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ARTICLE INFO ABSTRACT

Keywords: Lipid microdomains (‘lipid rafts’) are plasma membrane subregions, enriched in cholesterol and glyco-

NMR sphingolipids, which participate dynamically in cell signaling and molecular trafficking operations. One strategy

Platelets for the study of the physicochemical properties of lipid rafts in model membrane systems has been the use of

R.af'ts . . nuclear magnetic resonance (NMR), but until now this spectroscopic method has not been considered a clinically

Lipid microdomains relevant tool. We performed a proof-of-concept study to test the feasibility of using NMR to study lipid rafts in
human tissues. Platelets were selected as a cost-effective and minimally invasive model system in which lipid
rafts have previously been studied using other approaches. Platelets were isolated from plasma of medication-
free adult research participants (n=13) and lysed with homogenization and sonication. Lipid-enriched fractions
were obtained using a discontinuous sucrose gradient. Association of lipid fractions with GM1 ganglioside was
tested using HRP-conjugated cholera toxin B subunit dot blot assays. 'H high resolution magic-angle spinning
nuclear magnetic resonance (HRMAS NMR) spectra obtained with single-pulse Bloch decay experiments yielded
spectral linewidths and intensities as a function of temperature. Rates of lipid lateral diffusion that reported on
raft size were measured with a two-dimensional stimulated echo longitudinal encode-decode NMR experiment.
We found that lipid fractions at 10-35% sucrose density associated with GM1 ganglioside, a marker for lipid
rafts. NMR spectra of the membrane phospholipids featured a prominent ‘centerband’ peak associated with the
hydrocarbon chain methylene resonance at 1.3 ppm; the linewidth (full width at half-maximum intensity) of this
‘centerband’ peak, together with the ratio of intensities between the centerband and ‘spinning sideband’ peaks,
agreed well with values reported previously for lipid rafts in model membranes. Decreasing temperature
produced decreases in the 1.3 ppm peak intensity and a discontinuity at ~18 °C, for which the simplest
explanation is a phase transition from Ly to L, phases indicative of raft formation. Rates of lateral diffusion of the
acyl chain lipid signal at 1.3 ppm, a quantitative measure of microdomain size, were consistent with lipid
molecules organized in rafts. These results show that HRMAS NMR can characterize lipid microdomains in
human platelets, a methodological advance that could be extended to other tissues in which membrane
biochemistry may have physiological and pathophysiological relevance.

1. Introduction the surrounding phospholipid bilayer [1] due to sterically aversive

forces [2]. The largely dietarily-determined lipid balance can affect the

Lipidomics has wide implications for human health. Among the
most fundamental roles for lipids is their participation in cell mem-
branes, where they serve not only structural but also dynamic
functions. Current understanding of cell membrane organization pos-
tulates the existence of lipid microdomains, or rafts, comprised
principally of cholesterol and sphingolipids, which self-segregate from

physicochemical properties of the membrane microdomains, with
downstream effects on cell-cell signaling, molecular trafficking, and
regulation of transmembrane proteins, including a variety of transpor-
ters and G-protein coupled receptors [3]. Among technologies used to
study the composition of lipid rafts, 'H detected high-resolution magic-
angle spinning nuclear magnetic resonance (HRMAS NMR) utilizes the
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natural proton signals from lipids to provide very good resolution of
chemically shifted resonances through rapid spinning of samples at the
“magic angle” (54.7°) with respect to the main magnetic field. NMR has
been used to characterize lipid rafts in model membrane systems
[4-9,11-14], in cell culture [15-17], and in the influenza viral
envelope [18]. However, NMR has not been utilized in clinical studies
of human cell membranes. Therefore we proceeded to test the
feasibility of using HRMAS NMR to characterize lipid rafts in human
platelets, in which lipid rafts have been successfully studied using other
methods [19-22]. The NMR approach allows for physicochemical
characterization of lipid rafts at the molecular level. Potential applica-
tions include studies of the effects of dietary intake of lipids (e.g.,
polyunsaturated fatty acids and cholesterol) and antihyperlipidemic
medications on cell membrane functioning in healthy individuals and in
pathological states.

2. Materials and methods
2.1. Sample

Platelets were isolated from plasma of medication-free adult
research participants (n=13) with major depressive disorder who were
otherwise medically healthy, and who had enrolled in mood disorders
protocols at the New York State Psychiatric Institute and gave informed
consent to the collection of blood samples for biochemical studies.

2.2. Purification of platelet lipid domains

Platelets were extracted from blood samples as previously described
according to methods optimized by our research team [23]. Briefly, the
blood was collected in EDTA vacutainer tubes and centrifuged at low
speed to obtain the platelet-rich-plasma, which was then further
centrifuged (12,000 X g, 4 °C, 4 min). The resulting pellets were resus-
pended in 5 mL of ice-cold phosphate-buffered saline (PBS, pH 7.4) and
again pelleted and stored at —80 °C until used. For the next (homo-
genization) step, the platelet pellets were resuspended and washed
twice in ice-cold PBS and suspended in 2mL of 500 mM Na,COs3
solution, pH 11.0.

To avoid artifacts associated with detergent extraction [24,25], lipid
rafts were isolated from extracted platelets using non-detergent meth-
ods: cells were lysed using a Polytron Homogenizer (Brinkmann,
Lucerne, Switzerland; three 10-s bursts at setting 3) and then subjected
to sonication with an XL-2000 Ultrasonic Cell Disruptor (Microson,
Newtown, CT, USA; three 20-s bursts at setting 5). The homogenate was
then adjusted to 45% sucrose by adding 2 mL of 90% sucrose prepared
in 25 mM MES-buffered saline (MBS; 25 mM 2-(N-morpholino)ethane-
sulfonic acid, pH 6.5, 0.15 M NaCl). The fraction enriched in lipids was
isolated by a 5-35% discontinuous sucrose gradient [5%, 15%, 25%,
35%], followed by ultracentrifugation (100,000x g for 20 h at 4 °C)
with flotation (adapted from [26]). Fractions containing lipids exhib-
ited visible opalescence after ultracentrifugation (Fig. 1A). The inter-
face was removed, diluted with 2X MBS buffer, and centrifuged
(10,000 rpm for 20 min); the pellets were saved and stored at —20 °C
for subsequent lipid extraction. The presence of GM1 gangliosides in
the lipid fraction was assessed with GM1-specific horseradish perox-
idase (HRP)-conjugated cholera toxin B subunit dot blot assays [27]
using chemiluminescence (Fig. 1B). The quantity of proteins in lipid
and non-lipid fractions was determined by Bicinchoninic (BCA) Protein
Assay (Thermo Fisher Scientific; Rockford, IL, USA) [28] and spectro-
photometry (Fig. 1C). The Folch method [29] was used to extract the
lipids from the sucrose solution into an 8:4:3 chloroform-methanol-
water mixture. Lipid samples were lyophilized and stored at —80 °C.

2.3. Lipid 'H HRMAS NMR spectra

To prepare samples for NMR, the frozen lyophilized lipids were
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Fig. 1. Purification and validation of lipid rafts from human platelets. A. Visible
opalescent lipid band with respect to the sucrose fractionation. B. GM1-specific HRP-
conjugated cholera toxin B subunit dot blot assays. C. BCA assay differentiates between
lipid-associated (fraction 4) and lipid non-associated (fraction 9) proteins; ‘n.d.’” indicates
no protein detected.

reconstituted in deuterated water (D,0). Five washes in D,O were each
performed by adding 300 pL of deuterated water to each sample in a
microcentrifuge tube, spinning the samples at 10,000 rpm for 15 min,
and decanting the clear layer using a pipette. Between each wash,
samples were frozen via direct contact of the outside of the micro-
centrifuge tube with dry ice and thawed at room temperature followed
by gentle vortexing. These freeze-thaw cycles were performed in order
to facilitate H/D exchange between the solvent and membrane frag-
ments. Samples thus prepared for HRMAS NMR were slightly viscous
and visibly, uniformly opaque suspensions of multibilayers.

Butylated hydroxytoluene (BHT) was added to all samples to
prevent oxidation of the unsaturated lipid acyl chains. Water-soluble
4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) was added to all
samples at a ratio of 100:1 lipid:DSS by weight as a chemical shift
calibration standard for NMR spectroscopy.

NMR data were acquired at the New York Structural Biology Center
on a 4-channel Bruker Avance I widebore spectrometer equipped with a
4 mm HRMAS HCND probe and ZrO, rotors (Bruker Biospin, Karlsruhe,
Germany), operating at a 'H resonance frequency of 750 MHz and using
a spectral width of 15 kHz. Samples were spun at an angle of 54.7° to
the magnetic field direction (the ‘magic angle’) at spinning frequencies
of 4-5KkHz to obtain well-resolved spectra. 'H spectra were acquired
with a single-pulse Bloch decay experiment [30] using an 8 ps 90°
pulse. We acquired 128 scans with a recycle delay of 2 s between data
acquisitions, thus requiring ~4 min to obtain each spectrum. The
signal-to-noise ratio for the main lipid resonance was 50:1, allowing
for reliable estimates of peak intensity and linewidth at half height. A
presaturation water suppression technique was used to suppress the
signal from residual 'H nuclei in the D,O solvent. Experiments were
executed with and without a pre-acquisition echo sequence to test for
the presence of broad signals [31]. Measurement temperatures were
varied from —10 °C to 35 °C and calibrated with a methanol standard
[32]. Sideband / centerband intensity ratios and linewidth differences
of the principal lipid resonance at ~1.3 ppm were monitored vs.
temperature, and these ratios were used to validate the presence of
rafts in the L, phase [13].

Rates of lipid lateral diffusion (signal intensity decay as a function of
time) were measured in a two-dimensional stimulated echo long-
itudinal encode-decode experiment conducted with presaturation and
bipolar gradients [33] (256 scans, gradient length 8 ps, recycle delay
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2's, gradient strengths of 2-96% in 32 steps (1 G/cm-48 G/cm),
1500 ps delay based on the length of the gradient pulse, diffusion time
100 ms).

3. Results
3.1. Purification of lipid microdomains

On sucrose gradient fractionation, a distinct opalescent band was
visualized between 5% and 35% sucrose density, in fractions 3-5
(Fig. 1A), and the presence of lipid rafts was supported by GM1
ganglioside-positive dot blots in the same fractions (Fig. 1B). Chemilu-
minescence results (Fig. 1B) revealed that lipid fractions were positive
for the presence of GM1 gangliosides, which have been associated with
lipid raft domains [34]. The BCA assay was consistent with the presence
of raft-associated and non-raft-associated proteins, in fractions 4 and 9,
respectively (Fig. 1C).

3.2. Spectroscopic properties of purified platelet lipid fractions

As expected, the most prominent feature in the membrane phos-
pholipid spectrum (Fig. 2) was the hydrocarbon chain ‘bulk’ methylene
resonance at ~1.3 ppm. No broad spectral contributions were evident
in data obtained without the pre-acquisition spin echo sequence,
arguing against the presence of residual membrane-associated proteins
or lipids in the S, phase. Across the 4 platelet-derived lipid multibilayer
samples, we observed linewidth values (full width at half-maximum
intensity) for the ‘centerband’ methylene peak at 1.3 ppm ranging from
55 to 82 Hz at 6.5 °C, with corresponding sideband:centerband ratios
amounting to 2.5-5.3%. Compared with small-molecule standards such
as DSS, the centerband peak thus exhibits a clearly broadened
resonance. Nonetheless, these relatively modest centerband linewidths
and sideband proportions, together with the similarity in magnitude of
the linewidths for the (CH,), centerband and sideband (shown in
Fig. 2), are more characteristic of the liquid-ordered (L,) phase
identified with lipid rafts in equilibrium with a liquid-disordered (Lq)
phase [6] than with a significant S, component. Our findings are also
consistent with reports of model membrane systems in which raft
formation accompanied by enhanced membrane order has been asso-
ciated with greater proportions of cholesterol with respect to phospho-
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Fig. 2. Representative platelet lipid NMR spectra. From this experiment, acquired at
6.5 °C, two contributions to the lipid chain methylene resonance (CH,), are visible:
centerband, 1.3 ppm (top arrow) and one spinning sideband, 8 ppm (left arrow) are
shown. The internal chemical shift calibration standard, 4,4-dimethyl-4-silapentane-1-
sulfonic acid (DSS) has two peaks (small arrows). HOD denotes H,O in equilibrium with
D,0.
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Fig. 3. Temperature dependence of peak intensity. A. Phospholipid chain methylene
(1.2-1.4 ppm) spectral region for a series of 'H HRMAS NMR spectra of platelet lipids
acquired in a single sample at temperatures between —20 °C and 32 °C. B. Using data
from A, (CH,), peak signal intensities at 1.3 ppm, as a percentage of the total intensity
across the spectrum, are plotted as a function of temperature. A discontinuity is apparent
at higher temperatures; extrapolation of the two straight-line portions yields an
intersection point from which the apparent Ly to L, phase transition temperature is
estimated to be ~18 °C.

lipid, producing a modestly broadened centerband peak and minor
redistribution of the signal intensity from centerband to sidebands [4].

3.3. Phase transitions and raft formation demonstrated through 'H NMR
spectra at varying temperatures

A temperature series (Fig. 3) provides information about the phase
transition between the Ly and L, phases of our lipid-enriched platelet
preparation. Decreasing height of the 1.3-ppm peak in response to
decreasing temperature (Fig. 3A), which is accompanied by an increase
in peak linewidth, is most simply explained by an increased predomi-
nance of L, relative to Ly phase of the membranes [5]. In a more
quantitative presentation of the data (Fig. 3B), the intensity of the 1.3-
ppm peak is illustrated as a function of temperature; a discontinuity is
apparent at higher temperatures, from which we estimate an Ly-to-L,
transition temperature of approximately 18 °C.

3.4. Diffusion as a measure of average domain size

The dependence of peak intensity on gradient strength is a measure
of the translational diffusion constant. Diffusion is spatially restricted if
the average distance that lipids move during the diffusion time is
constant for a sufficiently long period. We extracted an order-of-
magnitude diffusion constant of 1.4 x 107! m?/s, a measure of average
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Chemical shift

Fig. 4. Representative lipid diffusion study. This 3-D graph illustrates the methylene
resonance at 1.3 ppm as a function of gradient strength. Arrows indicate decay of the lipid
raft signal, which occurs approximately 3 times more slowly with gradient strength than
the 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) standard (large twin peaks flanking
the methylene signal).

domain size that is in reasonable agreement with the 0.8 x 107! value
reported previously for a model phospholipid mixture [4]. As expected,
the acyl chain lipid signal at 1.3 ppm decayed more slowly with
gradient strength than the reference DSS signals (Fig. 4). The membrane
microdomain size indicated by the approximately three-fold lower rates
of lateral diffusion we observed in comparison to the freely mobile
water-soluble DSS standard is consistent with the scale estimated for
lipid rafts in phospholipid model membrane mixtures [4].

4. Discussion

In platelet-derived lipid rafts, we obtain reproducible, well-resolved
lipid HRMAS 'H NMR spectra with minimal artifacts. Our observed
linewidths, intensity ratios, and preferential broadening of sidebands
agree well with values reported for lipid rafts in 30 mol% cholesterol
mixtures with a single phospholipid such as 1-stearoyl-2-oleoylpho-
sphatidylcholine [13]. We have also successfully measured lateral lipid
diffusion, and we consider this estimate to be compatible with that
previously reported for phospholipid mixtures in a model membrane
preparation [4], given the different compositions of the respective lipid
mixtures and our observation of biexponential signal decays. Our phase
transition results, derived from a temperature series, can be compared
with those of Veatch et al. [5], who studied a mixture of 30%
cholesterol and 70% phosphatidylcholine (PC) phospholipids (dioleoyl-
phosphatidylcholine [DOPC] +  dipalmitoylphosphatidylcholine
[DPPC]). Our clinical samples are expected to approximate this
distribution, since human platelets are about 20% cholesterol and
70% phospholipid. The largest phospholipid fraction, ~35%, is PC,
although phosphatidylinositol (~10%), phosphatidylserine (~12%),
phosphatidylethanolamine (~22%) and sphingomyelin (~15%) are
also present [35]. The shape of our phase transition curve (Fig. 3)

Biochemistry and Biophysics Reports 10 (2017) 132-136

resembles that of Veatch et al. [5], except the platelet membrane data
are shifted to the left. The 30:70 cholesterol:PC phospholipids model
membranes exhibit a L,-to-L4 transition temperature of ~32 °C for the
binary lipid mixture [5], consistent with the presence of high-melting
DPPC, in contrast to an apparent L,-to-Lyq transition temperature of
~18°C for our more complex mixture that includes phospholipid
species with unsaturated acyl chains. By comparison, Fourier transform
infrared spectroscopy (FT-IR) methods show phase transitions at ~15
and ~30 °C for intact platelets prepared without lipid enrichment [36].

We acknowledge that the demonstration of phase transition is not
proof that functional rafts exist in the extracted fractions. In the
following section we discuss combining NMR studies with biological
assays to verify the presence of rafts by assessing various functional
characteristics.

4.1. Potential of NMR as a clinical tool to study lipid rafts in biological
membranes

Because of their renewability, platelets can provide a cost-effective
and minimally invasive ex vivo method for studying the functions of
lipid rafts in humans. Standardized methods for obtaining a detailed
platelet lipid raft profile could provide a platform for understanding
whether lipid raft changes mediate effects on clinical symptoms. Such
methods of valuation may eventually be useful for evaluating the risk of
chronic conditions already associated with lipid rafts, including
Parkinson's disease [37], dementia [38], atherosclerosis [39,40],
rheumatoid arthritis [41], and depression [42,43].

To approach this goal, lipid raft functional roles in cell signaling
[44] and protein trafficking [45] could be studied using NMR measure-
ment of lipid raft physicochemical properties accompanied by dynamic
functional studies after perturbation or enhancement of lipid raft
characteristics. For instance, lipid raft disruption by cholesterol deple-
tion alters mobility of the serotonin transporter [46], decreases trans-
port activity, and reduces transporter affinity for serotonin [47,48]. As
another example, polyunsaturated fatty acids (PUFAs) have direct
effects on the physicochemical properties of plasma membrane lipid
subdomains in model membrane systems [2,7-9,11,12], and incorpora-
tion of polyunsaturated fatty acids into lipid rafts increases antibody
binding to major histocompatibility complex (MHC) class I membrane
proteins on certain cell types [49]. These structure-function studies
have all been carried out in cell culture [46,48-50], heterologous
expression systems [47] or animal models [47,50]. Our NMR technique,
however, is designed to be used in studies of human platelets or other
cell types. In combination with functional assays, NMR could thus be
used to prospectively assess effects of dietary PUFA supplementation or
cholesterol-lowering medications on activity of membrane proteins and
how changes in activity relate to changes in raft structural properties.

4.2. Limitations

Potential limitations include artifacts induced by the sucrose
gradient and mechanical disruption of membranes, and lack of infor-
mation about the ganglioside and protein components of the system.
We note that NMR spectra were monitored over a limited range of
temperatures in this preliminary feasibility study. Additional studies
encompassing a greater range of temperatures would be required in
order to verify whether other discontinuities also occur.

5. Conclusions

Our findings introduce a novel translational application for a
powerful basic science tool. NMR quantification of platelet lipid rafts
can enhance other high-resolution and quantitative approaches [51,52]
to the study of structural and functional characteristics of lipid
microdomains. This new translational approach could have clinical
utility for understanding physiology and pathophysiology at the
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molecular level.
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