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Abstract

Due to the dynamic, condition-dependent nature of brain activity, interest in estimating rapid 

functional connectivity (FC) changes that occur during resting-state functional magnetic resonance 

imaging (rs-fMRI) has recently soared. However, studying dynamic FC is methodologically 

challenging, due to the low signal-to-noise ratio of the blood oxygen level dependent (BOLD) 

signal in fMRI and the massive number of data points generated during the analysis. Thus, it is 

important to establish methods and summary measures that maximize reliability and the utility of 

dynamic FC to provide insight into brain function. In this study, we investigated the reliability of 

dynamic FC summary measures derived using three commonly used estimation methods - sliding 

window (SW), tapered sliding window (TSW), and dynamic conditional correlations (DCC) 

methods. We applied each of these techniques to two publicly available rs-fMRI test-retest data 

sets - the Multi-Modal MRI Reproducibility Resource (Kirby Data) and the Human Connectome 

Project (HCP Data). The reliability of two categories of dynamic FC summary measures were 

assessed, specifically basic summary statistics of the dynamic correlations and summary measures 

derived from recurring whole-brain patterns of FC (“brain states”). The results provide evidence 

that dynamic correlations are reliably detected in both test-retest data sets, and the DCC method 

outperforms SW methods in terms of the reliability of summary statistics. However, across all 

estimation methods, reliability of the brain state-derived measures was low. Notably, the results 

also show that the DCC-derived dynamic correlation variances are significantly more reliable than 

those derived using the non-parametric estimation methods. This is important, as the fluctuations 
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of dynamic FC (i.e., its variance) has a strong potential to provide summary measures that can be 

used to find meaningful individual differences in dynamic FC. We therefore conclude that utilizing 

the variance of the dynamic connectivity is an important component in any dynamic FC-derived 

summary measure.

1 Introduction

The functional organization of the brain has a rich spatio-temporal structure that can be 

probed using functional connectivity (FC) measures. Defined as the undirected association 

between functional magnetic resonance imaging (fMRI) time series from two or more brain 

regions, FC has been shown to change with age (Betzel et al., 2014; Gu et al., 2015), 

training (Bassett et al., 2015, 2011), levels of consciousness (Hudson et al., 2014), and 

across various stages of sleep (Tagliazucchi and Laufs, 2014). Traditionally, FC has been 

assumed to be constant across a given experimental run. However, recent studies have begun 

to probe the temporal dynamics of FC on shorter timescales (i.e., seconds instead of entire 

runs lasting many minutes) (Hutchison et al., 2013a; Preti et al., 2016). Such rapid 

alterations in FC are thought to allow the brain to continuously sample various 

configurations of its functional repertoire (Sadaghiani et al., 2015; Preti et al., 2016). These 

studies of dynamic FC have also enabled the classification of whole-brain dynamic FC 

profiles into distinct “brain states”, defined as recurring whole-brain connectivity profiles 

that are reliably observed across subjects throughout the course of a resting state run 

(Calhoun et al., 2014). A common approach to determining the presence of such coherent 

brain states across subjects is to perform k-means clustering on the correlation matrices 

across time. Brain states can then be summarized as the patterns of connectivity at each 

centroid, and additional summary metrics such as the amount of time each subject spends in 

a given state can be computed. Using this definition of brain state, it has been shown that the 

patterns of connectivity describing each state are reliably observed across groups and 

individuals (Yang et al., 2014), while other characteristics such as the amount of time spent 

in specific states and the number of transitions between states vary with meaningful 

individual differences such as age (Hutchison and Morton, 2015; Marusak et al., 2017) or 

disease status (Damaraju et al., 2014; Rashid et al., 2014). However, this approach towards 

understanding what has recently been termed the “chronnectome” is still in its infancy 

(Calhoun et al., 2014).

A number of methodological issues have limited the interpretability of existing studies using 

dynamic connectivity. For instance, detecting reliable and neurally-relevant dynamics in FC 

is challenging when there are no external stimuli to model. Dynamic FC research generally 

relies upon the use of resting state fMRI (rs-fMRI) data and therefore, it is unclear whether 

the states that are identified accurately reflect underlying cognitive states. Another issue is 

that dynamic FC methods substantially increase the number of data points to consider 

initially (e.g., a T × d (time-by-region) input matrix becomes a d×d×T array). This is in 

contrast to statistical methods that reduce the dimensionality of the data. Also, the signal-to-

noise ratio of the blood oxygen level dependent (BOLD) signal in rs-fMRI is low, and it is 

often unclear whether observed fluctuations in the temporal correlation between brain 

regions should be attributed to dynamic neural activity, non-neural biological signals (such 
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as respiration or cardiac pulsation), or noise (Handwerker et al., 2012; Hlinka and Hadrava, 

2015). Due to these methodological challenges, metrics of dynamic FC are sensitive to the 

method used to estimate them (Lindquist et al., 2014; Hlinka and Hadrava, 2015; Leonardi 

and Van De Ville, 2015), and uncertainty remains regarding the appropriate estimation 

method to use. An important concern moving forward is to establish methods that maximize 

the reliability of dynamic FC metrics, which in turn will enhance our ability to use 

individual variability in dynamic FC metrics to understand individual variability in behavior 

and cognitive function.

The most widely used method for detecting dynamic FC is the sliding window (SW) 

method, in which correlation matrices are computed over fixed-length, windowed segments 

of the fMRI time series. These time segments can be derived from individual voxels 

(Handwerker et al., 2012; Hutchison et al., 2013b; Leonardi and Van De Ville, 2015), 

averaged over pre-specified regions of interest (Chang and Glover, 2010), or estimated using 

data-driven methods such as independent component analysis (Allen et al., 2012a; Yaesoubi 

et al., 2015). Observations within the fixed-length window can be given equal weight as in 

the conventional SW method, or allowed to gradually enter and exit the window as it is 

shifted across time, a strategy that is used by the tapered sliding window (TSW) method 

(Allen et al., 2012a). Potential pitfalls of the family of SW methods include the use of 

arbitrarily chosen fixed-length windows, disregard of values outside of the windows, and an 

inability to handle abrupt changes in connectivity patterns.

Model-based multivariate volatility methods attempt to address these shortcomings through 

flexible modeling of dynamic correlations and variances. Widely used to forecast time-

varying conditional correlations in financial time series, model-based multivariate volatility 

methods have consistently been shown to outperform SW methods (Hansen and Lunde, 

2005). The dynamic conditional correlations (DCC) method is an example of a model-based 

multivariate volatility method that has recently been introduced to the neuroimaging field 

(Lindquist et al., 2014). Considered as one of the best multivariate generalized auto-

regressive conditional heteroscedastic (GARCH) models (Engle, 2002), the DCC method 

effectively estimates all model parameters through quasi-maximum likelihood methods. 

Additionally, the asymptotic theory of the DCC model provides a mechanism for statistical 

inference that is not readily available when using other techniques for estimating dynamic 

correlations, though such mechanisms are currently under development (Kudela et al., 

2017). In a previous study, simulations and analyses of experimental rs-fMRI data suggested 

that the DCC method achieved the best overall balance between sensitivity and specificity in 

detecting temporal changes in FC (Lindquist et al., 2014). Specifically, it was shown that the 

DCC method was less susceptible to noise-induced temporal variability in correlations 

compared to the SW method and other multivariate volatility methods.

The goal of this study was to identify estimation methods that provide accurate and reliable 

measures of various dynamic FC metrics. In particular, we compared the reliability of 

summary measures estimated using a family of SW methods (that represent the most 

commonly used dynamic FC estimation methods) and those estimated using the DCC 

method (that represents a more advanced model-based multivariate volatility method). We 

assessed the reliability of two types of dynamic FC summary measures: 1) basic summary 
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statistics, specifically the mean and variance of dynamic FC across time, and 2) statistics 

derived from brain states, specifically the dwell time and number of change points between 

states. We compared the reliability of these methods using two publicly available rs-fMRI 

test-retest data sets: 1) the Multi-Modal MRI Reproducibility Resource (Kirby) data set 

(Landman et al., 2011), which used a well-established echo planar imaging (EPI) sequence 

with a repetition time (TR) of 2000 ms, and 2) the Human Connectome Project 500 Subjects 

Data Release (HCP) data set (Van Essen et al., 2013), which used a simultaneous multi-slice 

EPI sequence with a TR of 720 ms. These two data sets differ in terms of the acquisition 

parameters used and in the preprocessing steps performed to clean the data, with acquisition 

and processing parameters for the former representing well-established procedures used by 

many rs-fMRI researchers, and those for the latter representing cutting-edge procedures 

designed to optimize data quality. We hypothesized that the DCC-estimated dynamic FC 

summary measures would be more reliable than those estimated using the conventional SW 

and TSW methods, and that dynamic FC summary measures obtained using the HCP data 

would be more reliable than those obtained using the Kirby data.

2 Methods

2.1 Image Acquisition

2.1.1 Kirby Data—We used the Multi-Modal MRI Reproducibility Resource (Kirby) from 

the F.M. Kirby Research Center to evaluate the reliability of dynamic FC summary measures 

obtained using a typical-length, standard EPI sequence, which were cleaned using 

established preprocessing procedures. This resource is publicly available at http://

www.nitrc.org/projects/multimodal. Please see Landman et al. (2011) for a detailed 

explanation of the entire acquisition protocol. Briefly, this resource includes data from 21 

healthy adult participants who were scanned on a 3T Philips Achieva scanner. The scanner is 

designed to achieve 80 mT/m maximum gradient strength with body coil excitation and an 

eight channel phased array SENSitivity Encoding (SENSE) (Pruessmann et al., 1999) head-

coil for reception. Participants completed two scanning sessions on the same day, between 

which participants briefly exited the scan room and a full repositioning of the participant, 

coils, blankets, and pads occurred prior to the second session. A T1-weighted (T1w) 

Magnetization-Prepared Rapid Acquisition Gradient Echo (MPRAGE) structural run was 

acquired during both sessions (acquisition time = 6 min, TR/TE/TI = 6.7/3.1/842 ms, 

resolution = 1×1×1.2 mm3, SENSE factor = 2, flip angle = 8°). A multi-slice SENSE-EPI 

pulse sequence (Stehling et al., 1991; Pruessmann et al., 1999) was used to acquire one rs-

fMRI run during each session, where each run consisted of 210 volumes sampled every 2 s 

at 3-mm isotropic spatial resolution (acquisition time: 7 min, TE = 30 ms, SENSE 

acceleration factor = 2, flip angle = 75°, 37 axial slices collected sequentially with a 1-mm 

gap). Participants were instructed to rest comfortably while remaining as still as possible, 

and no other instruction was provided. We will refer to the first rs-fMRI run collected as 

session 1 and the second as session 2. One participant was excluded from data analyses due 

to excessive motion.

2.1.2 HCP Data—We used the 2014 Human Connectome Project 500 Parcellation

+Timeseries+Netmats (HCP500-PTN) data release to evaluate the reliability of dynamic FC 
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summary measures obtained using a larger data set of 523 healthy adults, sampled at a 

higher temporal frequency for a longer duration, and cleaned using cutting-edge 

preprocessing procedures. This resource is publicly available at http://

humanconnectome.org. Please see Van Essen et al. (2013) for a detailed explanation of the 

entire acquisition protocol. Briefly, all HCP MRI data were acquired on a customized 3T 

Siemens connectome-Skyra 3T scanner, designed to achieve 100 mT/m gradient strength. 

Participants completed two scanning sessions on two separate days. A T1w MPRAGE 

structural run was acquired during each session (acquisition time = 7.6 min, TR/TE/TI = 

2400/2.14/1000 ms, resolution = 0.7×0.7×0.7 mm3, SENSE factor = 2, flip angle = 8°). A 

simultaneous multi-slice pulse sequence with an acceleration factor of eight (Uğurbil et al., 

2013) was used to acquire two rs-fMRI runs during each session, which consisted of 1200 

volumes sampled every 0.72 seconds, at 2-mm isotropic spatial resolution (acquisition time: 

14 min 24 sec, TE = 33.1 ms, flip angle = 52°, 72 axial slices). Participants were instructed 

to keep their eyes open and fixated on a cross hair on the screen, while remaining as still as 

possible. Within sessions, phase encoding directions for the two runs were alternated 

between right-to-left (RL) and left-to-right (LR) directions. Counterbalancing the order of 

the different phase-encoding acquisitions for the rs-fMRI runs across days was adopted on 

October 1, 2012 (RL followed by LR on Day 1; LR followed by RL on Day 2). Prior to that, 

rs-fMRI runs were acquired using the RL followed by LR order on both days. We limited 

our analyses to data from the 461 participants included in the HCP500-PTN release who 

completed the full rs-fMRI protocol. We will refer to the two runs collected during the first 

visit as sessions 1A and 1B and the two collected during the second visit as sessions 2A and 

2B. Note that subjects did not exit the scanner between runs collected on the same day.

2.2 Image Processing

2.2.1 Kirby Data—SPM8 (Wellcome Trust Centre for Neuroimaging, London, United 

Kingdom) (Friston et al., 1994) and MATLAB (The Mathworks, Inc., Natick, MA) were 

used to preprocess the Kirby data. In order to allow the stabilization of magnetization, four 

volumes were discarded at acquisition, and an additional volume was discarded prior to 

preprocessing. Slice timing correction was performed using the slice acquired at the middle 

of the TR as a reference, and rigid body realignment parameters were estimated to adjust for 

head motion. Structural runs were registered to the first functional frame and spatially 

normalized to Montreal Neurological Institute (MNI) space using SPM8’s unified 

segmentation-normalization algorithm (Ashburner and Friston, 2005). The estimated rigid 

body and nonlinear spatial transformations were applied to the rs-fMRI data, which were 

then high pass filtered using a cutoff frequency of 0.01 Hz. Rs-fMRI data were then spatially 

smoothed using a 6-mm full-width-at-half-maximum Gaussian kernel (i.e., twice the 

nominal size of the rs-fMRI acquisition voxel).

The Group ICA of fMRI toolbox (GIFT) (http://mialab.mrn.org/software/gift; Medical 

Image Analysis Lab, Albuquerque, New Mexico) was used to estimate the number of 

independent components (ICs) in the data, to perform data reduction via principal 

component analysis (PCA) prior to independent component analysis (ICA), and then to 

perform group independent component analysis (GICA) (Calhoun et al., 2001) on the PCA-

reduced data. Estimation of the number of ICs was guided by order selection using the 
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minimum description length (MDL) criterion (Li et al., 2007). Across subjects and sessions, 

56 was the maximum estimated number of ICs and 39 was the median. Prior to GICA, the 

image mean was removed from each time point for each session, and three steps of PCA 

were performed. Individual session data were first reduced to 112 principal components, and 

the reduced session data were then concatenated within subjects in the temporal direction 

and further reduced to 56 principal components. Finally, the data were concatenated across 

subjects and reduced to 39 principal components. The dimensionality of individual session 

PCA (i.e., 112) was chosen by doubling the estimated maximum IC number (i.e., 56), to 

ensure robust back-reconstruction (Allen et al., 2011, 2012b) of subject- and session-specific 

spatial maps and time courses from the group-level independent components. Using the 

ICASSO toolbox (Himberg et al., 2004), ICA was repeated on these 39 group-level principal 

components 10 times, utilizing the Infomax algorithm with random initial conditions (Bell 

and Sejnowski, 1995). ICASSO clustered the resulting 390 ICs across iterations using a 

group average-link hierarchical strategy, and 39 aggregate spatial maps were defined as the 

modes of the clusters. Subject-and session-specific spatial maps and time courses were 

generated from these aggregate ICs using the GICA3 algorithm, which is a method based on 

PCA compression and projection (Erhardt et al., 2011).

We compared the spatial distribution of each of the group-level, aggregate ICs to a publicly 

available set of 100 unthresholded t-maps of ICs estimated using rs-fMRI data collected 

from 405 healthy participants (Allen et al., 2012a). These t-maps have already been 

classified as resting state networks (RSNs) or noise by a group of experts, and the 50 

components classified as RSNs have been organized into seven large functional groups: 

visual (Vis), auditory (Aud), somatomotor (SM), default mode (DMN), cognitive-control 

(CC), sub-cortical (SC) and cerebellar (Cb) networks. Henceforth, we refer to these as the 

Allen components (all 100) and the Allen RSNs (50 signal components). For each of the 

group-level spatial maps, we calculated the percent variance explained by the seven sets of 

Allen RSNs. The functional assignment of each Kirby component was determined by the set 

of Allen components that explained the most variance, and if the top two sets of Allen RSNs 

explained less than 50% of the variance in a Kirby component, the Kirby component was 

labeled as noise. Subject- and run-specific time series from the components then served as 

input for the dynamic FC analyses described below.

2.2.2 HCP Data—We used the preprocessed and artifact-removed rs-fMRI data as 

provided by the HCP500-PTN data release. The preprocessing and the artifact-removing 

procedures performed on the data are explained in detail elsewhere (Glasser et al., 2013; 

Smith et al., 2013; Griffanti et al., 2014; Salimi-Khorshidi et al., 2014), and briefly 

described below. Each run was minimally preprocessed (Glasser et al., 2013; Smith et al., 

2013), and artifacts were removed using the Oxford Center for Functional MRI of the 

Brain’s (FMRIB) ICA-based X-noiseifier (ICA + FIX) procedure (Griffanti et al., 2014; 

Salimi-Khorshidi et al., 2014). At this point in the processing pipeline, rs-fMRI data from 

each run were represented as a time series of grayordinates, a combination of cortical 

surface vertices and subcortical standard-space voxels (Glasser et al., 2013). Each run was 

temporally demeaned and variance normalized (Beckmann and Smith, 2004). All four runs 

for 461 subjects were fed into MELODIC’s Incremental Group-Principal Component 
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Analysis (MIGP) algorithm, which estimated the top 4500 weighted spatial eigenvectors. 

GICA was applied to the output of MIGP using FSL’s MELODIC tool (Beckmann and 

Smith, 2004) using five different dimensions (i.e., number of independent components: 25, 

50, 100, 200, 300). In this study, we used the data corresponding to dimension d = 50 to 

perform further dynamic FC analysis, which was closest to the dimension used for the Kirby 

data (i.e., 39). Dual-regression was then used to map group-level spatial maps of the 

components onto each subject’s time series data (Filippini et al., 2009). For dual-regression, 

the time series of each of the runs were first concatenated within subjects in the following 

order: Day 1 LR, Day 1 RL, Day 2 LR, Day 2 RL (http://www.mail-archive.com/hcp-

users@humanconnectome.org/msg02054.html; S. M. Smith, personal communication, 24 

October 2015). Then the full set of group-level maps were used as spatial regressors against 

each subject’s full time series (4800 volumes) to obtain a single representative time series 

per IC. The functional assignment of each component was determined as described above 

(refer to section 2.2.1) using the Allen RSNs. Subject- and run-specific time series from the 

components then served as input for the dynamic FC analyses described below.

2.3 Computing Dynamic Functional Connectivity

Dynamic FC between multiple regions of the brain are often represented using either a 

covariance or correlation matrix, that represent the relationship between different brain 

regions or components. In this study, the elements of the correlation matrix were estimated 

using the SW, TSW and DCC methods.

2.3.1 Sliding Window Methods—Perhaps the simplest approach for estimating the 

elements of the covariance/correlation matrix is to use the SW method. Here, a time window 

of fixed length w is selected, and data points within that window are used to calculate the 

correlation coefficients. The window is thereafter shifted across time and a new correlation 

coefficient is computed for each time point. The general form of the estimate of the SW 

correlation is given by

(1)

where , i = 1, 2 represents the estimated time-varying mean.

The SW method gives equal weight to all observations within w time points in the past and 0 

weight to all others. Hence, the removal of a highly influential outlying data point will cause 

a sudden change in the dynamic correlation that may be mistaken for an important aspect of 

brain connectivity. To circumvent this issue, Allen and colleagues (Allen et al., 2012a) 

suggested the use of a TSW method. Here, the sliding window (assumed to have width = 22 

TRs) is convolved with a Gaussian kernel (σ = 3 TRs). This allows points to gradually enter 

and exit the window as it moves across time. It should be noted that t is defined to be the 

middle of the subsequent window, thus giving equal weight to future and past values.
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Thus, both SW- and TSW-derived correlations can be seen as special cases of the following 

formula:

(2)

where wts is the weight when considering the contribution of point s in calculating the 

dynamic correlation for index t (at clock time t × TR from the start of the run). For the SW 

method, wts = 1 for t−w−1 ≤ s ≤ t−1 and wts = 0 otherwise. In general, however, the weights 

could be determined by any kernel distribution (Wand and Jones, 1994).

The window-length parameter needs to be carefully chosen to avoid introducing spurious 

fluctuations (Shakil et al., 2016). For the Kirby data, we used a window length of 30 TRs, 

which is the suggested optimal window-length for rs-fMRI data collected using a standard 

EPI sequence with a sampling frequency of 2 seconds (Leonardi and Van De Ville, 2015). 

For the HCP data, we investigated sliding window lengths of 15, 30, 45, 60, 75, 90, 105, and 

120 TRs because it was unclear how the increased sampling frequency used to collect the 

HCP data would influence what is considered the optimal window length. However, we only 

show results for 30, 60, and 120 TRs (hereon referred to as SW30, SW60 and SW120, 

respectively) due to the consistency of the results. These three window lengths allowed us to 

compare the reliability of dynamic FC methods using a window consisting of a similar 

number of volumes as the Kirby data (SW30; ~ 22 s), a window covering a similar amount 

of time (SW120; ~ 86 s), and an intermediate window length (SW60; ~ 43 s).

2.3.2 DCC Method—The DCC model (Engle, 2002) for estimating conditional variances 

and correlations has become increasingly popular in the finance literature over the past 

decade. Before introducing DCC, we must first discuss generalized autoregressive 

conditional heteroscedastic (GARCH) processes (Engle, 1982; Bollerslev, 1986), which are 

often used to model volatility in univariate time series. They provide flexible models for the 

variance in much the same manner that commonly used time series models, such as 

Autoregressive (AR) and Autoregressive Moving Average (ARMA), model the mean. 

GARCH models express the conditional variance of a single time series at time t as a linear 

combination of past values of the conditional variance and of the squared process itself. To 

illustrate, let us assume that we are observing a univariate process

(3)

where εt is a N(0, 1) random variable and σt represents the time-varying conditional 

variance term we seek to model. In a GARCH(1,1) process the conditional variance is 

expressed as

(4)
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where ω > 0, α, β ≥ 0 and α + β < 1. Here the term α controls the impact of past values of 

the time series on the variance and β controls the impact of past values of the conditional 

variance on its present value.

While many multivariate GARCH models can be used to estimate dynamic correlations, it 

has been shown that the DCC model outperforms the rest (Engle, 2002). To illustrate the 

DCC method, assume yt is a bivariate mean zero time series with conditional covariance 

matrix Σt. The first order form of DCC can be expressed as follows:

(5)

(6)

(7)

(8)

(9)

(10)

The DCC algorithm consists of two steps. In the first step (Eqs. 5–7), univariate 

GARCH(1,1) models are fit (Eq. 5) to each of the two univariate time series that make up yt, 

and used to compute standardized residuals (Eq. 7). In the second step (Eqs. 8–10), an 

exponentially weighted moving average (EWMA) window is applied to the standardized 

residuals to compute a non-normalized version of the time-varying correlation matrix Rt 

(Eq. 8). Here  represents the unconditional covariance matrix of εt, which is estimated as:

(11)

and (θ1, θ2) are non-negative scalars satisfying 0 < θ1 + θ2 < 1. Eq. 9 is simply a rescaling 

step to ensure a proper correlation matrix is created, while Eq. 10 computes the time-varying 

covariance matrix.
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In contrast to the standard implementation of SW and TSW methods, where observations n-

steps forward in time are given the same weight as observations n-steps backwards in time, 

the DCC estimates the conditional correlation. Specifically, the current estimate of 

conditional correlation is updated using a linear combination of past estimates of the 

conditional correlation and current observations. In this respect, the model shares similarities 

with the time series models commonly used to describe fMRI noise, such as the AR and 

ARMA models (Purdon and Weisskoff, 1998), where the current noise estimate is 

influenced by its past values, not its future values. In resting state experiments the exact 

timing of the dynamic correlation is typically not meaningful in itself. Therefore in this 

setting, the manner in which the window is defined is unimportant and will simply result in a 

time shift of half the window length size. However, we still believe that the conditional 

correlation should be used because it provides a more suitable estimate of the correlation at a 

specific time point, which can be critical particularly if it is important to link the dynamic 

correlation to the timing of a specific task or emotion.

The model parameters (ω1, α1, β1, ω2, α2, β2, θ1, θ2) can be estimated using a two-stage 

approach. In the first stage, time-varying variances are estimated for each time series. In the 

second stage, the standardized residuals are used to estimate the dynamic correlations {Rt}. 

This two-stage approach has been shown to provide estimates that are consistent and 

asymptotically normal with a variance that can be computed using the generalized method of 

moments approach (Engle and Sheppard, 2001; Engle, 2002).

The description above assumes a bivariate time series. However, in practice yt will often be 

N-variate with N > 2. There are two ways to deal with such data. First, it is possible to fit an 

N-variate version of DCC. A second option is to perform a “massive bi-variate analysis” 

where the bivariate connection between each pair of time courses is fit separately. We opted 

for the latter approach, as it provides increased flexibility (i.e., more variable parameters) at 

the cost of increased computation time. Also note that like AR-processes, DCC can be 

defined to incorporate longer lags. However, in this work we limit ourselves to the first order 

variant.

2.4 Summarizing Dynamic Functional Connectivity

As previously mentioned, estimating dynamic FC initially increases the number of 

observations to consider. To illustrate, suppose we have data from d regions measured at T 
time points, for a total of d × T data points. After computing dynamic correlations, the initial 

output consists of T separate d × d correlation matrices that together represent time varying 

correlations. However, as each matrix is symmetric, there are unique observations only in the 

lower triangular portion of the matrix, and our final output consists of a total of d(d − 1)/2 × 

T data points. Nonetheless, rather than providing data reduction, the analysis increases the 

total number of available data points. For this reason, there is a need to identify ways to 

meaningfully and reliably summarize this information.

2.4.1 Mean and Variance of Dynamic Functional Connectivity—We explored two 

basic summary statistics of pairwise dynamic FC: the dynamic FC mean and variance. The 

mean is presumed to give roughly equivalent information as the standard sample correlation 
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coefficient, while the variance can be used to more directly assess the dynamics of FC. If an 

edge is involved in frequent state-changes (i.e., exhibits greater FC dynamics), it should 

exhibit consistently higher variation in correlation strength across time when compared to 

edges whose FC remains more static throughout an experimental run. Hence, we propose 

that the degree of variability should reasonably be included in any summary of dynamic FC.

2.4.2 Brain States—Another emerging method for summarizing dynamic FC is the 

classification of brain states, or recurring whole-brain patterns of FC that appear repeatedly 

across time and subjects (Calhoun et al., 2014). Following the method of Allen and 

colleagues (Allen et al., 2012a), we used k-means clustering to estimate recurring brain 

states across subjects, separately for each run within a session. We then compared the results 

across runs and sessions to assess reliability. First, we reorganized the lower triangular 

portion of each subject’s d × d × T dynamic correlation data into a matrix with dimensions 

(d(d − 1)/2) × T, where d is the number of nodes and T is the number of time points. Then 

we concatenated the data from all subjects into a matrix with dimensions (d(d − 1)/2) and (T 
× N), where N is the number of subjects. Finally, we applied k-means clustering, where each 

of the resulting cluster centroids represented a recurring brain state.

The number of clusters was chosen based on computing the within-group sum of squares for 

each candidate number of clusters k = 1,….10 and picking the ‘elbow’ in the plot (the point 

at which the slope of the curve leveled off) (Everitt et al., 2001). K-means clustering was 

repeated 50 times, using random initialization of centroid positions, in order to increase the 

chance of escaping local minima. Additional summary measures, such as the amount of time 

each subject spends in each state (i.e., dwell time) and the number of transitions from one 

brain state to another (i.e., number of change points), were computed and assessed for 

reliability across runs and sessions.

2.5 Evaluating the Reliability of Dynamic Functional Connectivity Methods

2.5.1 Mean and Variance of Dynamic Functional Connectivity—The primary goal 

of this work was to investigate the test-retest reliability of dynamic FC summary statistics 

computed using three different estimation methods: SW, TSW, and DCC. We assessed the 

reliability of basic summary statistics (dynamic FC mean and variance) using both the intra-

class correlation coefficient (ICC) (Shrout and Fleiss, 1979) and the image intra-class 

correlation (I2C2) (Shou et al., 2013), which is a generalization of the ICC to images. 

Specifically, we used ICC to assess the reliability of individual elements (i.e., edges) of 

mean and variance matrices, and I2C2 to assess the omnibus reliability of the mean and 

variance of dynamic FC across the brain. The omnibus measure of reliability was computed 

to provide a single value that indicates the degree of reliability across the entire brain.

The ICC is defined as follows:

(12)
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where  denotes the between-subject variance,  the within-subject variance, and 

 the variance of the observed data. To interpret the results, we use the 

conventions from Cicchetti (1994), where an ICC-score less than 0.40 is poor; between 0.40 

and 0.59 is fair; between 0.60 and 0.74 is good; and between 0.75 and 1.00 is excellent.

Based on the classical image measurement error (CIME) (Carroll et al., 2006), the I2C2 

coefficient can be defined as follows:

(13)

where KX is the within-subject covariance, KU is the covariance of the replication error, and 

KW = KX+KU is the covariance of the observed data. Using method of moments estimators, 

calculating I2C2 is both quick and scalable. In theory, both the ICC and I2C2 produce values 

between 0 and 1, where 0 indicates exact independence of the measurements and 1 indicates 

perfect reliability. However, due to the manner in which they are estimated, both of these 

measures could potentially take negative values, which are interpreted as indicating low 

reliability. We calculated I2C2 and ICC for the summary measures described above across 

Kirby sessions 1 and 2 and across HCP sessions 1A, 1B, 2A, and 2B.

2.5.2 Brain States—Brain states were matched across runs, sessions, and dynamic FC 

methods by maximizing their spatial correlation. After matching, we evaluated the reliability 

of brain states derived from each estimation method by calculating the spatial correlation of 

corresponding brain states across runs and sessions for each method. We also used the ICC 

to quantify the inter-run reliability of the estimated dwell time and number of change points 

for each estimation method.

3 Results

3.1 Mean and Variance of Dynamic Functional Connectivity

3.1.1 Kirby Data—We first assessed the reliability of the mean and variance of estimated 

dynamic correlations by applying SW, TSW and DCC methods to the Kirby data.

The reliability of dynamic correlation means was highly consistent across all estimation 
methods: We computed the I2C2 score for the mean of dynamic correlations across all pairs 

of components, which produced an omnibus reliability measure across the brain. As can be 

seen by the overlapping confidence intervals presented in the left panel of Figure 1A, the 

I2C2 of dynamic correlation means was similar across all estimation methods (95% 

confidence intervals (CIs) for SW, TSW and DCC methods were [0.51, 0.65], [0.50, 0.64], 

and [0.51, 0.62] respectively). For comparison, the 95% CI for the static correlation was 

[0.52, 0.66].

To investigate how the reliability of dynamic correlation means varied across the brain, we 

additionally computed the ICC for the mean of dynamic correlations between each pair of 

components (i.e., each edge) across participants. Figure 1B illustrates the ICC matrices for 
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the correlation means between component pairs for all three estimation methods. Consistent 

with the omnibus I2C2 findings, ICC matrices for the correlation means between component 

pairs show similar ICC values and patterns across all estimation methods. For all of the 

methods, the majority of edges fall in the fair-to-good range; see Table 1.

Variances of dynamic correlations estimated using the DCC method displayed the 
highest reliability: We computed the I2C2 score for the variance of dynamic correlations 

across all pairs of components, which produced an omnibus reliability measure across the 

brain. In contrast to that of the dynamic correlation means, the I2C2 of dynamic correlation 

variances differed substantially across the estimation methods. As illustrated in the right 

panel of Figure 1A, the variance of DCC-estimated dynamic correlations was significantly 

more reliable across the brain (95% CI: [0.43, 0.63]) than the variance of dynamic 

correlations estimated using the SW (95% CI: [0.17, 0.32]) and the TSW methods (95% CI: 

[0.18, 0.29]).

Similarly, as shown in Figure 1C, the ICC matrix for the variance of DCC-estimated 

dynamic correlations is distinct from the those for the correlation variances estimated using 

the SW and TSW methods. Specifically, as seen in Table 1, a majority of the DCC-estimated 

edge variances fall in the fair-to-excellent range. In contrast, roughly 80% of the SW- and 

TSW-estimated edges fall in the poor range.

Reliability of edges connecting signal components were higher for DCC-estimated FC 
measures: While the variances of dynamic correlations estimated using the DCC method 

displayed the highest overall reliability, it was also observed that certain edges still displayed 

low ICC values (Figure 1C, right panel). Such observed variability in the reliability across 

edges for dynamic correlation variances led us to further investigate the relationship between 

dynamic correlation variances and the degree of reliability as measured using ICC. We 

therefore plotted the dynamic correlation variances for each edge for session 1 against the 

ICC of the dynamic correlation variance for that edge estimated using the SW, TSW and 

DCC methods (Figure 2A). In this figure, each point represents a single edge. Specifically, 

the red dots indicate edges between two signal components (identified through matching 

with the Allen RSNs), while blue dots represent edges between either two noise components 

or between a noise and a signal component. Interestingly, Figure 2A shows that for all three 

estimation methods, the edges between two signal components display higher variance as 

compared to edges involving at least one noise component. Strikingly, the degree of this 

separation between the signal-signal edges and the signal-noise/noise-noise edges was 

greatest for the DCC method, mainly because the dynamic correlation variances for edges 

involving a non-signal component appeared to shrink toward zero using the DCC method. 

We also related the dynamic correlation means with the correlation variances of each edge. 

We found that the correlation variances between the signal-signal edges increased as the 

absolute value of the correlation means decreased for all estimation methods (Figure 2B). 

Similar to our findings describing the relationship between dynamic correlation variances 

and reliability of each edge (ICC), the degree of separation between signal-signal edges and 

edges involving at least one noise component was greatest for the DCC method. When 

focusing solely on signal-signal edges, according to Table 1, roughly 80% of DCC edges fall 
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in fair-to-excellent range. In contrast, for SW and TSW roughly 85% of edges fall in the 

poor range.

We further investigated which functional edges were reliably more variable by visualizing 

edge variances that were averaged across Kirby subjects for each session. Figures 3A–C 

show the SW-, TSW-, and DCC-estimated correlation variances of each edge and session, 

with components sorted according to their classification of signal or noise. Again, we see 

that the separation between signal-signal edges and edges including at least one noise 

component were enhanced using the DCC method, as compared to SW and TSW methods. 

Figure 3D focuses on DCC-estimated correlation variances for signal-signal edges only, with 

components sorted according to their assignment to one of seven functional domains based 

on the Allen labels. Within both sessions, time-dependent edges between visual components 

(color-coded as pink) and both cognitive control (olive green) and default mode (grey) 

components appeared to be particularly variable, with variance values above 0.12. In 

contrast, edges involving the cerebellum (blue) and subcortical structures (light green) 

showed very little volatility, with variance values below 0.08.

3.1.2 HCP Data—The results for the Kirby and HCP data sets were highly consistent. One 

important difference between the Kirby and HCP data sets is the higher temporal sampling 

frequency with which the HCP data were collected. Due to the cutting-edge nature of HCP 

data acquisition and processing approaches, little information exists on how such high 

sampling frequencies impact the optimal window length for SW methods. Thus, we 

compared the reliability of dynamic correlation means and variances estimated using the SW 

method with varying window lengths (30, 60, and 120 TRs are presented here, though we fit 

lengths ranging from 15 to 120 TRs), as well as those estimated using the DCC method. Due 

to the almost identical reliability results observed between the SW and TSW methods, the 

results for the TSW-method are not presented.

The reliability of dynamic correlation means was highly consistent across all estimation 
methods: Our omnibus reliability findings for the HCP data were highly consistent with 

those observed for the Kirby data. As can be seen in the left panel of Figure 4A, the I2C2 for 

dynamic correlation means was similar across all methods, where 95% CIs for the SW30, 

SW60, SW120, and DCC methods were [0.45, 0.48], [0.45, 0.48], [0.44, 047], and [0.44, 

0.47] respectively. For comparison purposes, the 95% CI for the static correlation was 

[0.454, 0.483].

To investigate how the reliability of dynamic correlation means varied across the brain, we 

additionally computed the ICC for the mean of dynamic correlations between each pair of 

components across participants. Consistent with the omnibus I2C2 findings in Figure 4A, we 

observed that ICC matrices for the mean correlation between component pairs show similar 

patterns of reliability across edges, regardless of the method used to estimate dynamic 

correlations (Figure 4B). Additionally, most edges show a similar level of reliability, with 

the exception of edges involving components 42 and 49. The mean dynamic correlations for 

edges involving component 42 were more reliable than most edges, while those for edges 

involving component 49 were less reliable than most. Based on the Allen labels these 

components were classified as cerebellum and noise, respectively. The average ICC for 
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SW30, SW60, SW120, and DCC derived edge means were 0.45 (sd: 0.09), 0.44 (sd: 0.09), 

0.44 (sd: 0.09), and 0.43 (sd:0.09) respectively. According to Table 2, for all methods 

roughly 70 – 75% of all edges fall in the fair-to-good range.

Variances of dynamic correlations estimated using the DCC method displayed the 
highest reliability: In contrast to that of the dynamic correlation means, the I2C2 of 

dynamic correlation variances differed substantially among estimation methods. As 

illustrated in the right panel of Figure 4A, the variance of dynamic correlations estimated 

using the DCC method was significantly more reliable (95% CI: [.44, .55]) than the SW-

derived dynamic correlation variances, which decayed as the window length increased (95% 

CIs: [0.25, 0.30], [0.23, 0.27], and [0.16, 0.19] for SW30, SW60, and SW120, respectively).

Similarly, as shown in Figure 4C, the ICC matrix for DCC-derived edge variances were 

visually distinct from the ICC matrices for SW-derived edge variances. Overall, for DCC-

estimated edge variances 75% of all ICC values fall in the fair range. In contrast, for SW30 

70% were in the poor range, while for SW60 and SW120 almost all values were in the poor 

range. The average ICC for DCC-estimated edge variance was 0.43 (sd:0.07), compared to 

0.37 (sd: 0.07) for SW30, 0.27 (sd: 0.06) for SW60, and 0.17 (sd: 0.04) for SW120. 

Additionally, the inverse relationship between sliding window length and reliability of 

dynamic correlation variance appears to be fairly consistent across the brain, as is apparent 

from the gradual darkening of the three ICC matrices for SW-estimated variances moving 

from left to right in Figure 4C.

Reliability of edges connecting signal components were higher for DCC-estimated FC 
measures: To further probe edge variance reliability patterns in the HCP data, we plotted the 

dynamic correlation variance for each edge averaged across all sessions against the ICC of 

the dynamic correlation variance for that edge using the SW30, SW60, SW120, and DCC 

methods (Figure 5A). In this figure, each point represents a single edge. Red dots indicate 

edges between two signal components (identified through matching with the Allen RSNs), 

while blue dots represent edges between either two noise components or between a noise 

and a signal component. Similar to the Kirby data findings, dynamic correlation variances 

for signal-noise/noise-noise edges appear to shrink more towards zero when using the DCC 

method compared to the SW methods. Notably, compared to the Kirby data there is a higher 

presence of blue dots embedded in the cluster of red signal-signal edges. This may indicate 

that we were overly aggressive in labeling components as noise. In general, the percent 

variance explained by the Allen RSNs was lower for HCP components compared to Kirby 

components, which may be due to spatial discrepancies between the HCP greyordinate data 

mapped back into volume space and the Allen components.

Figure 5B shows the mean dynamic correlation plotted against the variance of each edge. In 

these plots, each point represents one edge and different colors are used to discriminate 

between signal-signal and signal-noise/noise-noise edges. Similar to the Kirby data, across 

all estimation methods, the dynamic correlation variances decrease as the absolute value of 

the dynamic correlation means increase.
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We further investigated which functional edges were reliably more variable by visualizing 

DCC-derived edge variances averaged across subjects for Session 1A, 1B, 2A, and 2B 

separately, with components sorted by their classification based on the Allen RSNs (Figure 

6). Again, the results show a remarkable consistency in edge variances across runs. In 

particular, note the heightened variation between visual, cognitive control, and DMN 

components, which is consistent with the edge variance patterns observed in the Kirby data. 

Despite the FIX de-noising correction performed on the HCP data that intended to remove 

nuisance signals, our Allen RSN matching procedure labeled some of the HCP components 

as noise (purple components in Figure 6). However, note our discussion above regarding the 

fact that some of these components are potentially mis-labeled. The average variances for 

edges involving an HCP component labeled as noise was .01 (sd: .01), while the average 

variance for signal edges was .03 (sd: .01).

3.2 Brain States

3.2.1 Kirby Data—Next, we examined the reliability of brain state-derived measures using 

Kirby signal components.

Two recurring whole-brain patterns were identified as brain states in the Kirby 
data: Brain state clustering was performed separately for each rs-fMRI session and 

estimation method, resulting in six independent analyses (3 methods x 2 sessions). The 

optimal number of brain states was estimated to be two. Figure 7 illustrates the two brain 

states for each session derived from the SW, TSW, and DCC methods. Using the between-

session spatial correlation as a measure of reliability, we found that brain states 1 and 2 were 

highly reliable across sessions regardless of the dynamic connectivity method used (Table 

3). Across sessions and estimation methods, State 2 was characterized by stronger 

correlations (both positive and negative) relative to State 1. Moderate to strong negative 

correlations between sensory systems, namely auditory (aqua), somatomotor (orange), and 

visual (pink) components, were present in State 2 but were reduced in State 1. Similarly, 

negative correlations within the DMN (grey) components were present in State 2 and were 

reduced in State 1.

Across all estimation methods, reliability of the brain state-derived measures was 
low: Figure 8 shows box plots of the average time spent in each brain state (dwell time; left 

column) and the number of transitions (change points; right column) across subjects for each 

estimation method and session. In both sessions, regardless of the estimation method used to 

derive dynamic correlations, Kirby subjects on average spent the most time in State 1. As 

can be seen from the box plots, there was a great deal of between-subject variability with 

regards to the amount of time spent in each state; however, state dwell time for each subject 

was correlated across runs. Table 4 lists the reliability of estimated dwell times and the 

number of change points derived from each estimation method as measured by the ICC. 

DCC-derived dwell times were the most reliable, and fall in the good range. Similarly, there 

was a great deal of between-subject variability in the estimated number of change points for 

all estimation methods (Figure 8; right column). On average across subjects, state changes 

occurred more frequently when estimated from DCC-derived FC than when estimated from 
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SW- and TSW-derived FC for both sessions. Generally, the reliability of state-change 

frequency estimates was fair for SW and TSW and poor for DCC.

3.2.2 HCP Data—The results for the Kirby and HCP data sets were somewhat consistent.

Three recurring whole-brain patterns were identified as brain states in the HCP 
data: Brain state clustering was performed separately for each dynamic correlation 

estimation method (SW30, SW60, SW120, and DCC) and rs-fMRI run, resulting in 16 

independent analyses (4 estimation methods x 4 runs). The optimal number of brain states 

was estimated to be three. Brain states were matched across runs and dynamic FC methods 

by maximizing their spatial correlation. Figures 9–12 illustrate the three brain states 

determined by applying k-means clustering to the results derived from the SW30, SW60, 

SW120, and DCC methods respectively.

Consistent with the Kirby brain states, there was a great deal of similarity in brain states 

across the four HCP sessions. States 1, 2 and 3 all showed moderate to high correlations 

among signal components representing sensory systems: visual (Vis), somatomotor (SM), 

and auditory (Aud) components (Figures 9–12). In states 1 and 3, a set of components in the 

cerebellum (Cb, light blue) showed negative correlations with visual, somatomotor, and 

auditory components. These negative correlations were not observed in State 2. The HCP 

states were similar to those obtained from the Kirby data, particularly with regard to the 

second state in both cases, though it is important to note that the number and placement of 

the components in each HCP RSN do not map directly onto one another exactly. Using the 

between-run spatial correlation for each brain state as a measure of its reliability, we found 

that brain states 1 and 2 were similarly reliable regardless of the dynamic connectivity 

method used (Table 5). The only clear difference in inter-run similarity was with regard to 

State 3. The third brain state was in general slightly less reliable across runs, with the 

exception of SW120 (0.66, 0.71, and 0.95 for SW30, SW60, and SW120, and r = 0.80 for 

DCC, respectively).

Across all approaches, reliability of the brain state-derived measures was low: Figure 

13 shows box plots of the dwell time (left) and number of change points (right) for each 

estimation method and session. In all four sessions, regardless of the estimation method used 

to derive dynamic correlations, HCP subjects on average spent the most time in State 2, 

while the relative dwell time ranking of States 1 and 3 varied with the estimation method 

used. There was also a great deal of between-subject variability with regard to the amount of 

time spent in each state, and the reliability of dwell time estimates varied across states and 

methods used to derive them (Table 6). For States 1 and 2, DCC- and SW120-derived dwell 

times were more reliable than SW30- and SW60-derived dwell times; however, DCC-

derived State 3 dwell times were less reliable than SW120-derived dwell times.

As was the case when comparing dynamic FC methods applied to the Kirby data, more 

frequent state changes were indicated by DCC-derived brain states than by the SW methods 

across all four HCP runs (Figure 13). On average, subjects switched states every 136 s 

(averaging across the four runs) using SW120-derived brain states, every 52 s using SW60-

derived brain states, every 22 s using SW30-brain states, and every 12 s using DCC-derived 
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brain states, as shown in Figure 13. In other words, brain state derived measures obtained 

using the DCC and SW30 methods displayed more frequent state changes than those 

obtained using the SW60 and SW120 methods. The relatively high rate of state changes for 

the DCC-derived measures can be attributed almost entirely to the existence of more 

frequent transitions when in State 3. Generally, the reliability of state-change frequency 

estimates was quite low for all of the methods, as shown in Table 6.

4 Discussion

Identification of dynamic FC estimation methods and summary measures that maximize 

reliability is important to provide accurate insight into brain function. Here, we compared 

the reliability of summary statistics and brain states derived from commonly used non-

parametric estimation methods (SW and TSW) to a model-based method (DCC). Given the 

previously demonstrated susceptibility of SW methods to noise-induced temporal variability 

in correlations (Lindquist et al., 2014), we set out to compare the reliability of these methods 

when applied to two rs-fMRI test-retest data sets with potentially varying levels of noise: 1) 

the Kirby data set, which was collected using a typical-length, standard EPI sequence and 

then cleaned using established standard preprocessing procedures; and 2) the HCP data set, 

which was collected using a cutting-edge multiband EPI sequence optimized to produce 

higher temporal resolution images and was cleaned using more aggressive preprocessing 

procedures. Consistent with our hypothesis, we found that the model-based DCC method 

consistently outperformed the non-parametric SW and TSW methods, which is in line with 

findings from our previous work (Lindquist et al., 2014). Specifically, the DCC method 

demonstrated the highest reliability of dynamic FC summary statistics in both data sets, and 

was best able to differentiate between signal components and noise components based on the 

variance of the dynamic connectivity values. Reliability of the brain state-derived measures, 

however, were low across all estimation methods, with no method clearly outperforming the 

others.

Reliability of the Mean and Variance of Dynamic Functional Correlations

We found that the mean of dynamic correlations derived from all estimation methods was 

equivalently reliable (Figures 1A–B and 4A–B). This observation was not surprising, as all 

methods should result in average dynamic correlations that roughly correspond to the sample 

correlation and thus should be similarly reliable. For all methods, we observed that the 

dynamic correlation variances decreased as the absolute value of the dynamic correlation 

means increased, which is consistent with recent work by Thompson and colleagues 

(Thompson and Fransson, 2015) (Figures 2 and 5). While more prominent in the HCP data 

(Figure 5), this pattern was also observed for signal-signal edges in the Kirby data (red data 

points in Figure 2). However, the reliability of dynamic correlation variance was 

significantly higher when derived using the DCC method than when derived from SW and 

TSW methods. This observation held true for both the Kirby data (Figures 1A and C) and 

for the HCP data (Figures 4A and C). For SW methods, as the window lengths increased, the 

reliability of the dynamic correlation variance (Figures 4A and C), as well as the estimated 

dynamic correlation variance (Figure 5), decreased - i.e., SW30 resulted in the largest 

correlation variance values that were most reliable, while SW120 resulted in the smallest 
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correlation variance values that were least reliable. This increase in the observed dynamic 

correlation variance values with decreasing window length is expected, as the SW methods 

are more susceptible to noise when smaller window sizes are used. Similarly, the decrease in 

reliability with increasing window length is expected; assuming a constant time series 

length, the total of number of samples used to calculate the mean and variance of dynamic 

FC decreases as the window length increases. Identifying dynamic FC estimation methods 

that maximize the reliability of correlation variance estimates are particularly important, 

given that edges between brain regions involved in larger or frequent state changes should 

exhibit consistently higher correlation variation than edges involving brain regions whose 

functional connectivity and network membership remain more stable throughout an 

experimental session.

Previous studies have found that SW methods are susceptible to noise and suboptimal at 

estimating dynamic FC, both when connectivity changes are gradual (Lindquist et al., 2014) 

and when they are abrupt (Shakil et al., 2016). Performance of the SW method is especially 

poor when small window sizes are applied to standard EPI data, as dynamic changes in 

connectivity produce spurious correlations when only a small number of time points are 

taken into account (Shakil et al., 2016). For all three estimation methods we explored, the 

variance of the dynamic correlations of edges involving two signal components was higher 

as compared to the variance of the dynamic correlations of edges involving at least one noise 

component (Figures 2 and 5). This is important, as it may indicate that neuronally relevant 

signal fluctuation demonstrate higher variance. This observation was true for both the Kirby 

(Figure 2) and the HCP (Figure 5) data sets and is consistent with previous literature (Allen 

et al., 2012a). Moreover, the degree of separation between the variability of signal-signal 

edges and edges that include at least one noise component in the Kirby data was larger for 

the DCC method than for the SW or TSW methods; DCC-derived variance of edges 

involving noise components appeared to shrink more toward zero (Figure 2A). In the HCP 

data, similar decreased variability (i.e., the shrinking of dynamic correlation variance toward 

zero) was observed in clusters of edges across all three estimation methods (Figure 5A), and 

DCC-derived variance of all edges were shifted more toward zero compared to the SW 

methods. Unlike in the Kirby data, however, the degree of separation between the variability 

of signal-signal edges and edges that include at least one noise component was not enhanced 

by the DCC method. This may be due to the fact that most of the HCP noise-related 

components were actively removed using the FIX algorithm (Griffanti et al., 2014; Salimi-

Khorshidi et al., 2014).

In terms of maximizing reliability when comparing different window lengths, the shortest 

window length (SW30) performed the best out of the three windows lengths tested for the 

HCP data and was the most similar to the DCC (Figures 4A and C). However, in terms of 

minimizing the bias in dynamic correlation variance (shrinking the variance of edges 

involving noise components toward zero), the longest window length (SW120) performed 

the best and was the most similar to the DCC method (Figure 5). These findings provide 

further evidence that the DCC method is less susceptible to the temporal variability in 

correlations induced by noise (Lindquist et al., 2014), even when applied to data that has 

been aggressively cleaned.
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Focusing on the variability of dynamic correlations between signal components, we 

observed a group of edges that consistently displayed higher variance than others edges in 

both the Kirby data (Figure 3D) and the HCP data (Figure 6); namely the edges involving 

visual, cognitive control, and default mode regions. Notably, these regions are consistently 

identified as functional hubs (Buckner et al., 2009), and are recognized as some of the most 

globally connected regions in the brain (Cole et al., 2010). Connectivity between these brain 

regions has also been previously described as highly variable using TSW methods (Allen et 

al., 2012a), suggesting that this finding is robust. Interestingly, the DCC-derived variance 

estimates for these edges were more reliable than SW- or TSW-derived variance estimates 

(Figure 2), suggesting that the more reliable DCC-derived estimates may in turn increase the 

likelihood of detecting nuances in dynamic connectivity that might otherwise be missed by 

methods more susceptible to noise. Exploring whether the use of more reliable dynamic FC 

outcome measures also improves the reliability of related brain-behavior relationships is an 

important area of future work.

Finally, there is the issue of long-term test-retest reliability. All of the Kirby data were 

acquired within the same day, while different parts of the HCP data were acquired on 

different days (two sessions acquired on each of two days). Although a thorough 

investigation is outside the scope of the current manuscript, we do note a decrease in 

similarity in the results across days for the HCP data set. For example, the I2C2 score for the 

mean of the dynamic correlations across all pairs of components measured using DCC, 

which produces an omnibus reliability measure across the brain, is on average 0.55 when 

comparing two sessions from the same day, while it is on average 0.44 when comparing two 

sessions from different days. Similarly, the I2C2 score for the variance of dynamic 

correlations across all pairs of components is on average 0.515 when comparing two 

sessions from the same day, while it is on average 0.415 when comparing two sessions from 

different days. Future work is needed to determine how reliable the dynamic correlation is 

between sessions that are further apart in time.

Reliability of Brain States

Our results suggest that the DCC method provides the best estimate for the correlation 

variance (Figures 1 and 4). However, whether that is also true for the estimation and 

characterization of brain states is less clear. Interestingly, the three brain states identified 

from the HCP data (Figures 9–12) follow similar patterns to the most common occurring 

states for healthy individuals found in an earlier study probing recurring brain states 

conducted by Damaraju and colleagues (Damaraju et al., 2014). The brain states estimated 

using the Kirby data (Figure 7) also follow a similar pattern, but the negative correlations 

observed between the sensory networks (Aud, SM, and Vis networks) are more pronounced, 

perhaps due to the smaller number of networks estimated. The observed similarity of brain 

states across methods and data sets suggests that the most robust features of dynamic 

connectivity will emerge regardless of the method used to estimate them. It is critical that 

future research design studies to probe the functional relevance of these brain states. This 

can be achieved by relating these patterns of brain network organization both to neuronal 

measurements and to behavioral and cognitive outcomes.
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In the Kirby data, DCC-derived brain states were equally or more reliable than SW- and 

TSW-derived brain states (Table 3). However, the two methods that produced the most 

reliable connection variances in the HCP data, the DCC and SW30 methods, produced the 

least reliable State 3, as exhibited by the reduced spatial correlation for State 3 across the 

four HCP sessions (Table 5). One possible explanation is that this may be due to increased 

sensitivity of these methods to features of the HCP data acquisition, which varied between 

runs. The DCC and SW30 methods had high inter-run reliability for State 3 between 

sessions collected using the same phase encoding direction (between Sessions 1A and 2B, 

which were collected using a left-to-right phase encoding direction, and between Sessions 

1B and 2A, which were collected using a right-to-left phase encoding direction), but lower 

reliability across pairs of runs collected using opposite phase encoding directions. It may be 

that the DCC and SW30 methods, which were more reliable in terms of correlation 

variances, are able to detect subtle, systematic data acquisition biases that were introduced to 

brain states-derived measures that SW60 and SW120 methods cannot.

Regardless of the method used to estimate dynamic connectivity, metrics derived from the 

brain states (dwell time and number of change points) were generally less reliable than the 

mean and variance of dynamic functional connectivity; this was true for both Kirby brain 

states (ICC values in Table 4 compared with Figure 1) and HCP brain states (ICC values in 

Table 6 compared with Figure 4). An important limitation is that they may be affected by 

aging and other uncontrolled factors, so additional research is needed. An important 

methodological issue that may have impacted the reliability of brain state metrics is the 

difficulty associated with determining the actual number of latent brain states present in the 

data. Prior to applying the k-means clustering algorithm to the dynamic correlation matrices, 

we had to specify the number of brain states into which the algorithm should divide the data. 

Many approaches have been developed to find an approximate optimal cluster number k. 

Here we adopted the popular ‘Elbow Method’ to identify the appropriate number of states 

(Tibshirani et al., 2001). This approach is ad hoc, and there are several more sophisticated 

methods that build statistical models to formalize the ‘elbow’ heuristic, including the ‘gap 

statistic’ (Tibshirani et al., 2001). However, in practice the ‘Elbow Method’ usually achieves 

better performance and strikes a balance between computational efficiency and accuracy. 

Nevertheless, we cannot rule out the possibility that the overall lower reliability of brain 

state metrics was, in part, due to our choice regarding the number of latent brain states 

present in the data.

An important alternative possibility is that average brain states, which are detected reliably 

with the DCC method and display similar patterns across both DCC and SW approaches, 

reflect participant traits that are relatively stable. Summary metrics such as dwell time and 

number of change points, however, may reflect participant states that meaningfully change 

both across days and even within a session. These states could be due to factors such as 

arousal and attention that may themselves be unreliable in interesting ways. Future research 

designed to probe this possibility is needed.

Finally, it is important to note that throughout we assumed subjects are in a single state at a 

given time period. However, recent research (Leonardi et al., 2014; Miller et al., 2016) has 

suggested the possibility that a subject may simultaneously be in multiple overlapping states. 
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In such a setting, the choice of appropriate summary measure would change compared to the 

single-state setting.

Kirby vs. HCP Data Sets

We are encouraged by the level of agreement between our results for these two very different 

data sets. In general, the confidence intervals for the reliability estimates of the dynamic 

correlation means and variances were smaller for the HCP data set (Figure 4) compared to 

the confidence intervals for the Kirby data set (Figure 1). This increased confidence in our 

estimates of reliability is expected given that the HCP data set includes significantly more 

observations than the Kirby data set. At the same time, however, we are intrigued that 

despite almost a sixfold increase in the amount of data collected for each HCP participant 

compared to the amount of data collected for each Kirby participant, the reliability of 

dynamic correlation means and variances were relatively similar (Figures 1 and 4) - though 

the HCP data set did show a significantly lower I2C2 value for the mean dynamic 

correlation than the Kirby data set. The observed similarity in reliability is consistent with 

the results from a previous study that showed that truncating multi-band data sets (up to half 

the original amount of data) did not significantly change the stability of RSNs, as long as 

moderate acceleration factors were used (Chen et al., 2015). It is possible that the amount of 

data acquired for each Kirby subject is sufficient to achieve maximum reliability. 

Alternately, another possible explanation for the observed similarity in the reliability of the 

dynamic FC derived measures between the two data sets is that the introduction of structured 

noise by the multi-band image acquisition scheme reduced the reliability of the dynamic FC 

measures obtained using the HCP data. Specifically, while the simultaneous acquisition of 

multiple slices significantly increases the temporal resolution of the data, the multi-band 

acquisition also introduces strong noise amplification to the images during the subsequent 

un-folding of the simultaneously acquired slices during the image reconstruction process 

(Xu et al., 2013). The amount of noise amplification increases as the acceleration factor (i.e., 

number of slices simultaneously acquired at each TR) increases, and to minimize the 

introduction of undesired structured noise and other image artifacts, use of an acceleration 

factor larger than eight is generally not recommended (Smith et al., 2013; Chen et al., 2015; 

De Martino et al., 2015). This is important, as the HCP data uses an acceleration factor of 

eight, which is at the higher end of the recommended acceleration factor. At this time, 

however, a thorough analysis of the many differences between the two data sets and how 

they interact to impact the reliability of FC dynamics is beyond the scope of this paper.

Comparison to Reliability Studies of Static Functional Connectivity

A number of studies have previously evaluated the reliability of static FC in resting-state 

fMRI data. A particular focus has been on determining the necessary scan length needed to 

obtain reliable estimates (Van Dijk et al., 2010; Anderson et al., 2011; Birn et al., 2013). 

While increased scan length has consistently been shown to improve reliability, different 

studies have reached widely varying conclusions about the necessary length required, with 

recommendations ranging from 5 minutes (Whitlow et al., 2011; Liao et al., 2013) to 90 

minutes (Laumann et al., 2015). Studies have similarly indicated that increasing temporal 

resolution (Birn et al., 2013; Zuo et al., 2013; Liao et al., 2013) results in improved 

reliability. In our study, we examined data with varying scan duration and temporal 
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resolution. As mentioned above, these settings had less clear effects on the reliability of 

dynamic FC than previously observed for static FC.

In terms of preprocessing, several studies have found that global signal regression tends to 

worsen the reliability of static FC (Zuo et al., 2013; Liao et al., 2013), while nuisance 

regression tends to improve it (Zuo et al., 2013). In addition, the use of functional versus 

anatomical regions of interest (ROIs) (Anderson et al., 2011) have been shown to improve 

reliability. In our study we didn’t explicitly study the effects of these different preprocessing 

choices, however we did let them guide the choices we made throughout.

Finally, it is interesting to note that for all methods, the mean of the dynamic correlation and 

the static correlation were similarly reliable.

Considerations for Dynamic Functional Connectivity Estimation Methods

The results of our study provide evidence that dynamic features of functional connectivity 

can be reliably estimated, and that the model-based DCC method outperforms its non-

parametric counterparts (i.e., SW and TSW methods). However, several aspects of the 

dynamic FC estimation process exist of which one should be aware when interpreting results 

from dynamic FC data. First, it is important to note that the dynamic FC estimation methods 

discussed in this work are descriptive in nature, and do not involve specific inferential tests 

or methods. While this reflects the majority of current dynamic connectivity studies, such 

tests are now being introduced into the field. For example, Zalesky et al. (2014) have 

developed a univariate test statistic to measure the extent of time-varying fluctuations in the 

time-resolved correlation coefficients between pairs of brain regions. We anticipate 

significant developments in this area in coming years. Secondly, it is important to recognize 

that model selection procedures were not employed when applying DCC. These include 

plots of the auto-correlation or partial correlation functions to determine model order, and 

diagnostic test to validate the model assumptions. In addition, although we have shown that 

the dynamic FC measures obtained using the model-based DCC method are more reliable 

than SW and TSW methods, we recognize that I2C2 and ICC scores in the range of .6 

indicate that room for improvement remains in the reliability of DCC-derived dynamic FC 

measures. It is thus worth exploring variations or alternatives to the DCC method that might 

improve upon its accuracy and reliability.

Finally, it should be noted that there exist alternative approaches in the literature that may 

also improve upon sliding-window approaches. For example, wavelet decompositions 

effectively use an adaptive windowing approach, like DCC, and may thus also provide 

improved results (e.g., Yaesoubi et al., 2017). Likewise, there exist alternative methods for 

detecting brain states that use techniques from change point analysis (e.g., Cribben et al., 

2012, 2013; Xu and Lindquist, 2015) that may similarly improve upon results obtained using 

k-means clustering. However, we leave further comparisons for future work.

5 Conclusions

The primary aim of this project was to identify dynamic FC estimation methods and 

summary measures that maximize reliability and the utility of dynamic FC, by comparing 
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the reliability of dynamic FC summary measures computed using the SW, TSW, and DCC 

methods. Additionally, comparison of the estimation methods’ reliability between a data set 

acquired using a conventional data acquisition/processing approach and that acquired using a 

more cutting-edge approach was enabled by utilizing the Kirby and HCP data sets. The 

results of our study provide evidence that dynamic features of FC can be reliably estimated 

in both data sets when the model-based DCC method is used. This is significant, as there is a 

clear need in the field for summary measures that can be used to find meaningful individual 

differences in dynamic FC, and it is the degree and patterns of the fluctuations of dynamic 

FC (i.e., the variance) that may provide the most interesting information. We therefore 

believe that utilizing the variance of the dynamic connectivity is a crucial component in any 

dynamic FC-derived summary measure. The study also showed that across all estimation 

methods, reliability of the brain state-derived measures are low, indicating that caution 

should be taken when analyzing and interpreting dynamic FC summary measures derived 

from brain states and that further efforts to develop more reliable approaches to calculating 

brain states are necessary.
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Figure 1. Reliability of dynamic correlation means and variances from the Kirby data
A) Omnibus reliability of dynamic correlation means and variances across all component 

pairs, or edges, for sliding windows (SW), tapered sliding windows (TSW) and dynamic 

conditional correlations (DCC) methods, as measured by the image intra-class correlation 

(I2C2). The mean I2C2 values across components are represented by blue dots, and the 95% 

confidence interval (CI) is represented by red bars. B) Edge-wise reliability of dynamic 

correlation means as measured using the intra-class correlation (ICC). C) Edge-wise 

reliability of dynamic correlation variances as measured using the ICC. Dynamic correlation 

means were similarly reliable across estimation methods using both omnibus and edge-wise 

reliability measures. In contrast, DCC-derived variances were more reliable than SW- and 

TSW-derived variances.
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Figure 2. Comparison of dynamic functional connectivity involving signal and noise components 
from the Kirby data
A) The relationship between variance of dynamic functional connectivity (FC) of each edge 

and reliability of that variance estimated using SW, TSW, and DCC methods. B) The 

relationship between dynamic correlation means and variances for each edge. For both A 

and B, each point represents a single edge, where red dots indicate edges composed of two 

signal components and blue dots indicate edges that contain at least one noise component. 

Compared to dynamic correlation variances derived using the SW and TSW methods, DCC-

derived correlation variances for edges involving a noise component appears to shrink more 

towards zero, thus creating greater separation between signal-signal edges and all other 

edges. Additionally, for all estimation methods, the variances of dynamic correlations 

between signal components increased as the absolute value of the dynamic correlation 

means between signal components decreased.
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Figure 3. Edge variances averaged across subjects for each Kirby session and method
The variances of A) SW-, B) TSW-, and C) DCC-derived dynamic correlations for each edge 

averaged over all 20 subjects for each session. Note that dynamic FC variances are higher 

for signal-signal edges than for edges involving at least one noise component for all 

methods. D) DCC-derived dynamic FC variance of signal-signal edges. The functional label 

assigned to each signal node is indicated using the color code at the bottom right of the 

figure. [SC: subcortical (mint green); Aud: auditory (aqua); SM: somatomotor (orange); Vis: 

visual (pink); CC: cognitive control (olive green); DMN: default mode network (grey); Cb: 

cerebellum (blue); Noise: light purple]. Within both sessions, time-dependent edges between 

Vis components and both CC and DMN components appeared to be particularly variable 

(variance values above 0.12). In contrast, edges involving the cerebellum (blue) and sub-

cortical structures (light green) showed very little volatility (variance values below 0.08).
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Figure 4. Reliability of dynamic correlation means and variances from the HCP data
A) Omnibus reliability of dynamic correlation means and variances across all components 

pairs obtained using SW methods with varying window lengths of 30, 60, and 120 TRs 

(SW30, SW 60, and SW120 respectively) and the DCC method. Omnibus reliability is 

measured using I2C2; the mean I2C2 values across components for each method are 

represented by blue dots, and the 95% CIs are represented by red bars. B) Edge-wise 

reliability of dynamic correlation means as measured using the ICC. C) Edge-wise reliability 

of dynamic correlation variances as measured using the ICC. Dynamic correlation means 

were similarly reliable across estimation methods using both omnibus and edge-wise 

reliability measures. In contrast, DCC-derived variances were more reliable than those 

derived using the SW methods.
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Figure 5. Comparison of the dynamic correlation means and variances of each edge from the 
HCP data
A) The relationship between variance of dynamic functional connectivity (FC) of each edge 

and reliability of that variance estimated using SW30, SW60, SW120, and DCC methods. B) 

The relationship between dynamic correlation means and variances for each edge. For both 

A and B, each point represents a single edge, where red dots indicate edges composed of 

two signal components and blue dots indicate edges that contain at least one noise 

component.Compared to dynamic correlation variances derived using the SW methods, 

DCC-derived correlation variances for edges involving a noise component appears to shrink 

more towards zero. In addition, for all estimation methods, the variances of dynamic 

correlations between signal components increased as the absolute value of the dynamic 

correlation means between signal components decreased.
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Figure 6. DCC-derived edge variances averaged across all subjects in each of the four runs from 
HCP data
HCP data was collected over two visits that occurred on separate days, with two runs 

collected during each visit. Across sessions, phase encoding directions for the two runs were 

alternated between right-to-left (RL) and left-to-right (LR) directions. Sessions 1A and 2B 

indicate runs collected using the RL phase encoding direction, while sessions 1B and 2A 

indicate runs collected using the LR direction. The functional label assigned to each signal 

node is indicated using the color code at the bottom of the figure.
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Figure 7. Brain states from the Kirby data
Two brain states were identified by k-means clustering the A) SW, B) TSW, and C) DCC 

output of signal nodes for sessions 1 and 2 separately. Brain states were highly consistent 

across all estimation methods. The functional label assigned to each signal node is indicated 

using the color code at the bottom of the figure. [SC: subcortical (mint green); Aud: auditory 

(aqua); SM: somatomotor (orange); Vis: visual (pink); CC: cognitive control (olive green); 

DMN: default mode network (grey); Cb: cerebellum (blue)].
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Figure 8. Brain-state-derived summary measures for each session and method from the Kirby 
data
The left column contains box plots of the average time spent in each brain state (dwell time) 

in TRs for each session estimated using the A) SW, B) TSW, and C) DCC methods. The 

right column contains box plots of the number of transitions (change points) across subjects. 

On average, subjects spent more time in State 1 than State 2 across sessions and methods.
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Figure 9. SW30-derived brain states averaged across subjects for each of the four HCP sessions
Brain states were identified using the cluster centers from k-means clustering. The 

functional label assigned to each signal node is indicated using the color code located at the 

bottom of the figure.
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Figure 10. SW60-derived brain states averaged across subjects for each of the four HCP sessions
Brain states were determined using the cluster centers from k-means clustering. The 

functional label assigned to each signal node is indicated using the color code located at the 

bottom of the figure.
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Figure 11. SW120-derived brain states averaged across subjects for each of the four HCP 
sessions
Brain states were determined using the cluster centers from k-means clustering. The 

functional label assigned to each signal node is indicated using the color code located at the 

bottom of the figure.
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Figure 12. DCC-derived brain states averaged across subjects for each of the four HCP runs
Brain states were determined using the cluster centers from k-means clustering. The 

functional label assigned to each signal node is indicated using the color code located at the 

bottom of the figure.
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Figure 13. Brain-state-derived summary measures for each session and method, from HCP data
Box plots of the dwell time in TRs and the number of change points estimated using the A) 

SW30, B) SW60, C) SW120, and D) DCC methods.
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Table 3

Between-session Pearson correlations of the brain states estimated from the Kirby data

DCC SW TSW

State 1 0.95 0.94 0.95

State 2 0.97 0.89 0.90
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Table 4

Reliability of brain state dwell times and of the number of change points estimated from the Kirby data

DCC ICC SW ICC TSW ICC

State 1 Dwell Time 0.61 0.56 0.53

State 2 Dwell Time 0.61 0.56 0.53

Number of Change Points 0.04 0.41 0.39
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Table 5

Average between-session Pearson correlations of the brain states from the HCP data

DCC SW30 SW60 SW120

State 1 0.98 0.95 0.93 0.97

State 2 0.98 0.98 0.98 0.98

State 3 0.80 0.66 0.71 0.95
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Table 6

Reliability of dwell times and number of change points for brain states estimated from the HCP data

DCC ICC SW30 ICC SW60 ICC SW120 ICC

State 1 Dwell Time 0.31 0.27 0.25 0.34

State 2 Dwell Time 0.51 0.44 0.46 0.58

State 3 Dwell Time 0.26 −0.06 0.01 0.52

Number of Change Points 0.26 0.24 0.21 0.26
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