expression patterns.103 The World Health Organization 

estimates that more than 150 million individuals are chronically infected with HCV.104 

Thus, understanding altered expression and/or function of proteins involved in absorption, 
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distribution, metabolism, and excretion (ADME) is crucial to pharmacotherapeutic 

intervention in this population.

Due to inflammation associated with viral infection, prevailing evidence implicates the 

coordinate downregulation of ADME genes by nuclear transcription factors [e.g., PXR, 

CAR, aryl hydrocarbon receptor (AHR), RXR], although interaction(s) with the HCV virus 

and the transcriptional factor RXR have be reported.105–107 Therefore, the 

pathophysiological role of HCV in altered ADME expression cannot be dismissed. Relative 

mRNA expression of OATP1B1 and OATP2B1 was reduced in the livers of patients with 

chronic HCV infection, although the mechanistic link between inflammatory cytokines and 

OATP downregulation is not clear.108,109 Downregulation of NTCP, OAT2, and OCT1 

correlated with fibrosis state, but another study observed no difference compared to control 

samples.108,109 In the presence of HCV-induced cirrhosis, expression of NTCP, OATP1B3, 

and OCT1 are decreased compared to control samples using proteomic analysis.110

Hepatic basolateral efflux transporters MRP3 and MRP4 are elevated compared to the livers 

of non-infected controls using mRNA analysis. These data are consistent with Ogasawara et 

al. (2010) who identified MRP4 mRNA as a potential marker for liver disease.103,111,112 

Under normal physiological conditions, MRP3 and MRP4 protein are expressed at low 

levels but are significantly increased in cholestatic and inflammatory conditions, possibly 

due to the activation of AHR and/or Nrf2 observed in end-stage liver disease.71,80,112–114 In 

contrast, the canalicular transporters BCRP and BSEP appeared to be downregulated 

whereas MRP1 and P-gp were upregulated. Some observations report that MRP2 is 

unaffected, although one study found a negative correlation between fibrosis stage and 

MRP2 mRNA expression.103,109,111 The impact of altered mRNA expression on protein 

expression has yet to be quantified, although immunohistochemistry shows increased MRP1 

and P-gp staining in HCV liver biopsies.112 In HCV-induced cirrhosis, protein expression of 

BSEP, MRP2, and P-gp are downregulated whereas BCRP and MATE1 are unchanged.110 

To date, the clinical relevance of these findings in HCV-infected patients is unclear. The 

systemic clearance of nelfinavir, a P-gp substrate, was reduced in HIV/HCV-co-infected 

patients compared to HIV-infected patients without HCV.115 However, P-gp is expressed in 

other tissues (e.g., gut, blood brain barrier) and this must be considered as a contributing 

factor to altered pharmacokinetics due to HCV-associated changes in P-gp function. Hepatic 

uptake and excretion of 99mTc-mebrofenin was decreased in HCV-infected patients, 

suggestive of altered OATP-, MRP2-, and MRP3-mediated function.116

Hepatocellular carcinoma—Hepatocellular carcinoma (HCC) is a malignancy of the 

liver cells that often occurs in patients with hepatic diseases such as cirrhosis or chronic 

hepatitis associated with HCV. There is a substantial body of evidence indicating that the 

expression of hepatic uptake and efflux transporters is altered in HCC. NTCP and OATP1B1 

are the key transporters responsible for the uptake of drugs linked to bile acids as carrier 

molecules.117–119 Studies have shown that the expression of NTCP and OATP1B1 is 

significantly reduced in patients with HCC.117 This is consistent with previous in vitro 
studies that demonstrated reduced bile acid uptake in hepatoma cell lines. These studies 

highlight the risk of liver toxicity in nonmalignant cells with preserved expression levels of 

NTCP and OATP1B1 that would be overloaded with bile salt-coupled chemotherapy 
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whereas the carcinoma cells, with reduced expression of NTCP and OATP1B1, would have 

impaired accumulation of bile salt-coupled drugs.117 OATP1B1 and OATP1B3 have been 

studied extensively in different types of cancers including HCC.120–122 Although initially 

considered to be liver specific, subsequent studies have shown that OATP1B1 and OATP1B3 

are frequently expressed in multiple types of cancer tissues.120,123–128 After the initial study 

reporting the reduced expression of OATP1B1 protein in HCC cell lines, many other in vitro 
studies reported similar findings.117,129–132 However, one study reported no significant 

change in expression of OATP1B1 compared to normal liver.121 These apparent differences 

may be attributed to different detection methods.117,121 Similarly, OATP1B3 mRNA and 

protein are also reduced in HCC.121,131,133 Although studies in other cancer types have 

implied a potential association between OATP1B3 expression and clinical outcomes, the 

functional role of OATP1B3 in HCC remains to be investigated.124,134

Interestingly, mRNA and protein expression of some other OATPs (e.g., OATP2A1, 

OATP3A1, OATP4A1 and OATP5A1) are reported to be upregulated in primary and 

metastatic liver cancer suggesting the potential role of these OATPs in supplying nutrients 

and hormones to tumor cells.135,136 OCT1 is downregulated by epigenetic mechanisms in 

HCC compared to nonmalignant tissues.137 The downregulation of OCT1 expression is 

clinically associated with tumor progression and poor outcomes in patients with HCC.137,138

Several studies indicate that the expression of canalicular and basolateral efflux transporters 

can be altered in HCC. Although BCRP mRNA was unchanged in a study by Borel et al.139, 

other studies showed a significant elevation of BCRP mRNA and protein expression in HCC 

compared to normal hepatocyte tissues.140,141 Interestingly, BCRP expression increased 

following chemotherapy in hepatoblastoma patients highlighting its potential role in drug 

resistance in HCC.140,142 On the other hand, BSEP expression was reported to be reduced 

secondary to inflammation-induced decreases in Farnesoid X receptor (FXR) 143. Although 

the role of BSEP in resistance to chemotherapy is unclear, many studies have shown that 

high bile acid levels in the liver contribute to HCC pathogenesis.143–148 In fact, children 

with BSEP deficiency demonstrated a higher risk of cholestasis and HCC.144,145 

Collectively, these findings highlight the potential role of BSEP and altered bile acid 

homeostasis in HCC progression.143

P-gp expression in HCC showed divergent results at mRNA and protein levels in some in 
vitro and in vivo studies, which may be related to different detection methods as well as the 

tumor heterogeneity.139,149–153 P-gp protein expression appeared to be reduced or expressed 

less extensively in HCC tissues compared to normal hepatocytes.151–153 In regard to its 

function, P-gp expression was inversely correlated with chemotherapeutic response in 

patients with inoperable HCC. 152,154 MRP2 expression in HCC was unchanged compared 

to normal hepatocyte tissues.117,155,156 MRP1, which is not expressed in normal 

hepatocytes, is overexpressed at both the mRNA and protein levels in HCC.112,157,158 One 

study showed that a MRP1 promoter (-1666GG) polymorphism was a predictor of poor 

survival in patients with HCC from Southeast China 158. MRP3 and MRP4 mRNA levels 

were reported to be upregulated in HCC.112,139,159 Although several studies have noted the 

altered expression of drug transporters in HCC, further investigations are necessary to 

examine their clinical significance in HCC.
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Human Immunodeficiency Virus (HIV) Infection—Similar to viral hepatitis, HIV is 

associated with chronic inflammation as evidenced by the presence of elevated 

proinflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor (TNF)-α.160 

The mRNA and protein expression of major sinusoidal uptake transporters (i.e., OATP1B1, 

OATP1B3, OATP2B1, OCT1, OCT2, and NTCP) were downregulated in human hepatocytes 

when incubated with TNF-α, which resulted in reduced functional activity.161 mRNA and 

protein levels of MRP2 were increased by IL-6 or IL-1β exposure in sandwich-cultured 

human hepatocytes whereas BSEP protein expression appeared to decrease.162 In another 

study, MRP2 and BCRP were reported to be downregulated in primary human hepatocytes 

after exposure to IL-6 or IL-1β; therefore, additional mechanistic studies are required to 

definitively conclude that canalicular transporters are upregulated or downregulated.161 

Based on these data, it is conceivable that liver transporter expression and/or function may 

be impacted in HIV-infected patients because such signaling molecules can modulate 

transporters in vitro. It also must be noted that the administration of antiretroviral therapy is 

associated with a reduction in cytokine levels that may contribute to interindividual 

variability in hepatic transporter expression in HIV-infected patients.163

Despite the aforementioned data, the effect of HIV infection on the expression of 

transporters has not been evaluated systematically. In addition, coinfection (e.g., bacterial 

infection) could contribute to altered transporter regulation. For example, gene expression of 

hepatic Mrp2, Bcrp, and Oatps was downregulated in HIV-1 transgenic rats co-infected with 

endotoxin.164 P-gp and MRP2 protein levels in the rectal-sigmoid colon were lower in 

antiretroviral-naïve patients compared to non-infected subjects; whether similar expression 

patterns occur in the liver remains to be evaluated.165,166 Data quantifying hepatic 

transporter protein expression followed by subsequent functional studies are needed. Altered 

ADME processes in clearance organs (i.e., intestine, liver, and kidney) in combination with 

the potential for induction by co-medications (e.g., protease inhibitors) highlights the 

complexity of predicting transporter-mediated drug disposition in HIV-infected 

patients.167,168

Non-Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis 
(NASH)—NAFLD consists of liver pathology ranging from simple steatosis to NASH, an 

advanced inflammatory state of liver disease. NAFLD has become the most common form 

of liver disease in Western and industrialized nations driven by the prevailing obesity 

epidemic; it is estimated that ~20–30% of the general population is affected, although some 

reports are as high as 50%.169–172 For reasons not fully known, some patients with NAFLD 

develop NASH, which may lead to HCC, cirrhosis, and/or fulminant liver failure. Due to the 

increasing prevalence of NAFLD and NASH, considerable research has been dedicated to 

quantifying how NASH affects ADME enzymes/transporters. These findings may have 

important implications in the treatment and disposition of drugs in this patient population.

Global gene expression analysis first implicated a coordinated downregulation of hepatic 

uptake transporters (e.g., OATPs) in patients with NASH.173 Further reports by Cherrington 

and colleagues revealed a significant increase in OATP1B1, but a decrease in OATP1B3, and 

no change in OATP2B1 in human liver biopsies using immunoblot techniques. Interestingly, 

no differences were observed in these transporters based on mRNA analysis.174 These 
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findings are in contrast to data obtained from a commonly used diet-induced rodent model of 

NASH; mRNA and protein analyses were in agreement that rodent orthologues of human 

OATPs were decreased.175,176 These results support increased systemic concentrations of 

simvastatin acid, an OATP/Oatp substrate, in the rodent model of NASH compared to wild-

type rats.175 NTCP, the primary hepatic bile acid transporter, is decreased in patients with 

NASH compared to patients with simple steatosis based on real-time reverse transcription 

polymerase chain reaction and immunoblot techniques; these data are consistent with a 

recent publication reporting that serum bile acids are increased in patients with 

NASH.177,178 Rat Ntcp and Oat2 also were shown to decrease in an experimental rodent 

model of NASH, presumably mediated through pro-inflammatory cytokines known to 

decrease hepatic transporter expression. Pharmacokinetic studies that quantify the functional 

impact of altered uptake transporter expression are limited in humans. However, our group 

recently reported increased systemic concentrations of 99mTc-mebrofenin, a hepatobiliary 

diagnostic agent and OATP, MRP2 and MRP3 substrate, in patients with biopsy-confirmed 

NASH.2

In what appears to be an adaptation to prevent further damage by toxicants, hepatic efflux 

transporters are increased in NASH. For example, MRP3-6 are induced in liver biopsies 

from NASH patients, similar to findings in a rodent model of NASH.176,180–182 Similarly, 

Mrp1 mRNA is increased ~5-fold compared to control animals.176 Functional drug 

disposition studies corroborate these reports as evidenced by increased plasma 

acetaminophen glucuronide concentrations in diet-induced NASH animals attributable to 

increased Mrp3 expression.181 Administration of morphine and acetaminophen to patients 

with NASH resulted in increased systemic concentrations of the glucuronide conjugates, 

consistent with increased function of MRP3 in this patient population.74,183 Although MRP2 

is increased, a growing body of evidence supports a functional decrease in MRP2-mediated 

biliary excretion due to disruption of cellular trafficking and/or improper localization away 

from the canalicular membrane.74,180 This is supported by reports of reduced biliary 

excretion of acetaminophen glucuronide and pemetrexed in rats, consistent with impaired 

Mrp2 function.181,184 These findings corroborate enhanced hepatic retention and a 

prolonged half-life of the liver contrast agent gadolinium ethoxybenzyl diethylenetriamine 

pentaacetic acid (Gd-EOB-DTPA) in NASH-induced rats.184 In contrast to Hardwick et al., 

who reported an increase in total MRP2 in human liver biopsies, a recent study reported 

decreased MRP2 protein in livers from NASH patients, which correlated inversely with 

progression of NAFLD.185,180 However, much of the increased MRP2 in this study was only 

partially glycosylated; complete glycosylation of MRP2 is required for plasma membrane 

trafficking.186 Decreased Mrp2 mRNA and protein expression were reported in a diet-

induced rodent model of hypercholesterolemia.187 These apparent discrepancies may be due 

to species differences in composition of the bile acid pool, cytotoxicity of the predominant 

bile acid species, differences in regulation of Mrp2, or to the heterogeneous population of 

NASH patients and interindividual variability in MRP2 expression. Regardless, functional 

studies in humans are needed to evaluate the impact of altered MRP2 expression and/or 

localization. Although pharmacokinetic studies are limited, our group recently reported 

increased hepatic exposure of 99mTc-mebrofenin in patients with biopsy-confirmed NASH, 

which lends credence to the hypothesis that altered trafficking and localization of MRP2 
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result in a functional decrease in MRP2-mediated efflux.2 BCRP mRNA and protein 

expression were increased in NASH liver biopsies, but this finding was not observed in 

rodent models of NASH.180,188 Finally, rodent P-gp expression appears to be increased in 

NASH but protein expression has not been quantified.177,185,188

Primary Biliary Cholangitis—Primary biliary cholangitis (PBC) is a disease that causes 

bile duct inflammation and chronic damage over time. This leads to accumulation of bile 

acids and toxins that can cause cholestasis, fibrosis and cirrhosis. Hepatic transporters play 

an important role in the movement of solutes from the blood to the bile, and PBC may lead 

to alterations in these transport processes. The following section summarizes the literature 

studies that have examined the altered transporter expression in PBC. Several studies have 

reported that the mRNA and protein expression of NTCP, OATP1B1, and OATP1B3 are 

downregulated in PBC as compared to normal liver.189–192 These findings suggest the 

potential adaptation by hepatocytes to limit the accumulation of toxic bile acids.189

Studies performed using in vitro systems and human tissues confirmed that expression of 

efflux transporters was either maintained or tended to increase in PBC as compared to 

normal liver.189–191 One study reported that BSEP and MRP2 expression were unchanged 

whereas P-gp and MRP3 expression were upregulated in PBC.189 Interestingly, it was 

reported that these alterations may be related to the adaptation of transporters, and that 

expression patterns may change from early to late stage PBC.190,193 In addition to the 

changes in expression, the localization of MRP2 was altered in PBC stage III.191 MRP1 and 

OST α/β, which are not expressed or expressed at low levels in normal hepatocytes, are 

upregulated in patients with PBC.149,190,193,194 Consistent with the literature findings, data 

from our laboratory indicated that MRP1 protein was expressed in liver tissue from a patient 

with PBC (Figure 1). Interestingly, our findings suggest that MRP1 was expressed primarily 

in the inflamed tissues in macrophages around the hepatocytes in PBC. These findings are 

consistent with previous reports of MRP1 expression in macrophages.195 Further studies are 

required to better understand the functional role of MRP1 and OST α/β in PBC.

Summary and Perspective—Understanding the impact of liver disease on hepatic 

transporter function and the disposition of clinically-relevant drugs is one of the major 

challenges in treating liver disease. Genetic factors (e.g., single nucleotide polymorphisms, 

Dubin-Johnson syndrome, PFIC diseases, Rotor syndrome), bile acid accumulation, 

epigenetic and environmental factors (e.g., xenobiotics, toxins) also may play an important 

role in the etiology of liver diseases thereby affecting the expression of drug transporters. 

These features must be considered in order to accurately predict drug disposition and 

develop optimal drug dosage regimens. 196,197

Inflammation is prevalent among different forms of liver disease discussed in this review and 

appears to be a key regulator in liver disease-mediated alterations in drug transporter 

expression and function. Hence, evaluating the activation of Toll-like receptor signaling 

pathways in viral infections, for example, and other downstream proinflammatory cytokines 

(e.g., IL-1β, IL-6 and TNF-α) will be critical to understanding altered drug disposition in 

patients with various types of liver disease.198–200 The effects of inflammation on drug 

transporter function are likely to be disease specific and will require extensive knowledge 
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regarding the mechanisms of immuno-stimulation, the varying degrees of inflammatory 

challenge, as well as patient-specific clinical factors.

The field of drug transport continues to evolve as more transporter-specific substrates and 

inhibitors are identified. However, clinically relevant probes are lacking due, in part, to the 

multiplicity of drug transporters (i.e., overlapping substrate specificity between transporters), 

the dynamic interplay between uptake, efflux, and metabolism processes, and the inability to 

quantify tissue-specific drug concentrations. Advances in magnetic resonance imaging 

(MRI) and positron emission tomography (PET), coupled with development of imaging 

probes that are substrates for specific transporters, will continue to facilitate the 

quantification of hepatic transporter function, particularly canalicular efflux transporters. 

These tools will improve our ability to assess transporter function in diseases afflicting the 

liver. Finally, the amalgamation of such functional data can serve as input for the 

development of pharmacokinetic modeling and systems pharmacology approaches to better 

understand and predict the disposition of drugs and endogenous substrates of hepatic 

transporters in patients with liver disease. This will improve our ability to select safe and 

effective drugs and design optimal dosage regimens for patients with liver disease.
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Figure 1. Immunofluorescence staining of MRP1 in a liver tissue section from a patient with 
primary biliary cirrhosis
Dual staining of MRP1 (red) and Na+/K+ ATPase (green), which was used as a basolateral 

membrane marker. The nuclei are stained in blue. The general methods are described in 

Pomozi et al.201 MRP1 and Na+/K+ ATPase antibodies were purchased from Abcam and 

SantaCruz Biotechnology, respectively.
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