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Abstract

Robotic instruments based on concentric tube technology are well suited to minimally invasive 

surgery since they are slender, can navigate inside small cavities and can reach around sensitive 

tissues by taking on shapes of varying curvature. Elastic instabilities can arise, however, when 

rotating one precurved tube inside another. In contrast to prior work that considered only tubes of 

piecewise constant precurvature, we allow precurvature to vary along the tube’s arc length. 

Stability conditions for a planar tube pair are derived and used to formulate an optimal design 

problem. An analytic formulation of the optimal precurvature function is derived that achieves a 

desired tip orientation range while maximizing stability and respecting bending strain limits. This 

formulation also includes straight transmission segments at the proximal ends of the tubes. The 

result, confirmed by both numerical and physical experiment, enables designs with enhanced 

stability in comparison to designs of constant precurvature.

Index Terms

Concentric tube robot; elastic stability; precurvature; optimal design

I. Introduction

Concentric tube robots are a type of continuum robot that are comprised of nested 

combinations of pre-curved superelastic tubes [1]–[3]. The shape of these robots is 

determined by the bending and torsional elastic interaction of the tubes. Since they can 

assume curves of complex shapes in three-dimensional space, and also possess sufficient 

stiffness to both steer through tissue and manipulate tools in body cavities, they are 

particularly well-suited to minimally invasive surgery [4]–[7].

One limitation, however, is that instabilities can arise when torsional elastic energy is 

suddenly released through rapid untwisting of one or more tubes [1], [2]. One approach to 

mitigating this problem is to plan paths that avoid such unstable configurations, as done in, 
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e.g., [8]. Another approach is to design or manufacture the robot to be globally stable, in the 

sense that there are no elastic instabilities anywhere in its operational workspace [9]–[11].

Nevertheless, elastic instability imposes significant constraints on robot and workspace 

design. An important example, shown in Fig. 1, is comprised of a pair of tubes of equal 

stiffness and equal constant precurvature. By rotating these tubes at their base, the combined 

curvature varies from the maximum precurvature value to zero. The latter configuration 

corresponds to a base rotation angle of π. The tube pair is stable for all relative rotation 

angles if and only if the following condition is met [12], [1]:

(1)

Here L is the tube length, ν is the Poisson’s ratio of the tubes, and ûi and βi are the 

precurvature and central angle of tube i, respectively. Reference [13] extended this condition 

to include straight transmission, and proposed an implicit method to design a stable robot 

with more than two tubes. A bifurcation and energy-based analysis to measure local elastic 

stability are presented in [14], and more general mathematical conditions for local elastic 

stability of tubes with arclength-varying curvatures in the presence of external loads are 

derived in [15].

Viewed from different design perspectives, this stability condition places bounds on either 

the tube length L, the precurvatures, ûi, or the central angles, βi. In particular, two tubes of 

equal precurvature and Poisson’s ratio ν = 0.3, are globally stable for maximum tip 

orientation angles, β1 = β2, that are less than 79°. There are many clinical applications, 

however, for which it is desirable for tip orientations to vary smoothly between ±90° or even 

a wider range. Consequently, the development of techniques to increase the stability of 

concentric tube robots is important to expanding their clinical utility.

Based on (1), two possible approaches to enhancing stability are (i) to vary the tube 

properties so as to modify Poisson’s ratio, or (ii) to consider precurvatures that vary with the 

arc length. Studies based on the former approach include [10], [11], where tubes are 

modified by, e.g., laser cutting, to reduce their bending stiffness without substantially 

affecting their torsional stiffness. The latter approach of precurvature optimization was first 

proposed in [16], where a linear ODE-based stability condition for varying precurvature is 

presented, and used to numerically optimize a planar tube pair design for maximum elastic 

stability. It is shown there that, by employing tubes with precurvatures that vary with arc 

length, the tip orientation angle, β, can exceed the stability limit given by (1).

In this paper we expand on [16] by including the following additional contributions. First, 

we provide a generalization of the stability condition (1) to include straight transmission 

segments of different length for each tube. Second, we eliminate the constraint of our prior 

stability condition that both tubes be of equal precurvature and stiffness and instead require 

only that the planar precurvature of both tubes be in the same direction along their lengths. 

Also, each tube must be of constant stiffness along its length, but the stiffnesses and 

Poisson’s ratios of the tubes can be different. Third, we introduce a nondimensionalization 
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of the optimal control problem formulation that allows us to treat the product of maximum 

curvature and tube length as a single variable. Fourth, we derive an analytic formulation to 

the maximally-stable precurvature problem that satisfies the necessary conditions for 

optimality and show that it agrees with the numerical solution. The analytic solution also 

provides a new upper bound on stable tip orientation angle for tube pairs of given total 

length, transmission length and stiffness. Finally, we demonstrate using physical 

experiments the enhanced stability of tube pairs with our optimized precurvature in 

comparison to tube pairs of constant precurvature.

The remainder of the paper is organized as follows. Section II reviews our mechanics-based 

model for the tubes, while the subsequent section presents the kinematics for the special case 

of planar tube pairs. A necessary and sufficient condition for evaluating the stability of a 

tube pair with non-constant precurvatures in derived in Section III. Examples of stability 

evaluation for two analytically-prescribed precurvature functions are presented in Section IV. 

Section V formulates the selection of precurvatures as an optimal design problem, and 

provides both analytic and numerical solutions. This section also provides a comparison of 

the stability limits of constant-and optimal-precurvature tube pairs. An experimental 

comparison of tube pair stability appears in Section VI. Conclusions are provided in the final 

section of the paper while details of the stability condition, derivation of the analytic 

solution, and experimental calculations appear in three appendices.

II. Kinematics of Tube Pairs with Planar Precurvature

To analyze elastic stability, it is possible to use a reduced kinematic model that considers 

only the relative rotation between tubes along their length. These equations are a subset of 

the general robot kinematics that describe the pose of the robot which can be found in [1]. 

Consider a pair of tubes shown in Fig. 2 (a). Let tube 1 and tube 2 denote the outer and inner 

tubes, respectively. Suppose that tube i exists over the interval s ∈ [ai, b] as shown in Fig. 2 

(a), where s is the arc length parameter. Note that we do not explicitly define where the 

origin s = 0 is since the kinematics do not depend on the location of the origin. Without loss 

of generality, the tubes are assumed to be aligned at the tip when combined. If one tube 

extends beyond the tip of the other, the extended portion does not interact with the other 

tube, and can thus be ignored in the context of stability.

Let Ri(s) ∈ SO(3) denote the material coordinate frame of tube i at s, which is a body frame 

of tube i at s. The frame Ri(s) is chosen to have its z-axis tangentially aligned to the tube, 

and y-axis perpendicular to the plane in which the tube lies. Now α(s), the relative rotation 

between tubes at s, is defined by the angle from R1(s) to R2(s) about their (common) z-axis, 

i.e.,

(2)

where Rz(α) is rotation matrix for rotation of α about the z-axis. Let ûi(s) ∈ ℝ3 and Ki ∈ 
ℝ3×3 denote the three-dimensional precurvature vector at s and the stiffness tensor, 

respectively, where
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Note that the first and second diagonal components of Ki are the same since the cross 

sections of the tubes are assumed to be circular.

Using the notation of Fig. 2, the kinematics of the tube pair can be derived from the two-tube 

case of the concentric tube robot kinematics given in [1], i,e.,

(3)

(4)

(5)

(6)

where uix, uiy are x- and y-bending curvatures of the combined tubes expressed in the 

material coordinate frame of tube i, and uiz is mechanical twist rate of tube i. Substituting (4) 

into (5) yields

(7)

From (3) and (6), α̇ is given by

(8)
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and combining (7) and (8) yields an ODE

(9)

with the boundary condition

(10)

where k̃ is defined by

(11)

When the tubes are made of the same material with Poisson’s ration ν, then k̃ reduces to k̃ = 

1+ν by substituting kix/kiz = 1 + ν into (11).

Note that (9) applies only for s ∈ [a1, b] where both tubes exist. For s ∈ [a2, a1), tube 2 is 

subject to the base torque only, and experiences a constant twist rate. Let Δθ denote the twist 

angle accumulated in this interval. Then Δθ is given by

(12)

Combining (8) and (12) yields

(13)

Defining the base rotation α0 as the relative rotation of the base frames of the tubes, i.e., 

R1(a1) and R2(a2), about their (common) z-axis, α(a1) is then sum of α0 and Δθ, i.e.,

(14)

This equation is another boundary condition for the ODE (9) when the base rotation α0 is 

given as the kinematic input.
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Now consider new tubes obtained by straightly extending the outer tube and shortening the 

inner tube, as depicted in Fig. 2 (b), so that they both have the same base location at s = a. 

Since both tubes does not interact from s = a to s = a1, they are constantly twisted. Then the 

boundary condition for these new tubes is given by

(15)

When a is chosen to be

(16)

the boundary conditions for the original tube pair and the new tube pair in (14) and (15), 

respectively, become identical. Note that (16) can also be derived from the elastic energy 

equivalence between the two tube pairs in Fig. 2. Then, given the same base rotation α0, the 

sets of kinematic solutions α(s) for both tube pairs are identical over s ∈ [a1, b] based on the 

kinematics and boundary conditions. This equivalence allows us to derive a stability 

condition and to formulate the optimal design problem for the tube pair in Fig. 2 (b) to 

obtain the solution for the tubes of Fig. 2 (a).

III. Stability Condition for Planar Tube Pairs

The stability condition of (1) applies for tube pairs of constant precurvature and was derived 

in [1] based on the uniqueness (stable) or nonuniqueness (unstable) of the solution to the 

kinematic equations. Stability can be presented graphically by plotting relative tube rotation 

at the base versus the tip and examining solution multiplicity as shown in Fig. 3. While such 

a plot can be numerically calculated for tube pairs of arbitrary curvature and then inspected 

to determine stability, this approach is computationally intensive.

As an alternative analytical approach for tubes of varying precurvature, a new stability 

condition was derived in [16] that is based on the fact that the tip rotation is unique for a 

given base rotation if and only if the curve is monotonically increasing, under the 

assumptions that the precurvatures and stiffnesses of both tubes are equal.

In this section we present a generalized stability condition. Instead of requiring both tubes to 

have equal stiffness and precurvature, we only assume that the precurvatures satisfy an 

inequality

(17)
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over the entire length, which is required for the proof of the stability condition presented in 

Appendix A. This condition only requires both tubes to be curved in the same direction at 

every point on the length.

Using the notation of Fig. 2, the condition for the curve of Fig. 3 to be monotonically 

increasing can be written as

(18)

Since evaluation of this expression involves solving a boundary value problem using the split 

boundary conditions

(19)

we use the equivalent reciprocal expression and due to symmetry, we need only consider 

half the interval:

(20)

In this form, we can evaluate it by integrating backward in arc length from b to a using the 

boundary conditions:

(21)

Our stability condition based on (20) and derived in Appendix A is given by the following 

proposition.

Proposition 1—Let α(s) denote the solution to (9) and (21) If û1y(s)û2y(s) ≥ 0, the 

condition

(22)

is equivalent to

Ha et al. Page 7

IEEE Trans Robot. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(23)

This proposition substitutes evaluation of the entire curve in Fig. 3 with a single evaluation 

at the tip rotation angle of α(b) = π. Stability evaluation can be further simplified by 

considering the linear differential equation

(24)

with boundary conditions

(25)

These equations are obtained by differentiating (9) and (21) with respect to α(b) at α(s) = π. 

If the solution to (24)–(25) is always positive over s ∈ [a, b], the tube pair is stable. This 

allows us to determine the stability of a given tube pair by examining the solution of a linear 

differential equation for a set of specific boundary conditions.

IV. Evaluating Stability for Specific Precurvature Functions

The stability condition presented above can be used to evaluate the stability of particular 

precurvature functions. Two examples are provided here. The first consists of a pair of tubes 

with distal sections of constant curvature and straight proximal transmission sections. The 

second example considers precurvatures of the form  with {p, q} ∈ ℝ+.

A. Constant precurvature with Proximal Straight Transmission Lengths

Tube pairs often have straight transmission lengths at their base as depicted in Fig. 2. While 

they do not bend, these straight sections do twist and contribute to instability. Consider the 

case when their precurvature functions are given by

(26)

(27)
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Defining l̄ as l̄ = max(l1, l2), the solution to (24) is given by

(28)

where c is defined by

(29)

and k̃ given in (11). Then stability condition (23) reduces to

(30)

where L is the tube length, i.e., L = b – a.

This equation is a generalized form of (1), the stability condition for constant precurvature 

tubes without transmission lengths. To recover this simpler form, we can set l̄ to 0 and 

assume the same material for both tubes resulting in the right side of (30) converging to π/2 

and k̃ in c becoming k̃ = 1+ν where ν is Poisson’s ratio. Then the condition (30) reduces to

(31)

which is equivalent to (1) under assumption (17).

B. Precurvature Function, ûy = q/(s + p)

Consider a precurvature function  with scalars p > –a and q > 0. The 

analytic solution to (24) is given by

(32)

where
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When , it is easily shown that  for α(b) = π and s ∈ [a, b]; In other words, it 

can be verified that the tube pair is stable simply by checking  and  for 

α(b) = π. This implies that any precurvature with (p, q) satisfying  can be used for a 

stable tube pair. Since c0 is invariant to p, the choice of p is unbounded as long as p > –a. 

Defining the central angle θdes swept out by the initial curvature of the tubes as

an arbitrarily large θdes can be achieved by selecting p to be larger than, but very close to –a. 

From a theoretical perspective, this result is quite meaningful, since the swept angle θdes was 

bounded by the inequality (31) for the constant precurvature case. In practice, it is hard to 

achieve  due to the yield strain of the material, which bounds the magnitude of 

precurvature.

On the other hand, when , the following inequality must hold in order to satisfy 

:

Noting that the left side attains a minimum at s = a, the inequality reduces to

(33)

where L = b – a is tube length.

Inequality (33) serves as the general stability condition for precurvatures of the form, 

. This condition can be validated by plotting α(a) versus α(b) curves for various (p, 

q) pairs. Some examples are given in Fig. 4. To plot each curve in the figure, α(b) is 

discretized into 21 values between 0 and 2π and given as boundary conditions for the 

general kinematic equations of [1]. As anticipated, pairs (p, q) that satisfy the stability 

condition (33) produce monotonically increasing curves. Pairs (p, q) on the boundary of the 

inequality (33) produce a curve of infinite slope at (α(a), α(b)) = (π, π). Unstable pairs 

produce negative slopes over some portions of their curves.
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V. Optimal Design of a Tube Pair

Given a pair of tubes sharing linearly dependent precurvature functions, i.e.,

(34)

where η > 0 is a given constant, and of potentially different constant stiffnesses, we are 

interested in solving for the precurvature that will be most stable. One can choose arbitrary 

η, though η = k2x/k1x is recommended for the tube pair to be straight at α(a) = π. Our prior 

work considered optimizing over precurvatures defined by a specified function, e.g., solving 

for the most stable values of {p, q} in û1y(s) = û2y(s) = q/(s + p) [16].

Here, we formulate the design optimization problem as an optimal control problem and 

present a precurvature function that satisfies the necessary conditions for optimality. The 

design problem is defined to produce the most stable design such that the tip tangent 

direction can vary between 0 and θdes as the tubes are rotated while bounding the 

precurvature by a given upper bound.

This section is arranged as follows. First, the optimization criteria and constraints are 

defined. In the next subsection, the equations are nondimensionalized. Then, the necessary 

conditions for optimality are presented together with a precurvature function that satisfies 

them. The following subsection employs steepest descent to solve numerically for the 

optimal solution and it is shown that these results agree with the identified optimal 

precurvature function. Based on these results, we compute the maximum stable tip angles 

and compare them with what can be achieved with constant precurvature.

A. Optimization Criteria and Constraints

The design problem is to solve for a pair of tubes that can stably produce tip tangent angles 

in the range [0, θdes]. First, let us define the combined precurvature ûy(s), i.e,

(35)

From (34) and (35), ûy(s), û1y(s) and û2y(s) satisfy

(36)

We choose ûy(s) as the optimization variable, while any of them could be chosen as they are 

dependent. Then the maximum tip angle is given by
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(37)

In practice, arbitrarily high precurvatures cause tubes to buckle during shape setting or 

during the relative rotation of the combined tubes. Thus, precurvature must be bounded to a 

physically realizable value. For example, the shape setting involves bending straight tubes in 

desired shapes. In this procedure, a precurvature bound may be specified based on maximum 

allowable bending strain, ε̄,

(38)

in which di is the outer diameter of tube i. This induces an upper bound of ûy based on (36) 

of the form

(39)

A tube pair is stable if and only if the solution to (9), (10) and (21) satisfies (22). Since the 

stability boundary corresponds to equality in this expression, maximizing stability equates to 

maximizing the minimum value of  over α(b) ∈ [0, π]:

Noting that  is the inverse of the slope of the curves in Fig. 3, the above optimization 

straightens the curves between (0, 0) and (π, π) by maximizing the minimum inverse slope.

If the design is stable then  for α(b) ∈ [0, π] and, based on Proposition 3 in 

Appendix A, its minimum value is given by

(40)

Based on this equation, the design problem can be stated as:

Design Problem—Solve for
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(41)

subject to the constraints

(42)

(43)

(44)

(45)

where s = t is the end of the straight transmission, and the last constraint ensures stability by 

Proposition 1.

B. Nondimensionalization

As stated above, the design problem depends on four tube parameters: their total length, 

their straight transmission length, the desired maximum tip tangent angle, θdes, and the 

maximum curvature, ûmax. Noting that ûmax has units of inverse length, the length 

parameters and curvature parameters in the problem can be nondimensionalized by 

multiplying or dividing by ûmax, respectively. The value of nondimensionalization is that the 

optimal solution, as shown graphically in Section V-E, can be expressed as a function of 

three rather than four parameters.

Dimensionless variables for arc length, s̃, total tube length, L̃ , straight transmission length, 

T̃, and precurvature, ũy(s) are defined as follows.

(46)

(47)
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(48)

(49)

The dimensionless form of the stability equation (24) and boundary conditions (25) are 

given by

(50)

(51)

where κ is given from (36) by

(52)

The dimensionless design problem can be stated as

Dimensionless Design Problem—Solve for

(53)

subject to

(54)

(55)
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(56)

(57)

C. Analytic Solution to Optimal Design Problem

It is sometimes possible to solve the design problem (53) analytically for a specified 

precurvature function. For example, an analytic solution to the design problem is presented 

in [16] for the precurvature function .

Alternatively, we can attempt to solve for the optimal functional form by considering the 

dimensionless design problem of Section V-B as an optimal control problem with control 

variable ũy(s̃). This problem is solved analytically in Appendix B, where the first-order 

optimality condition is applied based on [17]. The solution is given in two forms depending 

on whether θdes is greater than θref or not, where θref is defined in (129):

• If θdes > θref,

(58)

where c1, v and w are given in (122)–(123), and the saturation point l is 

computed by root-finding of (125) for a given θdes.

• If θdes ≤ θref,

(59)

where c1, v and w are given in (126)–(127). The unknown ũ0 is the optimal 

precurvature value at s̃ = T̃, i.e., ũy(T̃) = ũ0. This unknown is computed by root-

finding of (128) for a given θdes.

Since this solution satisfies the first-order necessary condition for optimality, it could be 

either a minimizer, a maximizer, or just a saddle point. To answer this question, the 

analytical solution is compared with the numerically-obtained optimal solution below.
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D. Numerical Solution to Optimal Design Problem

In this section, the steepest descent method from optimal control, described in [18], is 

applied to generate numerical solutions, and the numerical solutions are compared with the 

analytic solution (58)–(59). For notational simplicity, we define

(60)

The Hamiltonian is given by

(61)

in which x(s̃) = (x1(s̃), x2(s̃)) and p(s̃) = (p1(s̃), p2(s̃)) are the state and co-state variables, 

respectively, that satisfy

(62)

The update direction in the steepest descent method is then given by

(63)

where x1(s̃) and p2(s̃) are computed from the state and co-state equations for a given ũ(s). In 

the numerical implementation, the constraints (54)–(56) are given as linear constraints of the 

form

(64)

(65)

(66)
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where N is the dimension of ũy discretized by the step size Δs̃,  is its i-th component, and 

M is the largest step index in the transmission length. Then dℋ/dũy is the N-dimensional 

gradient vector of the cost (53), which can be computed by solving the initial value problems 

(62) and then substituting x1 and p2 into (63).

As an example, the numerical and analytical solutions are compared for parameter values L̃ 

= 2, T̃ = 0, κ = 1.3 and θdes = 90° in Fig. 5. This corresponds to a pair of curved tubes with 

no straight transmission length and a Poisson’s ratio of 0.3. Notice that the solutions agree 

and that the analytical solution is that of (58) in which the curvature along the proximal 

length is saturated at the maximum value and decreases with increasing arc length. If the 

tubes are equally stiff and precurved, they remain planar for all relative rotation angles and 

produce the shapes depicted in Fig. 6.

To investigate the relative stability of the optimal solution, consider a constant curvature tube 

pair with the same tip rotation angle θdes = 90°. The value of constant curvature equates to 

the average curvature over the length of the optimal tube pair and is shown in Fig. 5. A 

comparison of base and tip rotation angles for the two designs is shown in Fig. 7. As 

described in the introduction, the constant curvature pair will be unstable for any θdes > 79° 

at this value of Poisson’s ratio. The optimal design is stable, however, as seen from its non-

negative slope.

Based on our observations, the numerical solution always converges to the analytic solution. 

As an illustration, the error between the analytic and numerical solutions is plotted as a 

function of tube length and tip angle in Fig. 8. Error is defined by

(67)

where ũy,a and ũy,n denote the analytic and numerical solutions, respectively. This figure 

shows that the average difference in precurvature is less than 0.4% of the maximum 

precurvature.

The empty region in the upper-left corner of parameter space in Fig. 8 is where no analytical 

solution exists and where the numerical method fails to find a stable solution. The curve 

bounding this region represents the stability limit and is investigated below.

E. Stability Limit

The stability limit of the swept angle has been presented for constant precurvatures in [1]. 

This section presents a new stability limit based on the optimal precurvature presented in 

Section V-C. This gives a new upper bound on the swept angle for stable tube pairs, given 

the tube length L, straight transmission length t, and maximum precurvature umax.

Suppose that L̃ is small enough that the maximum constant precurvature solution is stable, 

i.e., the dimensionless form of (30) is satisfied:
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(68)

When this inequality holds, the maximum stable tip angle, θlimit, is given by

(69)

If, however, L̃ is too large to satisfy (68) then the stability limit must be derived based on the 

optimal precurvature solution. Since we are interested in the upper bound of θdes, we will 

focus on the solution (58), which is for θdes larger than θref. Using the notation of (60) and 

substituting (58) into (24) yields

(70)

where a scalar c2 can be computed straightforwardly from the boundary condition x1(L̃) = 1, 

while the explicit form is unnecessary here. From (50) and (51), x1(s̃) is a non-decreasing 

function if the stability condition

(71)

holds. Thus, x1(s̃) is minimum at s̃ = 0 and the stability boundary corresponds to

(72)

(73)

After algebraic manipulations with x1(s̃) in (70), the conditions (72) and (73) reduce to

(74)
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(75)

where τ is defined in (124).

Defining θlimit as the stability limit of swept angle, it can be calculated by root finding of 

(74) as presented in Table I.

Fig. 9 provides a comparison of stable tip angles for optimal- and constant-precurvature tube 

pairs by plotting θdes versus normalized tube length, L̃. Note that dimensionless tube length 

L̃ = ûmaxL equates to the tip angle in radians of a tube pair designed with maximum 

precurvature, ûmax. Thus, tubes of precurvature, ûmax, are described by a line of unit slope 

when tip angle is expressed in radians. (See the right y-axis in Fig. 9.) For L̃ ≤ 1.38rad (79°), 

this line separates unstable designs (above) from stable designs (below). For larger values of 

L̃, however, tube pairs with maximum precurvature along their entire length will be unstable. 

Consequently, the stability boundary for L̃ > 1.38 lies below this line and is defined by the 

stability limit obtained as described in Table I.

If one wishes to make stable tube pairs of constant precurvature longer than L̃ > 1.38, they 

must lie on or below the horizontal dashed line shown in the figure. Designs on this line will 

produce the maximum stable tip angle θdes = 1.38rad (79°), but their constant precurvature 

will be less than the maximum, ũy(s) = θdes/L̃.

The optimal solution enables the design of tube pairs with significantly larger tip angles. 

Furthermore, the region between the horizontal dashed line and the solid curve corresponds 

to the new stable designs revealed by this paper.

Fig. 10 shows the effect on the stability limit of adding straight transmission lengths, T̃, to 

the tube pairs. The effect of increasing T̃ is to reduce the maximum stable length of 

maximum constant curvature tube pairs and to shift the curved portion of the stability limit 

downward. The transition point can be computed from (68).

VI. Experiments

To validate our results experimentally, an optimal design tube pair was compared with a 

constant precurvature tube pair for a desired tip angle of θdes = 97.4°. This tip angle exceeds 

the stability limit for constant precurvature and is close to the stability limit of the optimal 

design for the tube parameters given in Table II. The tubes were shape set in a grooved 

template fabricated using an NC milling machine. The tube pairs are shown in Fig. 11. Since 

they relax during use, the shapes of the tube pairs do not exactly match the design 

parameters in Table II. However, they closely match the optimal shape associated with the 

relaxed parameters also given in in Table II, θdes = 94° and ûmax = 1/70mm−1, as shown in 

Fig. 11.
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The relative stiffness is given in the table since it is required to compute a in (16). η in (34) 

is chosen to be 1 so that the tubes share the same precurvature. Poisson’s ratio ν is also used 

to compute κ in (11) based on the relation kix/kiz = 1 + ν, where ν = 0.3 given in the table is 

equilvalent to κ = 1.3. The optimal precurvature is computed using (58).

Two types of experiments were conducted. The first consisted of performing relative 

rotations of the tube pairs at their bases while measuring the relative rotation at their tips. 

Rotations comprised one complete clockwise revolution followed by one complete 

counterclockwise revolution. The goal of this experiment was to produce an experimental 

version of Figs. 3, 4 and 7 showing base rotation versus tip rotation. The second set of 

experiments was designed to perform sequences of fine motions in the neighborhood of any 

instabilities in order to more precisely map their boundaries. Each set of experiments used 

the experimental methods described below.

Tube pairs were mounted in a computer controlled motorized drive system as shown in Fig. 

12 (a). The drive system was programmed to independently rotate each tube and record base 

angles. EM trackers (Model 180, Ascension Technologies) were attached to the tip of each 

tube as shown in Fig. 12 (b) and used to measure orientation. The measurement frequency 

was 52Hz and the base was rotated at 5°/sec. These measurements are converted off line to 

relative rotation angles at the tube tips following the method presented in Appendix C.

Plots of measured base rotation versus tip rotation for constant precurvature and optimal 

precurvature are shown, respectively, in Figs. 13 (a) and 14 (a). The analytical solutions are 

also plotted in these figures. Recall that base motor rotation and measured tip rotation 

correspond in the dimensionless equivalent tube model to α(s̃ = 0) and α(L̃), respectively. 

The constant precurvature tube pair exhibits instability as expected. High resolution plots of 

the transients that follow each unstable jump are given in Fig. 15. In contrast, the optimal 

precurvature design is stable. As observed in prior work [1], [12], the experimental curves 

do not follow the theoretical curve, but instead produce a hysteresis loop, likely due to 

unmodeled phenomena such as friction.

To investigate whether or not the configurations inside the hysteresis loop are reachable and 

stable, a second set of experiments was performed. In these experiments, the relative rotation 

angle at the base of the tubes was commanded as of decreasing amplitude generated by a 

sequence of set points:

(76)

Tip angle in response to this input is plotted for the constant precurvature and optimal 

precurvature tube pairs in Figs. 13(b) and 14(b), respectively. For the unstable constant 

precurvature tube pair, it is possible to move inside a small portion of the hysteresis loop by 

reversing direction before the instability occurs. This can be seen at the top of the loop in 

Fig. 13(b). A second region is present at the bottom of the loop. In a given trial, the location 

of the region depends on when the amplitude of the set point commands (76) becomes small 

enough to reverse the base rotation without causing an unstable jump. Most of the interior of 
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the loop cannot be reached however. In contrast, twist direction can be reversed at any point 

along the stable loop of the optimal precurvature pair of Fig. 14(b). As a result, all 

configurations inside the hysteresis loop are reachable and stable.

VII. Conclusion

Prior concentric tube robot designs have considered tubes of piecewise-constant 

precurvature for reasons of simplicity and also since the combined tube shape is 

approximately piecewise constant. The results of this paper demonstrate, however, that 

stability is enhanced for curvatures that decrease with increasing arc length. In particular, the 

optimal precurvature that maximizes stability and includes the effect of proximal 

transmission sections has been derived. In comparison with prior stability results for 

constant tube precurvatures, this approach removes the limits on both tip orientation range 

and tube length. The price paid for enhanced stability, though, is a larger average robot 

radius of curvature. In the concentric tube robot design approach proposed in [1] and further 

developed in [19], robots are designed as telescoping concatenations of variable and fixed 

curvature sections. Variable curvature sections correspond directly to the planar tube pairs 

considered in this paper. Consequently, the new stability results can be directly incorporated 

into this design framework to create designs with larger stable workspaces.
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Appendix A. Proof of Proposition 1

We first prove the following two propositions:

Proposition 2

Let α(s) denote the solution to (9) and (21). Then

(77)
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if and only if

Proof

The backward direction is obvious, requiring only proof of the forward direction. For 

notational simplicity,  is replaced by . Differentiating (9) and (21) with 

respect to α(b) yields a linear ODE

(78)

with boundary conditions

(79)

When α(b) = 0, the solution to (9) and (21) is α(s) = 0. In this case, (78) reduces to

Given the boundary conditions (79) together with a positive value of , x(s)|α(b)=0 

results in a decreasing function over s ∈ [a, b], which satisfies x(s)|α(b)=0 ≥ 1.

Suppose there exists a solution to (78), x(s)|α(b)=γ, which is not always positive in s ∈ [a, b]. 

Differentiating (78) again with respect to α(b) yields

Since this is also a linear ODE in  for which the system input is associated with x(s), it 

leads to a finite value of  for a finite x(s). Consequently, x(s) as well as its minimum 

value over s ∈ [a, b] is continuously varying over α(b) ∈ [0, γ]. Since the minimum value of 

x(s)|α(b)=γ is not positive while that of x(s)|α(b)=0 is 1, there exists at least one α(b) between 

0 and γ for which the minimum value of x(s) is zero. Let α(b) = β and s = c denote this α(b) 

and corresponding minimizer, respectively. Then
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(80)

By (77) and (79), c is neither a nor b. The first-order necessary condition for the minimizer c 
which is not on the boundary of the domain s ∈ [a, b] is given by

(81)

However, this is not possible since the only solution to (78) given (80) and (81) is a constant 

function x(s)|α(b)=β = 0, which does not satisfy the boundary condition (79). Thus, there 

does not exist any solution to (78) that is not always positive in s ∈ [a, b].

Proposition 3

Let α(s) denote the solution to (9) and (21). If

(82)

then it satisfies

for any s ∈ [a, b] and α(b) ∈ [0, π].

Proof

Let x(s) denote  again. By differentiating (9) and (21) with respect to α(b), the same 

equations (78)–(79) are obtained. When α(b) = π, the solution to (9) and (21) is α(s)|α(b)=π 
= π. In this case, Equation (78) reduces to

The proposition is clearly satisfied when s = b or α(b) = π. Suppose there exists s = c ∈ [a, 

b) and α(b) = β ∈ [0, π) that does not satisfy the proposition, i.e.,

(83)
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Since x(s)|α(b)=π is positive over s ∈ [a, b] by (82), the following inequality holds:

(84)

for s ∈ [a, b]. By (79) and (83), the following inequalities hold as well:

(85)

The inequalities (84)–(85) are the conditions for x(s)|α(b)=π to be an upper solution to 

x(s)|α(b)=β over s ∈ [c, b] [20]. It has been proven that any solution to an ODE lies below the 

upper solution. However, because of the same boundary conditions x(b)|α(b)=β = x(b)|α(b)=π 
= 1, ẋ (b)|α(b)=β = ẋ(b)|α(b)=π = 0 and the smaller value of the second derivative at s = b, i.e.,

it follows that x(s)|α(b)=π cannot be the upper solution near s = b. This can be shown via a 

Taylor expansion for a small positive scalar ε around s = b:

Since there is a contradiction between (82) and (83), there does not exist any c ∈ [a, b) and β 
∈ [0, π) satisfying (83) if (82) holds.

The forward direction of Proposition 1 is satisfied straightforwardly by Proposition 2. The 

backward direction is also satisfied by Proposition 3, i.e.,

Appendix B. Derivation of Solution to Dimensionless Design Problem

This appendix presents the derivation of the analytic solution from the the first-order 

optimality conditions of the dimensionless design problem (53)–(57). Again, for notational 

simplicity, we define
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Let the prime notation denote the derivative with respect to s̃, for instance, . Then 

(24) and (25) are written as

(86)

and the dimensionless design problem (53)–(57) reduces to

(87)

subject to

(88)

(89)

(90)

(91)

A small positive scalar ε, such that 0 < ε ≪ 1, is introduced to cast the open inequality (57) 

to a closed inequality (91) to include it in an optimal control problem. The above problem is 

then an optimal control problem with the state variable x = (x1, x2) and the control variable 

ũy.

The integral and control constraints (88)–(90) are directly augmented with the Hamiltonian 

with Lagrangian multipliers, while the state constraint (91) should be decomposed into a 

control and point constraints by differentiating it with respect to s̃ until ũy is explicitly 

shown [17]. The decomposed constraints are given by

(92)
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(93)

(94)

where [s̃1, s̃2] is an unknown interval where the optimal path is on the boundary of (91), and 

s̃p is any point in [s̃1, s̃2]. The next step in general is to augment them with the Hamiltonian 

and end point function using Lagrangian multipliers. While the first-order optimality 

condition outside the interval [s̃1, s̃2] is identical to the case without the constraint, a set of 

specific optimality conditions should be applied to this interval to find the constrained 

optimal path as well as the unknowns s̃1 and s̃2 [17]. In our case, however, we could skip this 

step since there does not exist the interval [s̃1, s̃2] that satisfies (93) and (94) together. This 

can be proven as follows: from (86) and (91), x1 is a non-decreasing concave function and x2 

is non-increasing function such that

(95)

If there exists [s̃1, s̃2] that satisfies (93) and (94), then there exists s̃p such that

(96)

The only x1 and x2 that satisfy (95) and (96) are the constant functions, x1 = ε and x2 = 0. 

However, they do not satisfy the boundary condition in (86). Thus there does not exist [s̃1, 

s̃2] that satisfies (93) and (94) together.

Consequently, we need to consider the Hamiltonian adjoined with the constraints (88)–(90) 

only, of the form

(97)

where the regular Hamiltonian is

(98)
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Here, μ is a constant, λi are functions of s̃ such that λifi = 0 and λ2 ≥ 0, and p = (p1, p2) is 

co-state variable. The optimality conditions are then given by

(99)

with (86). Substituting (97) into (99) yields

(100)

(101)

We omitted the equation for s̃ ∈ [0, T̃) from (100) since it is obvious from (89) that the 

optimal control is given by

(102)

Now we would like to show that p2 is a negative decreasing function over s̃ ∈ [T̃, L̃]. 
Consider the following second-order ODEs for x1 and p2 derived from (86) and (101):

(103)

(104)

Defining  and , (103)–(104) reduce to

(105)

Suppose that y1 and y2 intersect at s̃ = σ, i.e., y1(σ) = y2(σ). Then y1 and y2 are an identical 

function since (105) is first-order. The contraposition yields that, if they are not identical, 

they never intersect. Now let us show that they are not identical. First, note that y1 is a non-
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negative finite function over s̃ ∈ [0, L̃] by (95). For s̃ = δ ∈ [0, T̃), p2,  and y2 are given 

from (102) and (104) by

(106)

Since y1(δ) is finite, y2(δ) > y1(δ) when δ is sufficiently small. Thus y1 and y2 are not 

identical, never intersect, and thus maintain the order relation y2 > y1 ≥ 0 over s̃ ∈ [δ, L̃]. 
Finally, p2 is given as a negative decreasing function of the form

(107)

Now let us see the sign of μ. From (88), there exists at least one s̃ ∈ [T̃, L̃] such that ũy(s̃) > 

0. Thus μ is negative by (100) since 2κũyp2x1 < 0 by positive x1 and negative p2, and λ2 ≥ 0 

by definition. Moreover, ũy is always positive over [T̃, L̃] since, otherwise, μ couldn’t be 

negative by (100).

Until now, we have shown that:

• x1 is positive increasing function over s̃ ∈ [T̃, L̃],

• p2 is negative decreasing function over s̃ ∈ [T̃, L̃],

• μ is a negative constant, i.e., μ < 0,

• ũy is a positive function over s̃ ∈ [T̃, L̃].

Keeping these in mind, let us derive the optimal control ũy for s̃ ∈ [T̃, L̃]. Consider the 

following two cases:

i. λ2 > 0: The optimal control is given from λ2f2 = 0 by

(108)

ii. λ2 = 0: The optimal control is given from (100) by

(109)

which is a decreasing function by negative μ, positive increasing x1, and negative 

decreasing p2.

Note that ũy is continuous at the boundary points between case i) and case ii). It is shown as 

follows: since μ is the same constant for both cases, the evaluations of (100) for the left and 

right limits of a bound point are equal:
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(110)

where case i) and case ii) are assumed to be on the left(−) and right(+) sides of the boundary 

point, respectively, while this assumption doesn’t affect the generality since the opposite 

case is given simply by swapping the signs. Noting that x1 and p2 are continuous as they are 

solutions of second-order ODEs, the above equation reduces to

(111)

Since the left side is non-positive and the right side is nonnegative, both sides should be 

zero, i.e.,  and . Thus ũy is continuous at the boundary point by .

Consequently, the optimal control ũy over s̃ ∈ [T̃, L̃] is a set of continuous (and possibly 

multiple) connections of (108) and (109). Recalling that (109) is a decreasing function, there 

exist only two possible combinations of (108) and (109):

Solution 1) Equation (108) for s̃ ∈ [T̃, l), and (109) for s̃ ∈ [l, L̃], where l is an 

unknown saturation point.

Solution 2) Equation (109) for s̃ ∈ [T̃, L̃].

Now let us derive explicit from of ũy from (109) by eliminating x1 and p2. Without loss of 

generality, x1 can be expressed by

(112)

where f is unknown function of s̃. Note that this expression does not bound the candidates of 

ũy and x1 since f always exists for any combination of ũy and x1 as long as ũy and x1 are 

positive functions. Then p2 is given from (109) and (112) by

(113)

Substituting (112) and (113) into (103) and (104), respectively, yields

(114)
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(115)

where c1 and c2 are constants of integration. Introducing a new function g = 1/ũy, the ODE 

(115) becomes

(116)

By differentiating with respect to s̃, (116) reduces to

(117)

Thus g is a second-order polynomial that satisfies (116). From straightforward calculations, 

g is given by

(118)

where v and w are new constants of integration. Then ũy becomes

(119)

For Solution 1, the five constants μ, c1, c2, v and w can be computed by substituting (112)–

(114) and (119) into four boundary conditions in (103)–(104). The fifth equation is given by 

continuity of ũy at s̃ = l, i.e.,

(120)

For Solution 2, (120) can not be used. Instead, one can introduce an unknown value ũ0 ≤ 1 

such that ũy( T̃) = ũ0:

(121)
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Note that l in Solution 1 or ũ0 in Solution 2 is still unknown. They should be determined by 

θdes from (88). Finally, the constants for both cases are given by

Constants for Solution 1

(122)

(123)

where

(124)

Given θdes, l is determined by

(125)

Constants for Solution 2

(126)

(127)

Given θdes, ũ0 is determined by

(128)
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Here, c2 and μ are not presented since they are unnecessary to compute ũy in (119). Note 

that Solution 1 with l = T̃ and Solution 2 with ũ0 = 1 have the same θdes = θref:

(129)

If a given θdes is larger than this value, then Solution 1 is optimal. Otherwise, the solution is 

given by Solution 2.

Appendix C. Relative Rotations from EM Tracker Measurements

The relative rotation of the EM trackers mounted on the robot tips can be described by (see 

[21]),

where R0 ∈ SO(3), ŵ ∈ ℝ3 and αi ∈ ℝ are the initial relative orientation, the screw axis, 

and the tip rotation angles, respectively, such that ||ŵ||= 1, and [·] denotes the skew-

symmetric representation of a vector in ℝ3. For , the skew-

symmetric representation is given by

(130)

Also, {Ri}i=1,...,m are the rotation matrices corresponding to the sequence of measurements.

Then R0, ŵ and αi can be computed sequentially by a series of least squares problems. 

Suppose that there is no noise in the measurements {Ri}i=1,...,m. Then they satisfy

(131)

for any i = 1, . . . , m. When there exists measurement noise, one can consider the following 

least squares criterion:

(132)
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Note that Ri is known, and that R0 and ŵ are unknowns. One can consider R0 to be known 

as well by assuming that it is equal to the first measurement of Ri, but we prefer to consider 

it as unknown so as to avoid the dependency of the optimization result concentrated on the 

noise of the first measurement. Ignoring the constant term m and switching the overall sign, 

the least squares problem becomes a maximization of the form

(133)

where R0 ∈ SO(3), ŵ ∈ ℝ3 and ||ŵ|| = 1, or equivalently

(134)

where ŵ, v̂ ∈ ℝ3 such that ||ŵ|| = ||v̂|| = 1 and v̂ = R0 ŵ.

Applying the standard approach to solve a vector space optimization using Lagrangian 

multipliers and the first-order necessary conditions, the solutions for ŵ and v̂ are given by 

the first column vectors of U ∈ ℝ3×3 and V ∈ ℝ3×3, respectively, where U and V are the 

matrices from the singular value decomposition of , i.e.,

(135)

Here U, V and S are sorted by descending singular values.

Now let us compute R0. At this point, there are multiple choices of R0 since any R0 that 

satisfies v̂ = R0 ŵ is a minimizer of (133). Note that the equation v̂ = R0 ŵ has one-

parameter family of solutions of the form

(136)

where t ∈ ℝ is the solution parameter and R0,p is a particular solution [22]. One particular 

solution is given by
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(137)

which can be easily checked to satisfy R0,p ŵ = v̂ and to be a rotation matrix. Any other 

particular solution can be used if available. Now R0 can be chosen from the solution family 

to minimize the difference from R1. The minimization is given by

(138)

Here, || · ||F denotes the Frobenius norm defined as  where Tr(·) is the 

trace operator. Substituting the exponential formula presented in [22],

(139)

into (138) yields

(140)

where

(141)

The minimizer of (140) is given by

(142)

and R0 is then given by

(143)

Once ŵ and R0 are computed, αi can also be computed by a minimization
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(144)

for each i = 2, · · ·,m. This can be solved in the same way as applied to (138).

Note that all the solutions are in closed form; they are fast and reliable to compute without 

worrying about local minima.
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Fig. 1. 
Effect of torsional twisting when two curved tubes are combined. Tube coordinate frames 

are denoted by Ri(s). The relative z-axis twist angle between frames α(s) varies from a 

maximum α(a) at the base to a minimum α(b) at the tip. The central angles βi = θtip,i are 

proportional to the precurvature and to the tube length L = b – a.
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Fig. 2. 
Tube pairs considered in kinematics. The tube pairs (a) and (b) are equivalent in terms of the 

solutions of the kinematics, where the new base location s = a is computed by (16).
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Fig. 3. 
Example plots of relative tube rotation at the base versus the tip for tubes of constant 

precurvature. The solid curve possesses a unique tip rotation for each base rotation and so is 

stable. The dashed curve, comprised of tubes of higher precurvature, possesses multiple tip 

rotations for a range of base rotations and so is unstable.
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Fig. 4. 
Base rotation versus tip rotation curves for various (p, q) pairs.
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Fig. 5. 
Analytic and numerical solutions of optimal precurvature for L̃ = 2, T̃ = 0, κ = 1.3 and θdes 

= 90°. The constant curvature corresponding to the average curvature of the optimal design 

is also shown.
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Fig. 6. 
Planar shape of optimal tube pair as relative rotation angle is varied. Tube parameters are L̃ 

= 2, T̃ = 0, κ = 1.3 and θdes = 90°. The tubes are assumed to be equally stiff and equally 

precurved.
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Fig. 7. 
Base rotation versus tip rotation of optimal- and constant-precurvature tube pairs. Tube 

parameters are L̃ = 2, T̃ = 0, κ = 1.3 and θdes = 90°.
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Fig. 8. 
Average curvature difference between analytic and numerical optimal precurvatures as a 

function of L̃ and θdes for T̃ = 0 and κ = 1.3.
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Fig. 9. 
Stability limits of optimal precurvature and constant precurvature varying with L̃ when T̃ = 0 

and κ = 1.3.
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Fig. 10. 
Stability limit of optimal precurvature varying with L̃ and T̃ when κ = 1.3.
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Fig. 11. 
Constant (left) and optimal (right) precurvature tube pairs. Inset shows transmission length 

of inner tube that passes through collar of outer tube. Location a can be computed by (16) 

using parameters of Table II. The theoretical shapes (semitransparent green) for the relaxed 

parameters are superimposed on the top of the tube pairs.
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Fig. 12. 
(a) Tube actuation system. Each tube collar is rotated independently by the system. (b) EM 

sensors attached to tube tips using plastic brackets. Inner tube is slightly longer to allow for 

mounting.
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Fig. 13. 
Constant precurvature tube pair. (a) Tip rotation in response to complete clockwise and 

counterclockwise rotations applied at the base. Transients following instabilities are plotted 

Fig. 15. (b) Tip rotation in response to base rotations described by (76).
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Fig. 14. 
Optimal precurvature tube pair. (a) Tip rotation in response to complete clockwise and 

counterclockwise rotations applied at the base. (b) Tip rotation in response to base rotations 

described by (76).
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Fig. 15. 
Detailed view of transients indicated in Fig. 13. (a) Transient 1 showing overshoot occurring 

after unstable jump as relative angle increases. (b) Transient 2 showing overshoot occurring 

after unstable jump as relative angle decreases.
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TABLE I

Computation of Stability Limit

θlimit = STABILITY LIMIT(L̃, T ̃,κ)

1 If (68) holds, return θlimit = L̃ – T̃.<1br>Else, go to 2.

2 Find a root l of (74) in the interval (75).

3 Compute θdes by substituting the root l into (125).

4 Return θlimit = θdes.
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TABLE II

Tube Parameters

Length, L (mm) 200

Collar Length, a1 – a2 (mm) 17

OD (mm) \ ID (mm)
Tube 1 2.540 \ 2.248

Tube 2 2.083 \ 1.321

Swept Angle, θdes (°)
Design parameter 97.4

Relaxed parameter 94

Maximum tube precurvature, ûmax (mm−1)
Design parameter 1/65

Relaxed parameter 1/70

Curvature of Constant Precurvature Tube Pair, (mm−1) 1/117.65

Theoretical Value of Relative
Stiffness, kx1/kx2 and kz1/kz2

1.019

Poisson’s Ratio, ν 0.3
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