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Abstract

Introduction—This study aims to identify novel quantitative EEG measures associated with 

mindfulness meditation. As there is some evidence that meditation is associated with higher 

integration of brain networks, we focused on EEG measures of network integration.

Methods—Sixteen novice meditators and sixteen experienced meditators participated in the 

study. Novice meditators performed a basic meditation practice that supported effortless 

awareness, which is an important quality of experience related to mindfulness practices, while 

their EEG was recorded. Experienced meditators performed a self-selected meditation practice that 

supported effortless awareness. Network integration was analyzed with maximum betweenness 

centrality and leaf fraction (which both correlate positively with network integration) as well as 

with diameter and average eccentricity (which both correlate negatively with network integration), 

based on a phase-lag index (PLI) and minimum spanning tree (MST) approach. Differences 

between groups were assessed using repeated-measures ANOVA for the theta (4–8 Hz), alpha (8–

13 Hz) and lower beta (13–20 Hz) frequency bands.
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Results—Maximum betweenness centrality was significantly higher in experienced meditators 

than in novices (P=0.012) in the alpha band. In the same frequency band, leaf fraction showed a 

trend toward being significantly higher in experienced meditators than in novices (P=0.056), while 

diameter and average eccentricity were significantly lower in experienced meditators than in 

novices (P=0.016 and P=0.028 respectively). No significant differences between groups were 

observed for the theta and beta frequency bands.

Conclusion—These results show that alpha band functional network topology is better 

integrated in experienced meditators than in novice meditators during meditation. This novel 

finding provides the rationale to investigate the temporal relation between measures of functional 

connectivity network integration and meditation quality, for example using neurophenomenology 

experiments.

Mindfulness meditation programs have increasingly shown beneficial effects on a variety of 

medical disorders. For example, a recent meta-analysis showed that these programs may 

have similar effects on anxiety and depression as medication, perhaps without the associated 

side effects (Goyal et al., 2014). Currently, the most consistent EEG findings associated with 

meditation are increased theta and alpha power (for a recent systematic review see Lomas et 

al. (2015)). However, as Brandmeyer and Delorme (2013) point out, “Recent research 

suggests that complex brain activity during meditation may not be adequately described by 

basic EEG analyses”. More specifically, a limitation of power analysis is that it provides no 

information about the organization of interactions between brain regions. As such, more 

advanced EEG measures, such as network integration, i.e. how efficiently information is 

exchanged across the whole network, may provide potential targets for neurofeedback. 

Indeed, there is some neuroimaging evidence that meditation may be associated with 

increased network integration. In a recent EEG study, assessing the relationship between 

meditation and network integration in the theta band, it was found that a meditation 

intervention increased global and local network efficiency (which can be considered 

measures of network integration) during resting-state (Xue et al., 2014). However, in this 

study, synchronization likelihood was used to calculate functional connectivity, which is 

sensitive to volume conduction and EEG reference effects. Volume conduction relates to 

nearby electrodes being highly likely to pick up activity from the same, i.e. common, 

sources, which then gives rise to spurious correlations between time series at these 

electrodes (Stam et al., 2007). Fortunately, new methodologies have been developed to 

address these limitations. A solution to this issue would be to use a measure that assesses 

phase synchrony (and focuses on non-zero phase differences), such as the phase lag index 

(PLI), which minimizes the effect of volume conduction (Stam et al., 2007). Functional 

connectivity matrices based on a phase synchrony measure can then be calculated for the 

network of all electrodes. Sophisticated signal processing analysis methods, such as recent 

innovations in graph analysis (Tewarie et al., 2015), can subsequently be used to analyze this 

matrix, providing the opportunity to investigate advanced potential markers of meditation 

quality.

Recently, the minimal spanning tree (MST) started to being applied in neuroscience 

(Tewarie et al., 2015; Utianski et al., 2016; van Dellen et al., 2015). This approach yields an 

unweighted backbone graph that is considered to reflect the functional core of the network 
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(Stam et al., 2014). The MST approach is thought to avoid several methodological biases in 

comparing graphs between populations, such as the use of an arbitrary threshold for 

unweighted graph analysis and differences in average connectivity strength between groups 

for weighted graph analysis (Tewarie et al., 2015; van Wijk et al., 2010). The MST approach 

provides the opportunity to assess several aspects of network organization. Specifically, 

maximum betweenness centrality, leaf fraction, diameter and average eccentricity all 

represent overall integration of the MST network. Characterization of network integration 

using this approach has been used for several neurological disorders, including dementia 

with Lewy bodies, Alzheimer’s disease and Parkinson’s disease (Utianski et al., 2016; van 

Dellen et al., 2015), but is yet to be applied to meditation training.

Based on the current literature, we hypothesize that during meditation, experienced 

meditators will show increased integration of their brain networks relative to novice 

meditators, as assessed using maximum betweenness centrality, leaf fraction, diameter and 

average eccentricity in an approach that utilizes the PLI and the MST.

Methods

Utilizing a dataset from a previous study (Van Lutterveld et al., 2016), sixteen novice 

meditators (defined as having no meditation practice in the previous year and <20 entire 

lifetime hours) and 16 experienced meditators (defined as meditating ≥30 minutes per day 

for at least 5 days per week over the past 5 years) were matched for age, gender and 

handedness. Exclusion criteria for both novice meditators and experienced meditators were: 

(i) any neurological condition, including head injury or head trauma, (ii) any serious 

psychiatric, cognitive or medical disorder which could interfere with completion of the study 

(anxiety and depressive disorders in remission were not considered exclusion criteria), (iii) 

not being on a stable dose for the last 6 months if using anxiolytic or antidepressant 

medication, (iv) alcohol abuse, specified as drinking more than 14 alcoholic drinks per week 

at any one time or more than 4 drinks at any one time for a male, and drinking more than 7 

alcoholic drinks per week at any one time or more than 3 drinks at any one time for a 

female, (v) illegal or recreational drug use in the past 6 weeks. Additional exclusion criteria 

for the novice meditators were (vi) practicing any meditation practice or yoga, Tai Chi or 

Qigong in the last year or over 20 hours ever in life, attendance of a meditation or yoga 

retreat, and participation in any meditation course. Demographics for both groups are shown 

in Table 1. Participants were paid 30 US dollars for their participation in the study. The 

study was approved by the University of Massachusetts Medical School Institutional Review 

Board and all participants were provided a fact sheet before participation in the study.

Effortless awareness

All participants were first taught the concept of effortless awareness. The subjective 

experience of effortless awareness is a major component of meditation practice and consists 

of the factors “concentration”, “observing sensory experience”, “not ‘efforting’” and 

“contentment” (Garrison et al., 2013a). Novice meditators were taught “noting practice” 

meditation, which is theoretically thought to support and train effortless awareness. During 

noting practice, novices were instructed to silently label the sensory experience that was 
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most predominant from moment-to-moment (i.e. seeing, hearing, feeling or thinking)

(Fronsdal, 2008). Before the experiment, novices performed a short noting practice session 

(~30 s) in which they verbalized the noting practice out loud to confirm that the participants 

understood the instructions. Next, they completed a short silent practice session (~30 s). 

Exact instructions for the noting practice and the practice session are provided in 

Supplementary Text S1. Experienced meditators performed the meditation practice in which 

it was easiest for them to foster effortless awareness. Exact instructions for the experienced 

meditators are also provided in Supplementary Text S1. Meditation was performed with eyes 

open, with the gaze fixated on a fixation cross.

EEG

Technical setup

The participants sat in a quiet room and watched a flat-panel monitor with a viewing 

distance of 70 cm. Electroencephalography data were recorded with a high-density EEG 

system using a cap with 128 active electrodes (BioSemi, Amsterdam, The Netherlands). For 

off-line horizontal electrooculography (EOG) assessment, two electrodes were placed at the 

outer canthus of the left and right eye, respectively. For off-line vertical EOG assessment 

two electrodes were placed infra- and supraorbitally at the right eye, respectively. Signals 

were digitized on-line by a computer at a rate of 2048 Hz.

Task design and experimental procedure

Each run started with a 30-second baseline task during which participants viewed trait-

adjectives and assessed if the words described themselves (adapted from (Kelley et al., 

2002)). After completing the baseline task, participants performed effortless awareness 

meditation for 3.5 minutes. This procedure was part of a larger test battery, which is 

described in detail in (Van Lutterveld et al., 2016). The baseline task was included to 

familiarize participants with it as it was an essential component of the other tasks in the test 

battery. To familiarize themselves with the task and the research setting, participants 

performed an initial run of the paradigm. After this, the main run was performed.

EEG analysis

Preprocessing

For keeping in line with the previous MST literature (that reports on 19 to 21 electrodes), we 

will focus on a subset of nineteen scalp electrodes in similar locations (Engels et al., 2015; 

Utianski et al., 2016; van Dellen et al., 2015). As the 128-electrode Biosemi system does not 

exactly follow the 10/20 system, for four out of nineteen electrodes the electrodes closest to 

the 10/20 configuration were included. A detailed visual representation is provided in 

supplementary figure S2. Data preprocessing was performed using the BrainVision Analyzer 

software suite (BrainProducts, Munich, Germany) and in-house developed Matlab scripts 

(Natick, MA, USA). First, data of the meditation part of the run was visually inspected for 

bad channels. Subsequently, data from bad channels was recreated from the surrounding 

leads in the 128-channel configuration (no more than 2 channels for any subject). Data were 

filtered between 0.5 and 100 Hz using a Butterworth Infinite Impulse Response (IIR) filter 
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(48 dB/octave). Eye blinks were detected by creating a bipolar vertical EOG channel by 

subtracting activity in the infraorbitally placed electrode from the superorbitally placed 

electrode. Horizontal eye movements were detected by creating a bipolar horizontal EOG 

channel by subtracting activity in the electrode placed at the outer canthus of the left eye 

from the electrode placed at the outer canthus of the right eye. Ocular correction was 

performed using Gratton and Coles algorithm (Gratton et al., 1983). After this, data of the 

meditation part of the run were segmented in 2-second epochs. Artifact rejection was 

performed in two stages. First, automated artifact rejection took place using the following 

parameters: 1) maximal allowed voltage step: 50 μV/ms, 2) maximal allowed difference of 

values in 200 ms intervals: 200 μV, 3) minimal allowed amplitude: −100 μV and maximal 

allowed amplitude: 100 μV, 4) lowest allowed activity in 100 ms intervals: 0.5 μV. Second, 

all segments surviving automated artifact rejection were visually inspected for undetected 

artifacts by two EEG researchers (RvL and HY). Hereafter, twenty artifact-free segments per 

EEG were randomly selected for further analysis. To avoid carry-over effects of the baseline 

task into the meditation task, no segments were selected from the first 10 seconds of the 

meditation part of each run.

Stability analysis of number of selected segments

To verify that the number of segments was sufficient to reach a stable measure of functional 

connectivity, we plotted the average PLI value of the functional connectivity matrix for the 

range of 2 – 20 segments for each frequency band (see Supplementary figure S3).

Graph analysis

Brain Wave (version 0.9.152.2.17) software was used for graph analysis (http://home.kpn.nl/

stam7883/). Data were filtered in the following frequency bands: theta (4–8 Hz); alpha (8–

13 Hz); and beta (13–20 Hz). Oscillations under 4 Hz and above 20 Hz were not analyzed 

because of expected muscle artifact contamination (Hagemann and Naumann, 2001; 

Whitham et al., 2007; Yuval-Greenberg et al., 2008). An average reference was applied.

Functional connectivity

Functional connectivity between EEG time-series of all 19 electrode pairs was calculated 

using the Phase Lag Index (PLI). Briefly, the PLI is a measure for phase synchronization 

between time series. It is based on the consistency of the nonzero phase lag between those 

time series and can be calculated from a time series of phase differences Δφ(tk), k = 1 … N 
in the following way:

The advantage of the PLI is that it is less likely to be contaminated by volume conduction 

(Porz et al., 2014; Stam et al., 2007). The PLI ranges between 0 (no phase synchronization) 

and 1 (complete phase synchronization). The PLI has been used extensively to characterize 

functional connectivity using EEG (e.g. Engels et al., 2015; Utianski et al., 2016; van Dellen 

et al., 2015). An extensive description of the PLI and its mathematical theory is provided by 
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Stam et al (2007). Average functional connectivity was calculated by calculating the 

arithmetic mean between all pairwise PLI measurements.

Minimum spanning tree (MST) and graph measures

Network topology of the PLI functional connectivity matrix was characterized using graph 

theory. In this approach, every electrode constitutes a node in the network and each 

connection between two electrodes constitutes an edge representing functional connectivity 

strength between those two electrodes. The network was further characterized using the 

minimum spanning tree (MST)(Stam et al., 2014). The MST is a subgraph of the weighted 

graph, which connects all nodes such that the strongest connections in the weighted graph 

are included, while avoiding loops. This results in an unweighted backbone graph (i.e. 

binarized graph containing edge weights of 0 and 1) that is considered to reflect the 

functional core of the network (Stam et al., 2014). Importantly, the MST is thought to avoid 

several methodological biases in comparing graphs between populations, such as the 

utilization of an arbitrary threshold for unweighted graph analysis, and differences in 

average connectivity strength between groups for weighted graph analysis (Tewarie et al., 

2015; van Wijk et al., 2010). Figure 1 shows a graphical representation of MST calculation. 

The MST was used to assess network topology using several key graph measures indicating 

network integration. Table 2 shows definitions and interpretations of these measures 

(Utianski et al., 2016), while figure 2 shows more information on MSTs and its association 

to network integration and graph measures. Summarizing, the MST is a structure that is 

considered to reflect the structural backbone of the functional connectivity network. 

Importantly, the structure of the MST is based on the spatial distribution of the underlying 

functional connectivity network. This means that two networks that have the same average 

functional connectivity (i.e., the arithmetic mean of all pairwise PLI values), but do not have 

the same pairwise PLI values at each pair of electrodes, the two networks can have different 

MSTs, leading to different values of graph measures. Supplementary figure S4 provides an 

example.

Control analyses

Eye blinks

As participants meditated with their eyes open, and regressing out eye-blinks can 

theoretically influence the underlying connectivity matrix, we investigated whether 

excluding segments with eye-blinks would affect results. In this analysis, per participant the 

first ten segments without eye-blinks were selected from the original twenty segments to 

keep the number of segments consistent across participants. Participants were excluded in 

this analysis if there were less than 10 segments that contained no eye-blinks.

Interpolation of bad leads 1

As recreation of bad channels influences the underlying connectivity matrix, we investigated 

whether excluding the bad channels in MST calculation and subsequent graph measures for 

the datasets that had bad channels would affect group results. Six out of 16 datasets for 

novice meditators and for 4 out of 16 datasets for experienced meditators contained either 1 

or 2 bad leads. Importantly, as calculation of MST graph measures in the BrainWave 
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software suite includes application of a normalization factor to account for graph size, graph 

measures can be statistically tested across different graph sizes. Bad leads were excluded in 

MST and subsequent graph measures calculation. Thus, for these datasets the MST and 

subsequent graph measures were calculated based on an 18x18 or a 17x17 matrix. For the 

datasets without bad leads, MST and subsequent graph measures calculation were performed 

on all 19 channels. Differences across groups were then statistically analyzed identical to the 

main analysis.

Interpolation of bad leads 2

To further explore the effect of lead interpolation, we investigated whether interpolating 

leads in in a dataset that did not contain bad leads affected results. For this, one dataset was 

randomly picked. In the datasets containing bad leads, they were observed in 1–2 positions 

in a total of 6 different combinations. For each combination, leads of the randomly picked 

dataset were interpolated and preprocessing and calculation of subsequent graph measures 

was performed for the same 20 time-windows of 2 seconds each as described above. These 

outcomes were then statistically tested versus the outcomes of the chosen dataset without 

lead interpolation.

Statistical analysis

Graph analysis

All statistical analyses were performed with SPSS (version 22.0). For each of the three 

frequency bands, differences between groups in average functional connectivity of the 

network were assessed using Mann-Whitney U tests. Correction for multiple comparisons 

for the three frequency bands was performed using the Bonferroni procedure. Differences 

between groups for the four graph measures were assessed using a repeated measures 

ANOVA with between factor ‘group’ (novice or experienced) and within factor ‘graph 

measure’ (maximum betweenness centrality, leaf fraction, diameter and average 

eccentricity). Correction for multiple comparisons for the three ANOVAs was performed 

using the Bonferroni procedure. Levene's test was used to confirm the equality of error 

variances and Box's M statistic was used to confirm the assumption of homogeneity of 

covariance matrices. The Greenhouse–Geisser correction was used to adjust the degrees of 

freedom when the assumption of sphericity was violated as assessed by Mauchly’s test. 

Post-hoc testing for significant main effects of ‘group’ or significant interaction effects of 

‘group’ and ‘graph measure’ was performed using Mann-Whitney U-tests with a correction 

for multiple comparisons using the Bonferroni procedure. Statistical significance was set at 

P<0.05.

Control analysis

Eye blinks—Nine novice meditators and twelve experienced meditators met selection 

criteria of at least 10 segments without eye-blinks in the twenty segments per EEG. Because 

of this relatively small, uneven number, non-parametric Mann-Whitney U tests were 

performed without correction for multiple comparisons.
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Interpolation of bad leads 1—Statistical analysis was performed identical to the main 

analysis.

Interpolation of bad leads 2—Differences between the non-interpolated dataset and any 

of the 6 combinations of interpolation were assessed using separate repeated measures 

ANOVAs for each frequency band (theta, alpha and beta) and for each outcome measure 

(PLI, maximum betweenness centrality, leaf fraction, diameter and average eccentricity). 

The Greenhouse–Geisser correction was used to adjust the degrees of freedom when the 

assumption of sphericity was violated as assessed by Mauchly’s test. Post-hoc testing was 

performed by comparing each measure of the interpolated datasets to the non-interpolated 

dataset using Wilcoxon signed-rank tests. Importantly, to increase sensitivity of the 

statistical tests in this control analysis, no correction for multiple comparisons was 

performed for the 15 ANOVAs and the post-hoc tests.

Results

Theta band

No significant difference in average functional connectivity were observed [median 

experienced: 0.232, median novice: 0.241, Mann-Whitney U=95.000; P=0.214; 

Pcorrected=0.642]. For the graph measures, no main effect of ‘group’ was observed 

[F(1,30)=0.964, P=0.334, Pcorrected=1.000] and no significant interaction effects of ‘group’ 

and ‘graph measure’ were observed [F(1.106,33.174)=0.052, P=0.845, Pcorrected=1.000]. 

These results show that novice and experienced meditators were not significantly different 

across the four graph measures of network integration in the theta band. Figure 3 shows a 

graphical representation of the network integration EEG measures for each frequency band.

Alpha band

No significant difference in average functional connectivity were observed [median 

experienced: 0.271, median novice: 0.230; Mann-Whitney U=72.000; P=0.035; 

Pcorrected=0.105]. For the graph measures, no main effect of ‘group’ was observed 

[F(1,30)=0.911, P=0.347, Pcorrected=1.000]. A significant interaction effect of ‘group’ and 

‘graph measure’ was observed [F(1.203,36.078)=6.711, P=0.010, Pcorrected=0.030]. Post-

hoc testing showed that maximum betweenness centrality was significantly higher in the 

experienced group than in the novice group [median experienced: 0.737, median novice: 

0.718; P=0.003; Pcorrected=0.012]. Leaf Fraction showed a trend toward being significantly 

higher in the experienced group than in the novice group [median experienced: 0.571, 

median novice: 0.542; P=0.014; Pcorrected=0.056]. Diameter was significantly lower in the 

experienced group than in the novice group [median experienced: 0.425, median novice: 

0.449; P=0.004; Pcorrected=0.016]. Average eccentricity was also significantly lower in the 

experienced group [median experienced: 0.336, median novice: 0.355; P=0.007; 

Pcorrected=0.028]. These results show that the brain network in the alpha band is more 

integrated in experienced than in novice meditators during meditation. Figure 3 shows a 

graphical representation of the network integration EEG measures for each frequency band.
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Beta band

No significant difference in average functional connectivity were observed in the beta band 

[median experienced: 0.181, median novice: 0.184, Mann-Whitney U=96.000; P=0.228, 

Pcorrected=0.684]. For the graph measures, no main effect of ‘group’ was observed 

[F(1,30)=1.293, P=0.265, Pcorrected=0.768] and no significant interaction effects of ‘group’ 

and ‘graph measure’ were observed [F(1.239,37.156)=0.305, P=0.632, Pcorrected=1.000]. 

These results show that novice and experienced meditators were not significantly different 

across the four graph measures of network integration in the beta band. Figure 3 shows a 

graphical representation of the network integration EEG measures for each frequency band.

Stability analysis

Supplementary data S3 shows the stability analysis for the various frequency bands, 

indicating relative stability of average functional connectivity across frequency bands for the 

20 segments used in this study.

Control analysis

Eye-blinks

In the analysis in which segments with eye-blinks were excluded, no significant differences 

in average functional connectivity were observed in any of the three frequency bands, 

identical to the main analysis. For the theta band, no significant differences were observed 

for any of the four graph measures, identical to the main analysis. For the alpha band, 

maximum betweenness centrality was significantly higher in the experienced group than in 

the novice group, identical to the main analysis [median experienced: 0.745, median novice: 

0.707; P=0.007]. Leaf Fraction was significantly higher in the experienced group than in the 

novice group, which was a trend in the same direction in the main analysis [median 

experienced: 0.583, median novice: 0.539; P=0.023]. Diameter was significantly lower in the 

experienced group than in the novice group, identical to the main analysis [median 

experienced: 0.422, median novice: 0.444; P=0.012]. Average eccentricity was also 

significantly lower in the experienced group than in the novice group, identical to the main 

analysis [median experienced: 0.335, median novice: 0.358; P=0.009]. For the beta band, 

Leaf Fraction was significantly higher in the experienced group than in the novice group, 

which was non-significant in the main analysis [median experienced: 0.556, median novice: 

0.528; P=0.034]. For the other measures in the beta band, no significant differences between 

groups were observed, which is identical to the main analysis. These results show that the 

results in the alpha-band are robust regarding the occurrence of eye-blinks. An overview of 

median values and associated P-values is provided in supplementary table S5.

Interpolation of bad leads 1

For the theta band, no significant differences in average functional connectivity were 

observed, identical to the main analysis. In addition, no main effect of ‘group’ was observed 

and no significant interaction effects of ‘group’ and ‘graph measure’ was observed, identical 

to the main analysis. For the alpha band, no significant differences in functional connectivity 

were observed, identical to the main analysis. A significant interaction effect of ‘group’ and 
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‘graph measure’ was observed, identical to the main analysis [F(1.208,36.241)=6.870, 

P=0.009, Pcorrected=0.027]. Post-hoc testing showed that maximum betweenness centrality 

was significantly higher in the experienced group than in the novice group, identical to the 

main analysis [median experienced: 0.742, median novice: 0.716; P=0.004; 

Pcorrected=0.016]. No significant differences in Leaf Fraction were observed across groups, 

which showed a trend in the main analysis [median experienced: 0.571, median novice: 

0.552; P=0.035; Pcorrected=0.105]. Diameter was significantly lower in the experienced 

group than in the novice group, identical to the main analysis [median experienced: 0.426, 

median novice: 0.450; P=0.003; Pcorrected=0.012]. Average eccentricity was also 

significantly lower in the experienced group, identical to the main analysis [median 

experienced: 0.343, median novice: 0.361; P=0.004; Pcorrected=0.016]. For the beta band, 

no significant differences in average functional connectivity were observed, identical to the 

main analysis. In addition, no main effect of ‘group’ was observed and no significant 

interaction effects of ‘group’, identical to the main analysis. These results suggest that the 

results in the main analysis are relatively robust to the interpolation of bad leads performed. 

An overview of median values and associated P-values is provided in supplementary table 

S6.

Interpolation of bad leads 2

No significant results were observed for any combination of frequency band and functional 

connectivity and graph measure. These results suggest that the outcome measures are 

relatively robust to the interpolations performed in this study. An overview of median values 

and associated P-values is provided in supplementary table S7.

Discussion

This is the first study assessing EEG measures of network integration associated with 

meditation using a minimal spanning tree approach. We partly confirmed our hypothesis that 

experienced meditators showed increased EEG measures of network integration during 

meditation relative to novice meditators. In the alpha band, three out of four measures 

indicated increased network integration in experienced meditators relative to novice 

meditators in the alpha band, while the fourth measure showed the same trend nearing 

significance.

These results suggest that the alpha band functional connectivity network is more integrated 

in experienced meditators than in novice meditators, which could facilitate information 

exchange between different brain areas. Speculating, increased integration of brain networks 

may underlie some of the beneficial effects of meditation, such as improved cognition (for a 

recent meta-analysis see Sedlmeier et al. (2012)). For example, a recent study observed an 

association between cognition and the same four MST EEG network integration measures as 

in the present study in Parkinson’s patients with varying degrees of cognitive functioning 

(Utianski et al., 2016). Specifically, all sixteen correlations indicated positive (though small) 

relationships between network integration in alpha sub-bands and measures of cognition, 

from which four reached statistical significance. A longitudinal MEG study in Parkinson’s 

patients also observed a link between declining cognitive performance and decreasing MST 
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network integration in an alpha sub-band (Olde Dubbelink et al., 2014). In addition, another 

study found correlations between MST EEG measures of network integration and measures 

of cognition in patients with Dementia with Lewy Bodies (van Dellen et al., 2015). Together, 

these findings provide the groundwork for future studies that directly link these measures of 

network integration with the salutary effects that are being found with various meditation 

practices.

To the best of our knowledge, to date one previous EEG study has investigated the 

relationship between meditation and network integration. This group observed that a 

meditation intervention increased network efficiency (which can be considered a measure of 

network integration) in the theta band as assessed by the harmonic mean of the shortest path 

length between each pair of electrodes (Xue et al., 2014). Differences between this finding 

and the observation of no association between meditation experience and network 

integration in the theta-band in the present study may be explained by the present study’s 

cross-sectional design, the present study’s focus on effortless awareness during meditation, 

and the difference in network integration measures used. Also, the Xue et al study used 

synchronization likelihood to calculate functional connectivity. A main issue with EEG 

functional connectivity calculation, such as synchronization likelihood, is that it is sensitive 

to volume conduction, potentially interfering with accurate functional connectivity 

assessment (Stam et al., 2007).

Control analyses

An important issue in the present study regards the interpolation of bad leads, as this can 

affect calculation of the functional connectivity matrix and hence subsequent MST and 

graph measure calculation. Ideally, one would want clean data without bad leads. However, 

as this study is a secondary data-analysis of an existing dataset, this was unfortunately not 

feasible. To verify the validity of the results, a control analysis was conducted in which bad 

leads were excluded instead of interpolated, finding similar results as in the interpolation 

analysis. In line with this finding was a second control analysis, showing no significant 

effects of interpolation on outcome measures. As such, the present findings seem to be 

relatively robust to the interpolations performed in this study. Another important issue that 

could affect calculation of the functional connectivity matrix is the occurrence of eye-blinks. 

However, when only segments without eye-blinks were analyzed, similar results as in the 

main analysis were observed, which is suggestive of a relative robustness of the outcome 

measures to the occurrence of eye-blinks.

Importantly, the results of this cross-sectional study provide the rationale to investigate 

whether there is an association between the network integration measures in the alpha band 

and the subjective experience of meditation quality in real-time, similar to our previously 

reported link between 40–57 Hz gamma activity in the posterior cingulate cortex and the 

subjective experience of effortless awareness (Van Lutterveld et al., 2016). If in future 

neurophenomenology experiments a temporal relation can be observed between these new 

measures and the subjective experience of meditation quality, this would provide the 

rationale to investigate the efficacy of this measure in a neurofeedback randomized 

controlled trial. Further, these measures could be studied by themselves, or in combination 
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with previously established markers to optimize specificity and sensitivity as the field homes 

in on markers not just of meditation itself, but specific aspects and qualities therein. 

Advances such as these are important for moving the field forward as our knowledge of 

different domains of meditative experience are further defined and elucidated (Lutz et al., 

2015).

Limitations

We recruited our meditation sample from a variety of traditions as this approach was 

intended to increase generalizability across meditation traditions and techniques. 

Importantly, both novice and experienced meditators performed a meditation that supported 

effortless awareness. This approach was chosen as effortless awareness has been found to be 

a major component of meditation practice across a variety of meditation traditions, including 

Theravada, Zen, Catholic Contemplative and Gelugpa of Tibetan Buddhism (Garrison et al., 

2013b). Still, meditation practices may vary in how much emphasis is placed on factors that 

underlie effortless awareness. In addition, it should be noted that novice meditators 

performed a meditation practice (noting practice) that was different from the experienced 

meditators, who performed an individually chosen meditation practice that they considered 

most effortless. As such, group instructions were different. However, in pilot studies we 

found that for novices, noting practice was the least effortful form of meditation. Moreover, 

novices are easily trained to proficiency in this meditation practice (van Lutterveld et al, 

2016). In addition, in pilot experiments we observed that experienced meditators who were 

proficient in a different meditation practice than noting practice, actually found noting 

practice more effortful than their own meditation practice. For this reason, we chose to 

implement instructions for both groups that focused on the method that was most effortless 

for that group. An important consideration in the present study is that, although there is 

evidence that meditation induces effortless awareness in experienced meditators (Garrison et 

al, 2013) and in novice meditators (van Lutterveld et al, 2016) , it should be noted that it is 

unclear to exactly what extent the noting practice task induced the subjective experience of 

effortless awareness. Also, meditation practices typically also involve contextual 

components, such as for example intentions for practice, ethical consideration, related 

conceptual beliefs, and community support. As such, the interpretation of current results 

remains limited to that of effortless awareness meditation in a decontextualized research 

setting (Garrison et al., 2013a). It is important to note that we focused on a limited number 

of EEG electrodes. The prime rationale behind this was future scalability. The end-goal of 

this research is to develop new neurofeedback measures that can easily be used to inform 

meditators on their meditation quality, i.e. outside of research lab settings. As such, a limited 

number of electrodes is paramount as this boosts future ease-of-use. In addition, this kept in 

line with the previous MST literature (that reports on 19 to 21 electrodes) (Engels et al., 

2015; Utianski et al., 2016; van Dellen et al., 2015) and facilitated segment selection. 

Another limitation of the current study is the relatively small sample size. However, all of 

our measures in the alpha band showed convergence in pointing toward increased network 

integration, providing confidence in the present results. An alternative design of the present 

study to identify a possible association between meditation and graph measures of network 

integration would be a within-subjects design with experienced meditators, contrasting the 

meditation state with a resting state. However, during piloting, several of the experienced 
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meditators reported that their resting-state was actually a meditation-state, i.e. they had come 

to a point in their meditation practice where they were in a continuous meditative state. To 

be in a non-meditative state would actually be effortful for them, as the meditative state has 

become their ‘default state’ (Brewer et al., 2011). To be able to include these very advanced 

practitioners, who constitute the end-goal of a potential neurofeedback paradigm, we felt a 

cross-section design would be more appropriate. As well, self-report measures on the 

“effortlessness” of the meditations during the runs were not acquired, which could have shed 

additional light on the present results. Finally, we conducted this study in a hypothesis-

driven way. Machine learning approaches could be employed to identify other markers of 

meditation quality.

In sum, experienced meditators showed increased measures of network integration in the 

alpha band. These findings provide the rationale to investigate the relation between these 

measures and depth of meditation in neurophenomenology experiments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
MST calculation pipeline. Step 1 shows the preprocessed EEG. In step 2, a functional 

connectivity matrix was calculated using the phase-lag index (PLI) for each pair of 

electrodes. In step 3, the minimum spanning tree (MST) was constructed from the functional 

connectivity matrix by including the strongest connections while avoiding loops. All the 

connections in the MST are set to 1 while all other connections are set to 0. As such, the 

MST is a structure that is considered to reflect the backbone of the functional connectivity 

network. Step 4 shows an example of a MST.
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Figure 2. 
Schematic representation of three minimum spanning trees (MSTs) consisting of nine nodes. 

MST structures can range between a path-like tree (i.e., less integrated network) to a star-

like tree (i.e. more integrated network). The figure shows examples of a path-like (A), 

hierarchical (B) and star-like tree (C). Red nodes represent leaf nodes (i.e. end-nodes in the 

graph). Blue nodes represent central nodes. In A, the blue node characteristics are: 

betweenness centrality = 16 (indicating there are 16 “shortest-paths” connecting any two 

nodes through that node) and eccentricity = 4 (indicating the longest distance between that 

node and any other node). Red node characteristics are: betweenness centrality = 0 and 

eccentricity = 8. Tree characteristics are BCMax = 16, leaf fraction = 0.25 (indicating 2 leaf 

nodes divided by the potential maximum of 8 leaf nodes as can be observed in figure C), 

Diameter (i.e. the longest path in the network) = 8, average eccentricity = 6.2. In B, blue 

node characteristics are: betweenness centrality = 21 and eccentricity = 2. Red node 

characteristics are betweenness centrality = 0 and eccentricity = 4. Tree characteristics are 

BCMax = 21, leaf fraction = 0.625, diameter = 4 and average eccentricity = 3.4. In C, blue 

node characteristics are betweenness centrality = 28 and eccentricity = 1. Red node 

characteristics are betweenness centrality = 0 and eccentricity = 2. Tree characteristics are 

BCMax = 28, leaf fraction = 1, diameter = 2, average eccentricity = 1.9. Path-like trees have 

the disadvantage of being inefficient in the transfer of information, while the star-like tree at 

the other side of the spectrum has the advantage that information can spread easily across 

the network, but the central node might suffer from overloading of information. A 

hierarchical tree is a hypothesized optimal topology. Please note that the values described 

above indicate the raw graph values. In the present study, these values are normalized for 

network size, yielding graph measure values ranging from 0 to 1. BCMax = maximum 

betweenness centrality. Figure is adjusted from (Numan et al., 2017; van Dellen et al., 2014).
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Figure 3. 
Boxplots of the network integration graph measures. *: statistically significant at Pcorrected 

< 0.05. BCMax: maximum betweenness centrality. Eccentricity: Average eccentricity.
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Table 1

Demographics. Differences in sex, work status, marital status and race were tested using Fisher’s exact tests. 

Highest completed level of education was tested using the Mann-Whitney test. Differences in age were tested 

using an independent samples t-test after testing for normality. N/A: not applicable.

Novice (N=16) Experienced (N=16) P

Gender (male / female) 11/5 13/3 0.685

Age (mean with standard deviation in parentheses) 51 (14) 50 (14) 0.970

Handedness (right / non-right) 13/3 14/2 1.000

Highest level of completed education (college or university/graduate school ) 6/10 4/12 0.453

Work status (full-time / part-time / homemaker / retired / unemployed / not in labor force 
(student)

9/3/1/2/1/0 12/2/0/1/0/1 0.648

Marital status (never married/married/living in permanent relationship/divorced) 1/11/2/2 5/6/3/2 0.231

Race (White / African American / Asian) 13/1/2 16/0/0 0.226

Meditation practice (vajrayana / theravada / mindfulness / zen / vedanta and mindfulness / 
zen and mindfulness / theravada and zen and mindfulness / theravada and zen and 
vajrayana / zen and contemplative)

5/3/2/1/1/1/1/1/1

Lifetime meditation practice hours (median, range) N/A 9688 (2046–50978)
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Table 2

definitions and interpretations of minimum spanning tree-based graph measures.

Minimum Spanning Tree graph 
measure

Definition Correlations

Maximum betweenness centrality Betweenness centrality indicates the number of shortest paths passing 
through a node. Maximum betweenness centrality indicates the highest 
value of betweenness centrality in the network.

Correlates positively 
with network integration

Leaf Fraction The ratio of the number of nodes with only one edge (i.e. ‘end-points’ in 
the graph) and the maximum possible number of nodes with only one 
edge (i.e. the number of nodes minus 1, this indicates a star-shaped 
graph).

Correlates positively 
with network integration

Diameter The length of the longest path in the network. Correlates negatively 
with network integration

Average eccentricity Eccentricity of a node is defined as the longest distance (measured in 
number of edges) between that node and any other node. Average 
eccentricity is the artithmetic mean of all nodes.

Correlates negatively 
with network integration
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