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Abstract

A new trend in medicine is the use of algorithms to analyze big datasets, e.g. using every-

thing your phone measures about you for diagnostics or monitoring. However, these algo-

rithms are commonly compared against weak baselines, which may contribute to excessive

optimism. To assess how well an algorithm works, scientists typically ask how well its output

correlates with medically assigned scores. Here we perform a meta-analysis to quantify how

the literature evaluates their algorithms for monitoring mental wellbeing. We find that the

bulk of the literature (*77%) uses meaningless comparisons that ignore patient baseline

state. For example, having an algorithm that uses phone data to diagnose mood disorders

would be useful. However, it is possible to explain over 80% of the variance of some mood

measures in the population by simply guessing that each patient has their own average

mood—the patient-specific baseline. Thus, an algorithm that just predicts that our mood is

like it usually is can explain the majority of variance, but is, obviously, entirely useless. Com-

paring to the wrong (population) baseline has a massive effect on the perceived quality of

algorithms and produces baseless optimism in the field. To solve this problem we propose

“user lift” that reduces these systematic errors in the evaluation of personalized medical

monitoring.

Introduction

Health care should be tailored to individuals to maximize their wellbeing and health [1]. There

is considerable hope that data collected from emerging data sources, such as smartphones and

smartwatches, can be used to extract medical information and thus improve the tailoring of

monitoring, diagnostics, and treatments for personalizing health care [2]. In particular, mental

health care could particularly benefit from automated monitoring, as many mental health con-

ditions need long-term monitoring and clinical monitoring is expensive, but automatically

tracking a user with ubiquitous sensors is cheap [3–5].

Machine learning algorithms are commonly being used in an attempt to extract medical

information from easy to collect data sources [6–9]. These algorithms are attractive as, by
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automating information extraction, they promise to provide rich analyses cheaply and objec-

tively based on collected data. Machine learning works by taking data that are easy to collect,

building a model, and then using the model to make predictions for data that are harder to col-

lect [10]. As an example, social media posts may be used to predict individuals’ depressive

symptoms or future suicidal ideation [11, 12]. However, without sufficient evaluation, the out-

puts of algorithms may be meaningless and mislead clinicians.

Whenever algorithms are used to make predictions, they must carefully be evaluated to

ensure that their predictions meaningfully represent medically relevant information. Evalua-

tion must be specified for each problem [13]. For example, if an algorithm is being used to pre-

dict one of two things, such as whether a patient is depressed, then it could be evaluated by the

percent of predictions that are correct [9]. Alternatively, it could be evaluated by the percent of

times that it correctly identified depression, i.e. sensitivity or true positive rate, and ascribe less

importance to false positives [14]. In contrast, if an algorithm is trying to predict a value, such

as someone’s level of depressive symptoms, one could consider the degree to which predictions

differ, i.e., the mean squared error. There are myriad additional methods for evaluating algo-

rithms because, without sufficiently evaluating algorithms, it is easy to generate misplaced

optimism about the utility of algorithms [15–18].

Regardless of how the correctness of an algorithm is quantified, algorithms must be com-

pared to a baseline approach that simply makes guesses to prove that the algorithm makes bet-

ter predictions than guessing. For example, if an algorithm is trying to predict a rare event,

such as a mental breakdown or suicide, an approach that simply guesses that the event never

happens will usually be correct and thus will have high accuracy [19–21]. However, such an

approach is entirely useless for medicine. If algorithms are not compared with reasonable

guesses, the accuracy of the algorithm’s predictions can appear to be good, when in reality the

algorithm is doing no better than guessing and is thus medically useless.

Here we review, for modeling of longitudinal individual state, what baselines algorithms are

commonly compared against and how much of the apparent success of algorithms can be

ascribed to poor comparisons. We focus on the example of mental wellbeing and demonstrate

in two popular datasets that individuals exhibit little variance over time. Typical wellbeing pre-

diction algorithms seem to work well, but we find that this is simply because they are basically

always guessing individuals’ personal average states. This example highlights how falsely opti-

mistic results can easily be obtained by comparing machine learning with population as

opposed to personal baselines. We perform a systematic literature review and find that most

studies (*77%) compare with the population baseline. By not comparing with personal base-

lines, studies are prone to making falsely optimistic conclusions that can unintentionally mis-

lead researchers’ perspectives and delay progress on important medical applications. We argue

for a new measure, “user lift,” that measures the benefit of an algorithm relative to the single-

person model.

Methods

Algorithm evaluation

There are many ways to evaluate how good an algorithm’s predictions are [10, 13, 16, 18]. The

general approach is a two step process of measuring an algorithm’s error, or how inaccurate its

predictions are, and then comparing the algorithm’s error with the error of simply guessing

answers. These guesses form a baseline approach and could be specific to each patient, or they

could use other trivial factors, e.g. the time of the day. Regardless, because it is totally useless

for medicine to simply guess answers based on subject and other trivial factors, algorithms

must have lower error than such baselines to be of any use.
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Algorithm error

To evaluate how well an algorithm predicts a binary outcome, e.g., whether an individual is

having a happy vs. sad or stressed vs. relaxed day, we consider the classical measure of predic-

tion error. Prediction error is the percent of observations that were incorrectly predicted (per-

cent incorrect). To evaluate how well an algorithm predicts an individual’s level of happiness

or stress, we consider the root mean squared error (RMSE), which considers how different the

predicted levels are from the true reported levels [10]. With both prediction error and RMSE,

lower values indicate that an algorithm is doing better at predicting an individual’s state.

Higher values indicate more significant prediction error.

Baselines

We consider two baseline methods that simply guess how an individual is doing: personal

baselines and population baselines. Both baselines are simple approaches that always guess

individuals are at the same state. The personal baseline always guesses that each individual is at

a constant state, but that state can differ between individuals. The population baseline predicts

that all individuals are always at the same state.

When an algorithm is attempting to predict whether an individual is having a stressed (or

happy) day or not, we consider personal baseline error, which is the prediction error of always

guessing that each individual is always at their most frequently reported state (mode). We also

consider the population baseline error, which is the error of estimating that all individuals are

always at the most frequently reported state of the population (mode).

When an algorithm is attempting to predict an individual’s level of happiness or stress, we

consider the personal baseline RMSE, which is how far predicted levels were from always

guessing each individual to be at their average level of stress or happiness. RMSE indicates a

model with higher error and thus worse predictions. We also consider the population baseline

RMSE, which is the RMSE of estimating that all individuals are always at the average state of

the population.

User lift

We propose the measure of user lift as a way to evaluate whether an algorithm is making better

predictions than simply guessing an individual’s state. The user lift is the improvement of an

algorithm’s predictions over the personal baseline, or the amount that error is decreased by

adding better features and a model. User lift is the difference between personal baseline error

and model error in RMSE or in prediction error (personal baseline error—model error). The

user lift can be thought of as the increase in accuracy of an algorithm over the null accuracy of

guessing an individual to be at their average state. The average user lift is the mean user lift

across the individuals in the dataset.

User lift framework

As a stricter measure of whether algorithms have any utility, we suggest the user lift framework

instead of comparison with a single weak baseline, such as the population baseline. With this

framework, researchers calculate user lift for each study participant. The user lift quantifies

whether an algorithm is better than the simple personal baseline on each user. We propose

then reporting descriptive statistics on the distribution of user lift and utilizing statistical tests

to determine whether the average user lift is greater than zero. Nonparametric permutation

tests are appropriate and powerful tests for considering whether a single sample, such as of

user lifts on study participants, has a mean greater than zero. A permutation test is appropriate
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here so that no assumptions on distributions are needed. While other nonparametric tests,

such as the paired Wilcoxon signed-rank test, may be appropriate for comparing two samples,

permutation tests have been reported to be more reliable than paired non-parametric tests

[22, 23].

Machine learning example: Predicting subjective state from location and

mobility

We present an example of how falsely optimistic conclusions can be reached about algorithms’

performance. For this example, we follow previous works that have used and suggested that

smartphone GPS location data can predict individuals’ mental wellbeing [7, 9, 24]. We follow

these studies’ methodologies only for constructing features, or describing individuals’ daily

behavior from their GPS location logs. The dataset, testing methodology, and prediction tasks

that we explore differ from these prior works.

Datasets

We consider two well established datasets that are freely available. Both datasets collected indi-

viduals’ smartphone data, specifically GPS location, and their stress and happiness levels. The

StudentLife dataset [25] followed a cohort of students at an American university during the

course of a semester. Data that was collected included daily measures of stress on a five point

Likert scale. Of the initial 48 students with data accessible, we consider data for the 15 students

who had sufficient data available: stress level and at least 35 GPS location observations for at

least 30 days of the study period.

The second dataset we consider, the MIT Friends and Family dataset [26], resulted from a

project that collected various types of data on a cohort of university affiliates and their families

at another American university. The data collected included daily wellbeing measures. Here

we consider the nine point Likert scale of happiness and seven point Likert scale of stress that

were collected. Of the 116 participants included in the available dataset we consider data for

the 31 individuals who had measurements of stress or happiness, respectively, for at least 30

study days and at least 35 GPS location measurements on those days.

Data processing: Location and mobility features

To derive meaningful features of location and mobility, we follow three previous studies

[7, 9, 24]. All features from these studies that were reproducible (due to the data available)

were included. Before constructing features, we used two preprocessing methods.

The first preprocessing method fit a Gaussian Mixture Model (GMM) to all of the location

samples for each participant collected to identify locations frequented by participants [24].

The number of clusters was chosen to be the number, up to twenty maximum, that minimized

the Bayesian Information Criterion [27]. It was assumed that participants would frequent at

most twenty locations during the course of the study. The home location of a participant was

determined to be the location where the participant spent the majority of their time during the

evening hours (11pm—6am) and the work location was similarly determined to be where the

participant spent the majority of their time during working hours (11am—4pm). In contrast

to prior work, we did not interpolate the location observations to a regular time sampling, as

we did not find this beneficial to prediction accuracy [24]. We consider this first set of clusters

to be the full clustering.

The second preprocessing method used K-means clustering on stationary points only

[9, 28]. The StudentLife dataset included a prediction of whether the participant was moving

or stationary at each observation, but the Friend and Family dataset did not. To determine
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whether participants in the Friends and Family dataset were stationary at each observation, we

approximated movement speed with the time derivative at each observation and used a thresh-

old. We attempted to set the threshold to be about 1km/h [9]. We consider this second set of

clusters as the stationary clustering and the night cluster to be the cluster where each individual

spent the most time between midnight and 6am.

To protect participants’ anonymity, the GPS location data in the Friends and Family dataset

was subjected to an affine transform before being released. Because this transform purposefully

changes the space, but collinearity should be preserved, we approximated features in one

dimension on the Friends and Family dataset.

Utilizing the two set of location clusters that resulted from the GMMs and Kmeans, the fea-

tures of mobility and location that we derived for each participant each day of the study are as

follows:

1. The fraction of a day that a participant spent not stationary.

2. The average displacement of a participant between two observations during the day, i.e.,

average speed.

3. The standard deviation of displacements between points.

4. The location variance (on log scale), i.e., the sum of the variance of location coordinates in

each dimension.

5. The “circadian movement” of a participant [9], which we adapted to our daily monitoring

setting as the Euclidean distance of the vector of fraction of time a participant spent in each

of their stationary location clusters with the participant’s mean location distribution. The

mean location distribution of a participant was calculated as the average fraction of a day

that a participant would spend in each stationary location cluster during the study.

6. The location entropy, which was calculated as the entropy of the vector where each entry

represented the fraction of the day that a participant spent in each stationary location

cluster.

7. The radius of minimum circle enclosing the participant’s location samples.

8. The fraction of time a participant spent at their GMM home cluster.

9. The fraction of time a participant spent at their GMM work cluster.

10. The fraction of time a participant spent at their stationary night cluster.

11. The log likelihood of a day from the GMM to estimate how routine the day was.

12. The AIC and BIC of the GMM evaluated with the day’s coordinates, to also determine

how typical the day was.

13. The number of GMM clusters visited in a day.

14. The number of stationary clusters visited in a day.

Experimental framework

We present two prediction tasks:

1. Predicting whether a participant was happy or stressed or not on a given day.

2. Predicting the average level of happiness or stress that a participant reported on a given day.

Meaningless comparisons in medical machine learning
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To construct levels of stress or happiness on a given day, we average all the Likert scale

responses that a participant reported on that day. Whether the participant was happy (or

stressed) or not is defined by a threshold on the daily average on a value to distinguish when

students reported any stress versus no stress. For the StudentLife user inputs, we use “A little

stressed” as the threshold. For the Friends and Family dataset, we use the middle value of the

Likert scale as the threshold, as the Friends and Family scales were defined from negative to

positive values, where the middle value was supposed to indicate a neutral state.

For both problems, we attempt to predict the stress or happiness from the location and

mobility data with a variety of standard machine learning methods. For regression we con-

sider: linear regression with an Elastic Net penalty, and Lasso regression [29, 30]. For the

binary classification task, we consider: logistic regression with L2 penalty, support vector

machines with radial basis function kernels, and random forests [10, 31]. Hyperparameters

were chosen with 10-fold cross-validation on the training data. The methods that return the

lowest error are presented.

We consider both population models, which could also be referred to as global, general, or

all-user models and utilize all the individuals’ data to make predictions, and personal models,

which use only a single individual’s data to make predictions for that individual. Prediction

error is measured with leave-one-out cross-validation, which is commonly used for estimating

an algorithm’s prediction error [10]. To perform leave-one-out cross-validation on population

models, we combine data from all of the participants into a single set. Then one observation is

withheld, a model is trained on all of the other observations, and then that model is used to

make a prediction for the held out observation. The process is repeated until every observation

has been withheld exactly once. The model error reported from this process is the average

error across the predictions for each data point. Population models assume that some of each

participant’s data is seen during training, in addition to data from other participants [32]. For

personal models, we similarly hold out one observation, but we only train on the remaining

observations of that individual’s data and then repeat only for the number of observations that

we have on that individual. Personal models only attempt to extrapolate predictions for an

individual from their own data. Alternative cross validation schemes, such as N-fold, offered

no benefit to the results, so are omitted for brevity.

Literature review

In addition to an example on two real datasets of how false machine learning results can be

arrived at by comparing to weak baseline models, we perform a systematic literature review to

investigate how algorithms are commonly evaluated and whether baselines are sufficiently

reported. Our literature review took three steps:

1. Find relevant literature.

2. Establish whether a baseline (personal or population) was compared with.

3. Identify the error of the baselines and the best reported machine learning algorithms.

Finding relevant literature

While baselines are needed to evaluate all machine learning algorithms on personal data, we

make our literature review tractable by focusing on studies similar to the machine learning

example we present. We utilize GoogleScholar to find publications that attempted to automati-

cally infer an individual’s subjective states, similar to the example we presented. The studies we

include meet the following criteria:
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• Relate to subjective personal data, as denoted by having one of the following words in the

title: depression, depressive, stress, mood, mental, happiness, or wellness.

• Attempt a machine learning prediction task and report prediction accuracy by having the

following word “accuracy” somewhere in the text of the publication.

• Attempt prediction on participants’ longitudinal data, where personal baselines are defined,

by containing the words “participant” or “user”.

• Collect data from sensors by requiring one of the following words to be included somewhere

in the text: smartphones, sensor, sensors, or sensing.

• Were published since 2010.

Because of a particularly strong focus on stress in previous work, we break the query into

two queries: one that requires the word “stress” to be in the title and another search that

requires any of the other wellbeing words to be in the title. We perform this joint search with

the following GoogleScholar queries:

(participant OR user) accuracy (sensor OR sensors OR smartphones OR sensing)intitle:
stress (from 2010)

(participant OR user) accuracy (sensor OR sensors OR smartphones OR sensing) (intitle:
mental OR intitle:depression OR intitle:depressive OR intitle:mood OR intitle:happiness)
(from 2010)

To be considered relevant, studies need to attempt to predict user input data of users’ sub-

jective state from other collected data, i.e. sensors. Examples of studies that are returned by our

query, but are excluded from our analysis are:

• Correlational analyses that reveal certain data or behaviors are correlated with subjective

state.

• Studies of one-time user surveys (in contrast to repeated prompts) or where the goal is to

separate subjects, i.e., each subject was a data point.

• Literature summaries or reviews.

• Randomized control studies of intervention efficacy.

• Other evaluations of treatments on subjective state.

• Collection and presentation of a dataset collected without a prediction task.

• Measurements of behaviors without attempting prediction.

• Descriptions of tools and systems implemented with user reviews of the systems.

• Non-peer reviewed publications, such as reports and book chapters.

• Prediction of non-subjective states, e.g., prediction of labels coded by researchers who intuit

what state the user was in from observational data, or labels of stimulus exposure when stud-

ies attempted to induce a given emotional state such as stress.

We only consider studies where labels are for multiple observations of a participant’s sub-

jective input state.
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Establishing comparison with a baseline

Some studies do not report any baseline model for comparison, so we begin by noting which

studies reported a baseline model. For studies that provided sufficient detail, we did the

following:

• When baseline models are reported we recorded the baseline performance metrics directly

from the text and the type of baseline used, e.g., a population baseline or a user baseline.

• When baseline models are not provided, but confusion matrices are provided we manually

calculate the baseline performance.

• When individuals baselines are reported, we take the average user baseline performance.

• When only mean squared error are reported, we note whether the mean squared error is

also provided for a constant baseline.

Comparing the accuracy of different models

There are a wide variety of performance metrics authors report when evaluating their models.

We extract model prediction error for multi-class classification problems according the to fol-

lowing criteria:

• When results are broken down for personal models by individual, the average is used.

• When accuracy results are given for multiple objectives, e.g., different dimensions of mood,

the best results for each objective is recorded.

• When multiple feature sets and models were tried, only the best performing model is consid-

ered. Models that utilize user input as features were excluded when possible.

• The number of folds in the cross validation scheme used is not incorporated into our analy-

sis. We considered 10-fold, leave-one-out, and leave-user-out cross validation schemes to all

be “population” models. Both 10-fold and leave-one-out cross validations on personal data

only are considered to be “personal” models.

• The uniform baseline was calculated by noting the number of classes that the study reported

using in their measurement scale.

Results

We want to consider to what extent the choice of baselines matter in medical machine learning

and how baselines are used in practice. To quantify the importance of baselines, we use two

publicly available datasets and compare the performance of machine learning algorithms to

two different baselines: a population baseline and a personal baseline. More specifically, we use

the StudentLife [25] and Friends and Family [26] datasets and analyze machine learning pre-

dictions of stress and happiness, which we compare to both personal and population baselines.

To understand how the field generally uses baselines, we perform a systematic literature

review. These two complementary analyses will allow us to meaningfully inform the debate

about machine learning in medicine.

Initially, we find, that individual subjects have little variance over time, relative to the vari-

ance across the population, i.e. low personal baseline error relative to higher population base-

line error (Fig 1). Thus, comparing learned models with population baselines can obscure

whether a model is better (lower error) on individuals than constant personal baseline models.
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We find the same pattern when we ask about RMSE and binary predictions. This gives us an

intuition that guessing each subject’s mean value should produce relatively low errors.

Motivated by the intuition that there is little within-subject and more across-subject vari-

ance, we now ask how machine learning algorithms compare to the two baselines. In line with

prior literature [7, 24], the algorithms predict whether an individual was having a particularly

stressful or happy day from their GPS location and mobility data (Fig 1). Our binary results

are comparable (max difference = 6%) to past studies predicting binary stress or emotion from

similar datasets [24, 33–38], as are the errors of the personal models [7, 37, 39–44]. Similarly,

the difference between RMSE of personal models and personal baselines is comparable to the

differences reported in prior publications [45, 46]. Our algorithms are much better than the

population baseline and population models. They are not, however, lower than the personal

baselines. This shows how good performance relative to the population baseline can be entirely

meaningless.

To prevent comparing with the wrong baseline and to control against obscuring the range

of how well algorithms do on individuals with aggregate statistics, we propose using statistical

tests with the metric of user lift to prove that an algorithm is doing significantly better than the

personal baseline. User lift is the difference of the personal model with the personal baseline,

as described above. Positive user lift indicates that a model is better than the personal baseline,

that the algorithm’s predictions are more accurate than always assuming an individual is at

their average state. Indeed, user lift shows that our naive model is useless while our moderately

careful model at least adds something (Table 1). Using the wrong baseline, may make bad

machine learning with a performance that is by any meaningful definition useless seem

impressive underscoring the importance of meaningful baselines.

To understand how algorithms are typically evaluated, we perform a systematic literature

review of related studies that attempted to predict emotion and stress from sensed data, such

Fig 1. Results of machine learning models on StudentLife (SL) and Friends and Family (FAF) datasets. Bars represent the 5th and

95th percentiles, black lines indicate means, and boxes indicate the 1st and 3rd quartiles of error incurred on individuals. Personal models

yield lower error than population models and population baselines, which often leads researchers to the conclusion that personal models are

successful. Comparing personal models with personal baselines reveals that their error is no lower, so algorithms are doing no better than

predicting individuals to be their most frequently reported state. The models presented are those with lowest error.

https://doi.org/10.1371/journal.pone.0184604.g001
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as from smartphones or smartwatches (Fig 2). Just like in our example datasets, participants

report surprisingly little variation (Fig 3A). As a result, guessing that an individual was at the

same state incurred low personal baseline error and machine learning algorithms typically had

only slightly lower error than the personal baseline (Fig 3B).

Studies that do report personal averages sometimes have negative user lift (Fig 4A). When

personal baselines are reported, they are usually reported in aggregate, which can be mislead-

ing by obscuring negative user lift on some individuals. Aggregation also precludes statistical

tests on user lift and the only study that did report a statistical rank test on improvement across

individuals found that there algorithms were no better than a naive model (using an historical

averages of individuals’ states) [45]. However, the bulk of studies only report population base-

lines making it impossible to know if they have any user lift (Fig 4B). As such, it seems that the

bulk of papers have questionable results, at best.

Discussion

We have shown, with examples of stress and happiness on two popular datasets how easily

machine learning algorithms can appear promising when compared with meaningless base-

lines. Individuals report surprisingly little variation in state, so always guessing that an individ-

ual is at their most frequently reported state is correct most of the time. As a result, when an

algorithm is compared with a population baseline that always predicts all users are always at

Table 1. Statistical significance for user lift of personal models in Fig 1. The user lifts are the differences of personal baselines with personal models, in

terms of prediction error or RMSE. The p-values are for permutation tests considering whether the user lifts were larger than zero. In every case the user lifts

are not significantly greater than zero—the models are not doing better than constant personal baselines.

Dataset Problem Model Avg. Personal Baseline Error Avg. Personal Model Error Avg. User Lift (Error) p-value

SL—Stress binary Log.Reg. 29.19% 29.09% 0.10 .481

FaF—Happiness binary SVM(rbf) 16.51% 18.67% -2.17 .967

FaF—Stress binary SVM(rbf) 25.17% 23.35% 1.82 .240

SL—Stress regression Elastic Net 0.75 0.78 -0.03 .988

FaF—Happiness regression Elastic Net 0.81 0.83 -0.02 .999

FaF—Stress regression Elastic Net 1.10 1.13 -0.03 1.000

https://doi.org/10.1371/journal.pone.0184604.t001

Fig 2. Diagram of literature review process.

https://doi.org/10.1371/journal.pone.0184604.g002
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the same state, the algorithm’s predictions can seem accurate even if they are no better than

predicting each individual to be at their most frequently reported state. Despite the possibility

for falsely optimistic results, we found in a systematic literature review that population base-

lines are commonly compared with in roughly 77% of publications reviewed. We also find that

when personal baselines are reported that the algorithms often add little or nothing over these

baselines (and in fact they sometimes do worse).

Fig 3. Participant variability and model performance reported in related studies. Reported results reveal little participant variability and

that models do not dramatically improve upon personal baselines. (A) Population and personal baselines reported by studies that had

participants report their state on two point and five point scales. The black bars indicate the what the baseline would have been if participants

were to report every state equally often, e.g., happy and sad each half the time. (B) Population and personal baselines and model error

reported in literature reviewed. Performance (prediction error) is scaled by the minimum class imbalance to compare studies that asked

participants to report their states on scales with different numbers of points. In both figures boxes denote 1st and 3rd quantiles, bars indicate

5th and 95th percentiles, and lines the average of the markers.

https://doi.org/10.1371/journal.pone.0184604.g003

Fig 4. Calculated user lift and prevalence of baselines reported in studies reviewed. (A) User lift calculated for studies where error of

baselines and algorithms were both reported. Algorithms sometimes have no improvements over baseline guessing, and these figures are

biased to studies that reported sufficient information. (B) Population baselines are reported in roughly half the publications reviewed while

personal baselines are infrequently reported (approximately 23% of publications).

https://doi.org/10.1371/journal.pone.0184604.g004
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A limitation of the datasets that we explored, and most of the literature we reviewed, was

that the study cohorts were not clinical populations, the sample size was small, and the study

duration was limited. However, the study characteristics of the datasets presented are charac-

teristic of many studies. While target populations for the monitoring we have discussed are

typically individuals with mood disorders, study cohorts are frequently small in size and from

the general population. It is possible that individuals with mood disorders would report more

variability in state than the general public. More variability would reduce the likelihood of

falsely optimistic results, but our proposed evaluation method would still be appropriate for

showing that algorithms are an improvement over always predicting that individuals are at

their average state. Finally, the user lift evaluation framework that we suggest would comple-

ment a larger dataset, despite being demonstrated on fewer subjects here.

While we reviewed a representative portion of relevant literature, we had to focus the scope

and present a reproducible search that aligned with public datasets. We constructed general

search queries to include pertinent studies, but inconsistencies in terminology between com-

munities made it impossible to included all relevant studies and some known related works

were not covered.

In addition to coverage, there were a variety of features that we could not control in the lit-

erature review. Studies recruited from disparate populations and had different study protocols.

In addition to collecting different data and conducting different analyses, studies reported

results in an variety of ways. We did our best to standardize across studies and present results

favorably and comparably.

The proposed user lift evaluation framework is more generally applicable to predicting lon-

gitudinal patient state than we have shown here. We have focused our review on a narrow,

important application of mental wellbeing, as this is a nascent and exciting application for

machine learning algorithms. However, user lift would apply to any application predicting lon-

gitudinal data, such as monitoring blood sugar level, body weight, or daily sleep duration. The

importance of statistical tests on user lift becomes greater for applications where individuals

are expected to exhibit less variation and descriptive statistics must also be reported to quantify

the size of any statistically significant user lift.

While we have calculated personal baselines here over the entire dataset, in principle this is

not necessary. Because personal baselines are calculated with respect to individuals’ most com-

mon state, personal baselines are easy to quickly approximate, with minimal sampling. Per-

sonal baselines could potentially vary over an extended period of study, but such scales are

outside the scope of most studies and require further investigation.

An ability to predict meaningful personal signals for medical monitoring, such as mental

wellbeing, could greatly improve personalized medicine by enabling novel approaches to just

in time and personalized interventions. However, we have highlighted some pitfalls of evaluat-

ing algorithms for this application that can easily result in falsely optimistic results and unin-

tentionally provide baseless optimism. To reduce alsely optimistic results, we have suggested

an alternative evaluation framework using statistical tests on our proposed metric of user lift,

which takes an individual-centric approach. As was shown, there is a range of model predictive

capability across individuals, so we suggest statistically testing for significant improvement on

the population. This framework of evaluation can help researchers to focus efforts and thus

help advance progress on this application.
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