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Abstract

Mutation rates vary by orders of magnitude across biological systems, being higher for sim-

pler genomes. The simplest known genomes correspond to viroids, subviral plant replicons

constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed

an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplast-

replicating viroid. However, whether this is a general feature of viroids remains unclear.

Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a

common host (eggplant) of two viroids, each representative of one family: the chloroplastic

eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear potato spindle tuber viroid

(PSTVd, Pospiviroidae). This revealed higher mutation frequencies in ELVd than in PSTVd,

as well as marked differences in the types of mutations produced. Rates of spontaneous

mutation, quantified in vivo using the lethal mutation method, ranged from 1/1000 to 1/800

for ELVd and from 1/7000 to 1/3800 for PSTVd depending on sequencing run. These results

suggest that extremely high mutability is a common feature of chloroplastic viroids, whereas

the mutation rates of PSTVd and potentially other nuclear viroids appear significantly lower

and closer to those of some RNA viruses.

Author summary

Spontaneous mutations are the ultimate source of genetic variation and their characteriza-

tion provides fundamental information about evolutionary processes. The highest

mutation rate so far described corresponds to a hammerhead viroid infecting plant chlo-

roplasts. Viroids are plant-exclusive parasites constituted by 250–400 nt-long, non-pro-

tein-coding RNAs, and are divided into two families with distinct mechanisms of
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replication and localization: chloroplastic (Avsunviroidae), and nuclear (Pospiviroidae).

Here, we have used high-fidelity ultra-deep sequencing to compare side by side the muta-

tion rates of one representative member of each viroid family in the same host. We found

that the mutation rate of the nuclear viroid was several fold lower than that of the chloro-

plastic viroid.

Introduction

Spontaneous mutations are pivotal to evolution as they constitute the ultimate source of

genetic variation. The biochemical and genetic bases of replication fidelity have been exten-

sively studied, and it is well-established that spontaneous mutation rates vary by orders of

magnitude across biological systems [1, 2]. Whereas bacteria and other microorganisms show

highly accurate replication, RNA viruses replicate with frequent errors [3]. Yet, the lowest

replication fidelity reported so far corresponds to chrysanthemum chlorotic mottle viroid

(CChMVd), a chloroplastic viroid in which a mutation is incorporated approximately every

400 bases copied [4]. Viroids are small (250–400 nt), circular, highly-structured RNAs that do

not encode proteins and are copied by nuclear or chloroplastic DNA-dependent RNA poly-

merases forced to accept RNA templates [5–7]. They infect plants exclusively and their

pathogenicity has been linked to RNA silencing [6], although other mechanisms cannot be

excluded. Chloroplastic viroids encode in both polarity strands hammerhead ribozymes that

play an essential role in their replication cycle. Together with their extreme simplicity, the

presence of ribozymes makes these viroids reminiscent of the primordial replicons postulated

by the RNA world hypothesis for the origin of life [5, 8].

Although the genetic diversity of some representative viroids has been characterized in pre-

vious work [9–11], CChMVd is the only viroid for which the rate of spontaneous mutation has

been determined experimentally [4]. As such, it remains to be shown to what extent extremely

high mutation rate is a more general property of viroids or, in contrast, is specific to CChMVd

and closely-related viroids. CChMVd belongs to the family Avsunviroidae, the members of

which replicate in plastids (mostly chloroplasts), where their single-stranded circular RNA is

copied by a bacteriophage-like nuclear-encoded RNA polymerase (NEP) through a rolling-cir-

cle mechanism to yield linear oligomers [12, 13]. The latter are cleaved co-transcriptionally

[14] by the embedded hammerhead ribozymes to yield monomers [15, 16], which are circular-

ized by a tRNA ligase [17]. By convention, the (+) polarity is assigned to the most abundant

strand, but the replication cycle is fully symmetric, i.e. identical for both polarities (Fig 1).

In contrast, members of the family Pospiviroidae are copied by RNA polymerase II in the

nucleus, where rolling-circle replication of the circular (+) strand produces (–) oligomers,

which are used directly for a second round of copying to yield (+) oligomers [18–20]. These

replicative intermediates are then cleaved into (+) monomers by RNAse III [21] and circular-

ized by DNA ligase I accepting RNA substrates [22] (Fig 1). Although analysis of genetic diver-

sity suggested differences in replication fidelity between nuclear and chloroplastic viroids [9–

11], recent work based on previously published deep sequencing data has posited that potato

spindle tuber viroid (PSTVd), the type species of the family Pospiviroidae, might show

extremely high copying error rates similar to those of CChMVd [23]. It therefore remains to

be elucidated whether the two viroid families show different rates of spontaneous mutation.

Importantly, these previous works have not disentangled the various factors contributing to

genetic diversity, which include selection, mutational robustness, but also genetic drift and

population structure among others, precluding an unbiased inference of mutation rates.

Viroid mutation rates
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Here, we sought to quantify in vivo the mutation rate of one representative viroid of each

family replicating in a common host. Typically, mutation rate estimation methods require

highly controlled laboratory conditions as well as detailed information about the number of

replication cycles elapsed [24], which makes them often unsuitable for measuring mutation

rates in vivo. To circumvent this problem, it is possible to quantify the population frequency of

lethal mutations [4]. This is because lethal mutations cannot be inherited, and hence, their fre-

quency should equal the rate at which they are produced. As formalized by classical mutation-

selection balance models, in haploid populations the equilibrium frequency of a deleterious

mutation is q = μ / s, where μ is the rate of spontaneous mutation and s the selection coefficient

[25]. Hence, whereas for slightly deleterious or neutral mutations (s! 0) the observed muta-

tion frequency may strongly deviate from mutation rate (q>> μ), for highly deleterious

mutations (s! 1) q will approach μ. Analysis of lethal or quasi-lethal mutations has been pre-

viously used for inferring the mutation rates of hepatitis C virus [26, 27], poliovirus [28], and

human immunodeficiency virus 1 [29], in addition to CChMVd [4]. A complication of this

approach, though, is that since lethal mutations have low population frequencies, sequencing

must be carried out with both high depth and accuracy. Sanger sequencing is highly accurate

but has limited depth, whereas standard next-generation sequencing (NGS) has extreme depth

but low per-read accuracy. This problem has been solved recently by the development of meth-

ods that increase the accuracy of NGS by orders of magnitude, such as CircSeq and Duplex

Sequencing (DS) [30, 31], which now permit a better characterization of viroid genetic diver-

sity and mutation rates.

Here we have focused on DS because CirSeq demands high amounts of starting material

and is thus impractical for viroid RNA obtained from infected tissue. DS reduces considerably

sequencing mistakes by tagging and sequencing independently each of the two DNA strands

multiple times, wherein true mutations are detected in the same position. Whereas DS does

not allow removal of errors associated with reverse transcription and PCR, it can nevertheless

Fig 1. Mechanism proposed for replication of viroids. The asymmetric pathway with one rolling-circle

(upper) is followed by members of the family Pospiviroidae, while the symmetric pathway with two rolling-

circles (lower) is followed by members of the family Avsunviroidae. Orange and blue lines refer to plus (+) and

minus (-) polarities, respectively and processing sites are marked by arrowheads. The enzymes and

ribozymes that catalyze the replication steps are indicated. Notice that RNA polymerase II (and NEP) is

redirected to transcribe RNA templates and DNA ligase I to circularize RNA substrates. Abbreviations: HHRz,

hammerhead ribozyme; NEP, nuclear-encoded polymerase. Reproduced with modifications from [5] with

permission.

https://doi.org/10.1371/journal.ppat.1006547.g001
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strongly increase accuracy compared to conventional NGS by removing errors associated with

sequencing. We have applied DS to the chloroplastic eggplant latent viroid (ELVd) and the

nuclear PSTVd infecting eggplant to exclude possible biases caused by using different hosts.

We found that, while ELVd showed an extremely high mutation rate similar to that of

CChMVd [4], the mutation rate of PSTVd was lower and fell closer to the typical range of

RNA viruses.

Results

DS provides in-depth sequence coverage while strongly reducing

sequencing errors

For each ELVd and PSTVd, three eggplant seedlings were agro-inoculated with infectious plas-

mids containing head-to-tail dimeric inserts of the corresponding viroid cDNAs and total

nucleic acids from upper non-inoculated leaves were extracted six months post-inoculation

(mpi) for PSTVd and 12 mpi for ELVd. Subsequent fractionation with non-ionic cellulose [32]

resulted in preparations enriched in RNAs with a high content in secondary structure, includ-

ing viroid RNAs. The six individual preparations were separated by denaturing PAGE and the

RNAs migrating between the markers of 400 and 600 nt containing the monomeric circular

RNAs were eluted and recovered (Fig 2). To assess whether levels of genetic diversity varied

among different viroid RNA forms, we also recovered the strands migrating between the

markers of 600 and 1000 nt, which correspond to oligomeric viroid RNAs. The extracted

RNAs were used for high-fidelity RT-PCR and sequenced by the DS method. The RT-PCR

was performed with adjacent primers of opposite polarities to generate full-length products

from the monomeric viroid circular (+) strands and the (–) oligomers, hence allowing us to

sequence the entire viroid except for the primer regions. To control for errors associated

with reverse transcription, PCR, and sequencing, we also performed DS of the PCR product

Fig 2. Analysis by denaturing PAGE of ELVd- and PSTVd-infected eggplant seedlings. A: ELVd at 12

mpi; B: PSTVd at 6 mpi. Lanes 1, 2 and 3: RNA preparations from the three plants inoculated with either ELVd

or PSTVd. Lane 4: previously purified monomeric circular (upper bands) and linear (lower bands) RNAs of

ELVd or PSTVd that served as a control of the viroid mobility (the monomeric linear PSTVd form is barely

visible). C and D: ELVd and PSTVd extracts taken at 18 mpi. Lanes 1 and 2, 3 and 4, and 5 and 6: RNA

preparation from ELVd or PSTVd-inoculated eggplant 1, 2 and 3, respectively. Lane 7, previously purified

circular and lineal monomeric forms of PSTVd or ELVd (control of the viroid mobility). Lane M: RNA markers

with their size (in nucleotides) indicated on the left. Gels were stained with ethidium bromide and are shown in

inverted color to facilitate visualization.

https://doi.org/10.1371/journal.ppat.1006547.g002
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obtained directly from a plasmid with a PSTVd insert, as well as of the RT-PCR products from

(+) PSTVd and (+) ELVd RNAs transcribed in vitro using T7 or T3 RNA polymerases. The

PCR products from plant extracts and the RT-PCR controls were tagged and analyzed in the

same run, using a MiSeq Illumina sequencer. DS of the direct PSTVd PCR product with an

average depth of 8071 reads per site yielded 16 total mutations in 2,808,781 bases read. Hence,

assuming there was no variation in the plasmid template, the joint technical error rate of PCR

and DS was 5.7 × 10−6. This rate increased to 3.9 × 10−5 and 4.4 × 10−5 in RT-PCR products

from the in vitro transcripts of PSTVd and ELVd, respectively, showing the important contri-

bution of RT to sequencing errors, although mutations arising during in vitro transcription

were also probably present in these controls.

ELVd and PSTVd display different mutation frequencies

Analysis of the three ELVd-infected plants yielded an average mutation frequency of

(1.5 ± 0.3) × 10−2 for circular (+) strands and of (1.8 ± 0.3) × 10−2 for (–) oligomers (Table 1;

S1 Dataset), confirming the extremely high genetic diversity of chloroplastic viroids. At an

average sequencing depth of 764 reads/site/run, 264 of the 295 ELVd nucleotide sites examined

(89%) were polymorphic. The genetic diversity was not uniformly distributed along the ELVd

sequence, with peaks in regions encompassing sites 120–140 and 240–245, which map to a

hairpin and a loop, respectively, in the secondary structure proposed in vivo for the mono-

meric ELVd (+) strand [33] (Fig 3). In contrast, relatively low diversity values were found in

regions delimited by sites 69–79 and 95–103, which form the two strands of a base-paired

stem, as well as an adjacent bulge. We also found lower-than-average diversity in the region

encompassing sites 18–50, which maps to the (+) hammerhead ribozyme. Sites 152–180 and

188–200, which map to the (–) hammerhead ribozyme, also showed low diversity in circular

(+) strands. Overall, there was an excellent correlation between per-site mutation frequencies

in circular (+) strands and (–) oligomers of the same plant at the analyzed sampling time

(Pearson correlation: r� 0.952; P< 0.001). We also found that per-site mutation frequencies

were significantly correlated among plants (r� 0.785; P< 0.001), suggesting that genetic

diversity was mainly driven by a deterministic mutation-selection balance.

In PSTVd, we found variation in 262 of the 304 sites examined (86%) at an average

sequencing depth of 4471 reads/site/run. Hence, a greater depth was required to sample a

number of polymorphic sites similar to that found for ELVd. The average frequency of

Table 1. Summary of the DS data obtained for ELVd (12 mpi) and PSTVd (6 mpi) in eggplant1.

ELVd PSTVd

Plant 1 Plant 2 Plant 3 Plant 1 Plant 2 Plant 3

Circ (+) Oligo (–) Circ (+) Oligo (–) Circ (+) Oligo (–) Circ (+) Oligo (–) Circ (+) Oligo (–) Circ (+) Oligo (–)

Total bases read 172,111 136,598 211,559 248,762 134,976 447,920 1,657,249 1,294,481 1,395,515 1,531,703 1,065,790 1,236,993

Mean depth 583 463 717 843 458 1518 5434 4244 4575 5022 3494 4056

Unique mutations2 178 173 200 212 161 279 178 284 124 107 101 62

Total mutation

count3
1902 2100 2614 3976 2985 10,616 298 914 198 185 141 103

Mutation

frequency4 (× 103)

11.1 15.4 12.4 16.0 22.1 23.7 0.180 0.706 0.142 0.121 0.132 0.083

1A list of all mutations is provided in S1 Dataset
2Number of different mutations found (presence/absence)
3Number of mutation reads
4Total mutation count divided by total bases read

https://doi.org/10.1371/journal.ppat.1006547.t001
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mutations was two orders of magnitude lower in PSTVd than in ELVd, with values of

(1.5 ± 0.2) × 10−4 and (3.0 ± 2.0) × 10−4 for circular (+) strands and (–) oligomers, respectively

(Table 1). The higher diversity of (–) oligomers was driven by an anomalously high mutation

frequency in plant 1 (7.1 × 10−4). Importantly, mutation frequency was significantly higher in

sequences obtained from PSTVd-infected plants than in control sequences derived from the

in vitro transcript, indicating that most sequence variants detected in vivo were real and not

RT-PCR-sequencing artifacts (Fisher test: P< 0.001 in all six runs). As for ELVd, we found

significant correlations between the per-site mutation frequencies of circular (+) strands

and (–) oligomers in plant 2 (r = 0.551; P< 0.001) and plant 3 (r = 0.735; P< 0.001). This

Fig 3. Genetic diversity of ELVd and PSTVd in eggplant as determined by DS. The viroid circular (+) strand sequences are depicted.

Primers used for RT-PCR from samples taken at 6/12 mpi (run 1) are indicated with red and blue font in the sequences and those used for

RT-PCR from samples taken at 18 mpi (run 2) are shown in orange and purple (see S1 Table for details). The skyline plots show mutation

frequencies (total mutations/total reads per site) averaged over a 10-nucleotide sliding window to smooth the plot. Thick colored arrows in

these graphs indicate the positions encompassed by RT-PCR primers, with the same color code as for the sequences. Red plots

correspond to circular (+) strands and blue plots to (–) oligomers. Light, bright, and dark color correspond to plants 1, 2, and 3, respectively.

In the ELVd sequence and skyline plots, key elements of the (+) hammerhead ribozyme are shown in black and those of the (–)

hammerhead ribozyme in white. Flags indicate the regions encompassed by the hammerhead ribozymes of each polarity, arrows indicate

self-cleavage sites in the sequences, and conserved motifs are indicated with boxes. By convention, ELVd sites are numbered starting

from the (+) strand self-cleavage site. In the PSTVd sequence, the central conserved region (CCR) and terminal conserved region (TCR)

are boxed and also indicated by black bars in the skyline plots. Red bases shown next to the PSTVd sequence indicate mutations

previously shown to have lethal effects (see text for references). By convention, PSTVd sites are numbered starting from the left terminal

loop. A site-by-site list of all mutations is available in S1 Dataset (6/12 mpi) and S2 Dataset (18 mpi).

https://doi.org/10.1371/journal.ppat.1006547.g003
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correlation, albeit still significant, was much lower in plant 1 (r = 0.228; P< 0.001), with the

(–) oligomers of this plant showing a distribution of mutations across sites discordant with the

other five runs (Fig 3). Excluding this anomalous set, we also observed correlations between

per-site mutation frequencies from different plants, albeit lower than those found for ELVd

(r� 0.468; P< 0.001). This result could be explained by the greater difficulty of reproducibly

sampling rarer genetic variants, or could indicate that random genetic drift has a stronger

influence on genetic diversity in PSTVd than for ELVd. Finally, no major diversity peaks were

found in PSTVd except for position 117 at the terminus of an A-rich sequence in the pathoge-

nicity domain of the secondary structure proposed in vivo for the monomeric PSTVd (+)

strand [34, 35] (Fig 3). This region had a marked tendency to point insertions/deletions, possi-

bly resulting from polymerase slippage.

The most abundant types of mutations in ELVd sequences from circular (+) strands were

transitions (75.4 ± 4.6% of all mutations), followed by transversions (21.7 ± 4.5%) and point

insertions (2.5 ± 0.1%), whereas point deletions were the rarest type (0.4 ± 0.1%). C-to-U, G-

to-A, and U-to-C substitutions were found at similar frequencies, whereas A-to-G changes

were slightly less frequent. A very similar pattern was found for sequences derived from (–)

oligomers (Table 2). In contrast, the mutational spectrum was markedly different in PSTVd,

with 50.5 ± 2.0% transitions, 40.8 ± 1.6% transversions, 3.6 ± 1.1% insertions, and 5.2 ± 0.6%

deletions in circular (+) strands, versus 56.5 ± 3.5%, 31.5 ± 6.2%, 6.4 ± 2.7%, and 5.6 ± 0.6% in

(–) oligomers, respectively. Contrarily to ELVd, we found clear differences among transition

types in PSTVd, such that C-to-U > G-to-A > U-to-C > A-to-G in circular (+) strands,

whereas (–) oligomers showed a different pattern (G-to-A > A-to-G > U-to-C� C-to-U;

Table 2). The different mutational spectrum of PSTVd (+) and (–) strands was explained in

part by reverse complementarity, i.e. C-to-U > G-to-A in (+) strands as opposed to G-to-

A> C-to-U in (–) strands, and U-to-C > A-to-G in (+) strands as opposed to A-to-G > U-to-

C in (–) strands.

The mutation rate of PSTVd is lower than that of ELVd

To estimate the ELVd mutation rate by the lethal mutation method we focused on the ham-

merhead ribozymes, which mediate self-cleavage of the linear oligomers and are hence

Table 2. Mutational spectrum (% total mutations) of ELVd (12 mpi) and PSTVd (6 mpi).

ELVd PSTVd

Circ (+) Oligo (–) Circ (+) Oligo (–)

C-to-U 24.3 ± 2.4 24.6 ± 1.2 25.7 ± 4.2 2.8 ± 2.1

G-to-A 23.8 ± 1.5 20.7 ± 1.5 13.3 ± 3.6 31.8 ± 3.2

U-to-C 18.5 ± 0.8 17.0 ± 0.6 7.9 ± 2.0 3.0 ± 1.0

A-to-G 8.7 ± 1.2 10.6 ± 0.8 3.5 ± 0.8 18.9 ± 4.7

G-to-U 3.5 ± 0.8 4.4 ± 0.9 21.7 ± 2.7 0.43 ± 0.43

C-to-A 0.89 ± 0.22 1.2 ± 0.2 4.9 ± 2.5 22.8 ± 3.9

U-to-G 3.9 ± 0.3 6.7 ± 0.2 0.37 ± 0.37 1.1 ± 0.6

A-to-C 0.32 ± 0.27 0.43 ± 0.31 1.9 ± 1.0 0.10 ± 0.10

U-to-A 6.9 ± 1.7 6.3 ± 1.1 1.7 ± 0.3 2.9 ± 1.6

A-to-U 5.7 ± 3.0 5.1 ± 1.9 3.3 ± 0.1 0.25 ± 0.25

G-to-C 0.40 ± 0.16 0.13 ± 0.04 3.7 ± 1.2 0.65 ± 0.65

C-to-G 0.03 ± 0.03 0.13 ± 0.03 3.3 ± 1.5 3.3 ± 1.3

Insertion 2.5 ± 0.1 2.5 ± 0.2 3.6 ± 1.2 6.4 ± 2.7

Deletion 0.44 ± 0.12 0.13 ± 0.04 5.2 ± 0.6 5.6 ± 1.2

https://doi.org/10.1371/journal.ppat.1006547.t002
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essential for completing the replication cycle. The hammerhead ribozyme consists of a central

catalytic core of 15 nucleotides flanked by three double helices [16, 36] (Fig 4). The core nucle-

otides are required for the catalytic activity of the ribozyme [36–38] and, since the vast major-

ity of mutations at these positions inactivate self-cleavage activity, the 15 sites can be used for

mutation rate inference using the lethal mutation method, as shown previously [4]. In circular

(+) strands average mutation frequencies were (1.8 ± 0.3) × 10−3 for the (+) hammerhead and

(0.6 ± 0.3) × 10−3 for the (–) hammerhead, whereas in (–) oligomers the frequencies were

(1.1 ± 0.3) × 10−3 for the (+) hammerhead and (1.6 ± 0.3) × 10−3 for the (–) hammerhead ribo-

zymes. Such reduction of one order of magnitude in diversity compared with the rest of the

sequence was expected, because mutations falling at these essential domains should tend to be

lethal and hence leave little or no progeny. Therefore, mutation frequencies in these domains

Fig 4. Mutations in essential motifs of the ELVd hammerhead ribozymes and in PSTVd conserved regions. A schematic representation of

the ELVd hammerhead ribozymes (HH) is shown on top for both (+) and (–) strands, with the nucleotides forming the catalytic core within boxes,

arrows indicating self-cleavage sites, and grey ovals denoting interactions between loops. Mutation frequencies for the catalytic core of each

hammerhead ribozyme (15 sites) and the rest of the ELVd sequence are shown below, indicating sampling time (run 1: 6/12 mpi; run 2: 18 mpi) and

RNA forms [red: circular (+) strands; blue: (–) oligomers]. For PSTVd, the CCR and TCR are depicted on top. Below are shown the mutation

frequencies for the CCR/TCR sites (C/TCR), the set of 23 lethal mutations (LM) mostly mapping outside CCR/TCR, and the rest of the PSTVd

sequence. For each viroid, plants 1, 2 and 3 are shown in light, bright and dark color dots, respectively. Horizontal bars indicate mean mutation

frequencies. In the PSTVd graphs, the dashed horizontal lines indicate the error rates associated with in vitro transcription, RT, and PCR. The error

associated with PCR alone is also shown for the 6/12 mpi run (lower dashed line).

https://doi.org/10.1371/journal.ppat.1006547.g004
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should resemble the rate of spontaneous mutation, as opposed to those in the rest of the

sequence. Averaging the above values, the estimated rate of spontaneous mutation of ELVd

was (1.3 ± 0.3) × 10−3, or roughly one mutation every 800 bases.

We adopted the same mutation rate estimation approach for PSTVd. To do this, we focused

on specific sites forming the central conserved region (CCR) and the terminal conserved

region (TCR). These regions mediate key functions including replication for the CCR, or are

presumed to play alternative essential roles (yet unknown) for the TCR [39]. Hence, most

mutations at these sites should have highly deleterious or lethal effects. We also focused on a

set of 23 different single-base substitutions previously reported to impair PSTVd infectivity

[40–44]. In circular (+) strands, average mutation frequencies were (1.4 ± 0.1) × 10−4 for the

CCR/TCR regions and (1.4 ± 0.3) × 10−4 for the set of previously described lethal mutations

(Fig 4). We found similar values in (–) oligomers, except that variance was higher and that

plant 1 showed a higher value, as discussed above. Therefore, the estimated rate of spontaneous

mutation of PSTVd was 1.4 × 10−4 or roughly one mutation every 7000 bases. Unexpectedly,

mutation frequencies at these essential sites were not lower than those obtained for the rest of

the PSTVd sequence. It is possible that most mutations in PSTVd are highly deleterious or

lethal, regardless of whether they map or not to these specific regions, meaning that PSTVd

would show very low mutational tolerance. It is also possible that genetic diversity accumu-

lated at low rates due to slow replication, such that few polymorphisms were produced at 6

mpi. Alternatively, the actual PSTVd mutation rate might be lower than 1.4 × 10−4 and the

noise introduced by sequencing errors could have precluded us from measuring this lower

value. However, our overall sequencing error rate as determined using a PSTVd RNA tran-

scribed in vitro was 3.6-fold lower (3.9 × 10−5) than the estimated PSTVd mutation rate (the

error rates estimated specifically for the CCR/TCR and the set of 23 predefined mutations

being 2.0 × 10−5 and 6.6 × 10−5, respectively). Notice that this probably represents an upper-

limit to the actual sequencing error rate, because in vitro transcription is an error-prone pro-

cess that may have contributed mutations in our control assays, but not in actual sequences

from plants.

Analysis of plants after 18 months of viroid replication

We performed a second set of experiments from the same plants at 18 mpi to address whether

viroid diversity depended on sampling time and/or sequencing run. The RNA extraction pro-

cedure was identical except that we focused only on monomeric circular RNAs (i.e. migrating

between the markers of 400 and 600 nt; Fig 2C and 2D). As above, the RT-PCR was performed

with adjacent primers of opposite polarities producing full-length products from monomeric

circular (+) RNAs, but annealing at different regions in order to cover the portions of viroid

sequence that were not analyzed in the first run (see Fig 3). This new run included six PCR

products (three plants, two viroids) as well as controls of RT-PCR products from (+) PSTVd

and (+) ELVd RNAs transcribed in vitro. The three ELVd-infected plants yielded an average

mutation frequency of (1.45 ± 0.04) × 10−2, which is nearly identical to the value obtained in

the first run at 12 mpi (Table 3). Furthermore, the distribution of mutations along the ELVd

sequence was also highly similar between the two time points (Fig 3; within-plant Pearson cor-

relation between per-site mutation frequencies at 12 and 18 mpi: r� 0.795), confirming that

ELVd reached a deterministic mutation-selection balance.

At 18 mpi, the average frequency of mutations in PSTVd was (2.8 ± 0.1) × 10−3, a value an

order of magnitude higher than at 6 mpi but still five times lower than for ELVd (Table 3).

In addition to position 117 at the terminus of an A-rich sequence (which already showed a

high frequency of point insertions/deletions at 6 mpi) at 18 mpi, we found other single-

Viroid mutation rates

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006547 September 14, 2017 9 / 17

https://doi.org/10.1371/journal.ppat.1006547


nucleotide polymorphisms (G143A, U161C, C167A, U209del, and U309A) that indepen-

dently arose at high population frequencies (> 5%) in the three plants (Fig 3). Removal of

these few sites from the analysis reduced the average mutation frequency by threefold, i.e.

(9.0 ± 1.1) × 10−4. We also found that the distribution of mutations along the sequence was

markedly different at 6 and 18 mpi (within-plant correlation between per-site mutation fre-

quencies: r� 0.131; Fig 3). Contrarily, the per-site mutation frequencies from the three

plants were highly correlated at 18 mpi (r� 0.917; Fig 3). Hence, in contrast to the earlier

analysis in which random processes such as genetic drift appeared to play an important role

in PSTVd genetic diversity, sequences obtained at 18 mpi were more consistent with a deter-

ministic mutation-selection balance, similar to the pattern found for ELVd. Therefore,

PSTVd accumulated relatively low levels of diversity at 6 mpi and showed an unexpectedly

slow onset of mutation-selection balance.

As above, we estimated the spontaneous mutation rate of ELVd by focusing on the 15 cen-

tral catalytic core nucleotides of each hammerhead ribozyme. Average mutation frequencies

were (1.2 ± 0.3) × 10−3 for the (+) hammerhead and (0.9 ± 0.1) × 10−3 for the (–) hammer-

head, or approximately one mutation every 1000 bases copied. These values are similar to

those obtained at 6 mpi (Fig 4). For PSTVd, we again focused on CCR/TCR, as well as on the

set of 23 single-point mutations previously reported to impair PSTVd infectivity. Average

mutation frequencies were (4.1 ± 0.2) × 10−4 for the CCR/TCR and (4.5 ± 1.3) × 10−4 for the

set of previously described lethal mutations (Fig 4). As opposed to the results obtained at 6

mpi, these values were six-fold lower on average than those obtained for the rest of the

PSTVd sequence (Fig 3). This supports the conclusion that the accumulation of diversity was

restricted specifically at these sites by the strongly deleterious/lethal effects of mutations. On

the other hand, mutation frequencies at the CCR/TCR and for the set of 23 predefined muta-

tions were threefold higher at 18 than at 6 mpi, which was unexpected assuming that these

mutations were lethal. This discrepancy could be in part explained by a higher sequencing

error rate in this run. The in-vitro transcribed PSTVd control showed a mutation frequency

of 1.7 × 10−4 (172 mutations in 1,014,425 bases read) in the CCR/TCR and of 1.6 × 10−4 (44

mutations in 271,663 bases read) for the set of 23 predefined mutations, versus 2.0 × 10−5 and

6.6 × 10−5 in the previous experiment, respectively. By subtracting the corresponding error

rates obtained in the 18 mpi run, the estimated net mutation frequencies were 2.4 × 10−4 and

2.9 × 10−4 for the CCR/TCR and the predefined set, respectively, suggesting approximately

one mutation every 3800 bases.

Table 3. Summary of the DS data obtained for ELVd and PSTVd (+) monomeric circular RNAs from eggplant1.

ELVd PSTVd

Plant 1 Plant 2 Plant 3 Plant 1 Plant 2 Plant 3

Total bases read 609,332 1,149,128 954,810 1,478,180 867,547 560,781

Mean depth 2073 3909 3248 4723 2772 1792

Unique mutations2 351 284 322 345 296 209

Total mutation count3 9330 16303 13252 3880 2432 1658

Mutation frequency4 (× 103) 15.3 14.2 13.9 2.62 2.80 2.96

1A list of all mutations is provided in S2 Dataset
2Number of different mutations found (presence/absence)
3Number of mutation reads
4Total mutation count divided by total bases read

https://doi.org/10.1371/journal.ppat.1006547.t003
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Discussion

Owing to their lethality or quasi-lethality, mutations in the catalytic core of ELVd hammer-

head ribozymes as well as in the CCR/TCR and some specific sites of PSTVd should have a

very small number of rounds of copying to accumulate. Specifically, mutations falling at the

central catalytic core of the hammerhead ribozyme should be able to survive for 0 to 2 rounds

of copying, depending on the polarities of the sequenced strand and of the mutated hammer-

head ribozyme (Fig 1). This makes them an excellent target for mutation rate inference by the

lethal mutation approach, and a similar argument should hold for the CCR/TCR and the set of

PSTVd mutations previously shown to inactivate infectivity. For instance, changes inactivating

the ELVd (+) hammerhead ribozyme should prevent production of circular (+) RNA, imply-

ing that these mutations should not be found in the catalytic core of the (+) hammerhead

ribozyme in sequences derived from the circular (+) strand template. In contrast, we found

mutations at a frequency in the order of 10−3 in these sequences, a value not attributable to

RT-PCR-sequencing errors because the latter were two orders of magnitude less frequent. Yet,

at least two other explanations are possible. First, some mutations may have resulted from

RNA editing or spontaneous RNA damage (in vivo, or during the extraction process). RNA

damage appears more likely in the single-stranded circular (+) RNA than in the in (–) oligo-

mers, a fraction of which could be forming double-stranded complexes. Second, the hammer-

head ribozyme located in the 5´-end repeat of the (+) oligomer should not be required for

cleavage and hence may incorporate loss-of-function mutations, as opposed to the other oligo-

mer repeats.

We have found a mutation rate for ELVd (1/100 to 1/800) relatively similar to that of

CChMVd (1/400) and, hence, our results suggest that an extremely fast mutation is shared by

at least two of the four chloroplastic viroids. In contrast, the mutation rate of PSTVd was 4–8

times lower and more similar to those of RNA viruses [3]. This marked difference is probably

at the origin of the higher genetic diversity of chloroplastic viroids compared with their nuclear

counterparts. RNA polymerase II has proofreading capacity [45] and its estimated misincor-

poration rate in Caenorhabditis elegans is 4 × 10−6, the most frequent errors being C-to-U, fol-

lowed by G-to-U [46]. Interestingly, these were also the two most frequent mutation types in

PSTVd (+) circular strands, although the overall mutation rate of PSTVd was much higher

than the estimated RNA polymerase II misincorporation rate. This suggests that the fidelity of

RNA polymerase II is strongly reduced when the enzyme is forced to accept viroid RNA as

template instead of nuclear DNA. In contrast to PSTVd, chloroplastic viroids are thought to be

copied by a bacteriophage-like NEP with a lower fidelity than RNA polymerase II [47, 48]. In

addition to differences in replication fidelity, we cannot discard other factors that could con-

tribute to explaining differences in mutation rates, such as RNA editing [49] and spontaneous

RNA damage. The more open secondary structure of chloroplastic viroids could increase sus-

ceptibility to RNA damaging agents. Furthermore, mutagenic free radicals resulting from elec-

tron transduction during photosynthesis, as well as unbalanced nucleotide pools, may also

contribute to increased mutation rates in the chloroplast. Finally, in addition to differences in

replication fidelity and/or RNA damage, chloroplastic and nuclear viroids may also exhibit dif-

ferent tolerance to mutations [50]. We found that, at 6 mpi, PSTVd mutation frequencies

showed low heterogeneity along the sequence, with few peaks of diversity and no apparent dif-

ferences between the CCR/TCR and other viroid regions. However, higher diversity was

apparent in some PSTVd regions at 18 mpi.

According to the RNA world hypothesis, RNA preceded DNA as the carrier of genetic

information during early stages of life. Indirect evidence supporting the existence of an RNA

world is provided by ribozymes, which include the hammerhead structures found in
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chloroplastic viroids and in viroid-like satellite RNAs. It has been suggested that their small

size, circularity, high G+C content, lack of protein-coding ability, and, specially, the catalytic

activity associated to ribozymes, make these minimal replicons candidates for being relics of

early life-forms [5, 8]. An important consequence of error-prone copying in early replicons is

the existence of a limit to genome complexity, as genomes over a certain size would incur in an

excessive mutational load. This limit would prevent the evolution of new functions, including

repair mechanisms, thereby trapping RNA genomes in an evolutionary dead-end, a problem

known as Eigen’s paradox [51]. This constraint predicts a negative correlation between muta-

tion rate and genome size, although such correlation may have other explanations, including

random genetic drift [52] and mutation rate optimization [53]. Whereas there is strong evi-

dence for such a negative correlation among viruses and bacteria [2, 3, 53, 54], viroids, are not

self-replicating entities and hence should be subject to different contraints. Except for the pos-

sible role of secondary structure, factors determining the mutation rate of nuclear viroids are

mainly controlled by the host, implying that lower mutation rates may not be evolutionarily

accessible to them. Whereas extremely high mutation rates may situate chloroplastic viroids

close to Eigen´s error threshold and may hence impose limits to the evolution of larger

sequences, this does not seem to be the case for PSTVd and, probably, other nuclear viroids.

Materials and methods

Plant inoculation and RNA fractionation

Eggplant seedlings (Solanun melongena cv. ‘Redonda morada’) were PSTVd- or ELVd-agro-

inoculated 6 and 12 months, respectively, before RNA extraction (run 1), and 18 months

before RNA extraction (run 2). Total nucleic acids were extracted by grinding systemic leaves

in buffer-saturated phenol, and then fractionated on non-ionic cellulose (CF11; Whatman)

with STE (50 mM Tris-HCl, pH 7.2, 100 mM NaCl, 1 mM EDTA) containing 16% ethanol

[32]. The resulting preparations, enriched in RNAs with a high content in secondary structure

including viroid RNAs, were electrophoresed in denaturing 5% polyacrylamide gels containing

89 mM TBE (Tris-Borate-EDTA) and 8 M urea. The gels were stained with ethidium bromide

and the viroid circular RNA (migrating between the linear RNA markers of 400 and 600 nt)

and the viroid oligomeric forms (migrating between the linear RNA markers of 600 and 1000

nt), were excised, eluted overnight with 10 mM Tris-HCl, pH 7.5 containing 1 mM EDTA and

0.1% SDS, and recovered by ethanol precipitation.

Preparation of controls

The substrate for the ELVd control was the dimeric product resulting from in vitro transcrip-

tion driven by the T7 promotor of a recombinant plasmids containing a dimeric head-to-tail

ELVd-cDNA insert of the reference variant ELVd-2 (GenBank AJ536613). For the PSTVd

control, the substrate was the monomeric product resulting from in vitro transcription driven

by the T3 promotor of a recombinant plasmid containing a monomeric PSTVd-cDNA insert

of variant RG1 (GenBank U23058) opened between positions C1-G2 flanked by a modified

version of the hammerhead ribozyme of tobacco ringspot virus satellite RNA and a modified

version of the ribozyme of hepatitis delta virus minus RNA strand [20, 22]. The resulting unit-

length transcripts, purified by denaturing PAGE and subsequent elution, were added to leaves

of healthy eggplant homogenized in buffer-saturated phenol and the RNA extraction was con-

tinued as indicated in the previous section in order to prepare the controls under conditions

mimicking those of infected samples.
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Reverse transcription and polymerase chain reaction

Prior to reverse transcription, all samples and controls were treated with the TURBO DNA-

free kit (Ambion) to remove any DNA contamination following manufacturer´s instructions.

ELVd circular (+) and oligomeric (–) RNAs purified from infected tissue were reverse tran-

scribed for 1 h at 42˚C with AccuScript Hi-Fi reverse transcriptase (Agilent) and primer RF-

1298 (run 1) or RF-1405 (run 2) for the circular forms, and with primer RF-1299 for the olig-

omers (see S1 Table for details). The cDNA products were PCR-amplified with Phusion

High-Fidelity DNA Polymerase (Thermo Scientific) and adjacent primers RF-1298 and RF-

1299 (run 1) or RF-1404 and RF-1405 (run 2), using the following program: 1 min at 98˚C,

35 cycles of 15 s at 98˚C, 20 s at 66˚C or 62˚C (run 1 or 2, respectively), and 30 s at 72˚C, with

a final extension of 2 min at 72˚C. The ELVd control RNA was reverse transcribed with

primer RF-1298 (run 1) or RF-1405 (run 2) and PCR-amplified with this primer and primer

RF-1299 (run 1) or RF-1404 (run 2). PSTVd RNA purified from infected tissue was reverse

transcribed with primer RF-1242 (run 1) or RF-1406 (run 2) for circular forms and RF-1359

for oligomers. The cDNA products were PCR-amplified with adjacent primers RF-1242 and

RF-1359 (run 1), or RF-1406 and RF-1407 (run 2) using the following program: 1 min at

98˚C, 35 cycles of 15 s at 98˚C and 20 s at 72˚C, and a final extension of 2 min at 72˚C. For

run 1, the PSTVd RNA control was reverse transcribed with primer PSTVd-rev and PCR-

amplified with this primer and primer PSTVd-fw of the PSTVd RG1 variant. For run 2, this

control was reverse transcribed with primer RF-1406 and PCR-amplified with this primer

and primer RF-1407. For PSTVd extracts taken at 18 mpi, we observed a minor additional

PCR band and we excised the band of interest by running a 5% non-denaturing polyacryl-

amide gel.

Duplex sequencing

This technique increases per-read accuracy by orders of magnitude compared to standard

Illumina sequencing, using adapters that have random yet complementary double-stranded

nucleotide sequences [55]. Since the probability of two molecules being labeled with the

same adapter sequence is vanishingly small, these molecular tags can be used to identify

reads originating from each individual strand of DNA in the sequencing output and calcu-

lation of a consensus sequence for each of these individual strands, hence allowing removal

of sequencing errors. DS adapters were constructed by annealing two oligonucleotides, one

of which contained a 12-nt single-stranded randomized sequence tag. Annealed oligonucle-

otides were extended using the Klenow fragment, digested with a specific restriction endo-

nuclease to produce cohesive ends, and annealed to viroid RT-PCR products for library

preparation, following previously described protocols [31]. Given the small size of viroids,

no template fragmentation was required. A library was prepared to identify each RT-PCR

product and run on an Illumina MiSeq machine sequencer. Sequencing of direct PCR con-

trols was made on a separate run. FastQ files were processed with the DS software pipeline

(https://github.com/loeblab/Duplex-Sequencing) using BWA 0.6.2, Samtools 0.1.19,

Picard-tools 1.130 and GATK 3.3–0, and GenBank accessions AJ536613 and AJ634596 as

reference sequences for ELVd and PSTVd, respectively. After parsing of tags, the first 200

bases of each read were selected to increase accuracy, and initial alignment and single

stranded consensus sequence (SSCS) were assembled, followed by duplex consensus

sequence (DCS) assembly. The DCS outputs were finally realigned to the reference

sequence to count mutations. Previously defined default parameters were used for this

process [31].
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Mutation rate estimation by the lethal method

As described previously, the frequency of lethal mutations in a population should equal the

rate at which these mutations are produced [4, 26–29]. For ELVd, we assumed that all muta-

tions in the hammerhead ribozyme core sites defined in Fig 4 should be lethal [4], and the

same assumption was made for the PSTVd CCR/TCR sites analyzed. The overall mutation rate

was simply estimated as m ¼

PT

i¼1
Ni

PT

i¼1
Ci

, where Ni is the number of mutations at site i, Ci is

sequencing coverage at site i, and T is the number of sites analyzed. For the 23 mutations that

were previously reported to have lethal effects in PSTVd [40–44], the estimation was more

complicated because for most of the sites only one or two of the three possible base substitu-

tions could be used for mutation rate estimation, as the other substitutions were not reported

lethals. To account for this, the mutation rate was estimated as m ¼

PT

i¼1
Ni

PT

i¼1

Pk

j¼1

rj
ri

Ci
, where ρj is

the contribution of the specific mutation considered to the total mutation spectrum of PSTVd,

k is the number of different lethal substitutions at site i (k = 1, 2, or 3) and ρi is the contribution

of the three possible base substitutions at this site to the total mutational spectrum. These coef-

ficients are provided in Table 2 for sequences obtained from circular (+) and oligomeric (–)

forms. For instance, if at a given site only C-to-U substitutions were lethal, k = 1 and, for

sequences from circular (+) forms, we used ρj = 1 = 25.7 (i.e. the percentage of C-to-U muta-

tions in the total spectrum) and ρi = 25.7 + 4.9 + 3.3 (i.e. the percentages of C-to-U, C-to-A,

and C-to-G mutations). Notice that this formula could also be used for estimating mutation

rates in the PSTVd CCR/TCR and ELVd hammerhead ribozymess more precisely, but this was

not necessary as long as base composition and mutational spectra are similar for these regions

and the rest of the viroid sequence.
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33. López-Carrasco A, Gago-Zachert S, Mileti G, Minoia S, Flores R, Delgado S. The transcription initiation

sites of eggplant latent viroid strands map within distinct motifs in their in vivo RNA conformations. RNA

Biol. 2016; 13:83–97. https://doi.org/10.1080/15476286.2015.1119365 PMID: 26618399

34. Keese P, Symons RH. Domains in viroids: evidence of intermolecular rearrangements and their contri-

bution to viroid evolution. Proc Natl Acad Sci USA. 1985; 82:4582–6. PMID: 3860809
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