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Abstract

Automatic segmentation of the thalamus can be used to measure differences and track changes in 

thalamic volume that may occur due to disease, injury or normal aging. An automatic thalamus 

segmentation algorithm incorporating features from diffusion tensor imaging (DTI) and thalamus 

priors constructed from multiple atlases is proposed. Multiple atlases with corresponding manual 

thalamus segmentations are registered to the target image and averaged to generate the thalamus 

prior. At each voxel in a region of interest around the thalamus, a multidimensional feature vector 

that includes the thalamus prior as well as a set of DTI features, including fractional anisotropy, 

mean diffusivity, and fiber orientation is formed. A random forest is trained to classify each voxel 

as belonging to the thalamus or background within the region of interest. Using a leave-one-out 

cross-validation on nine subjects, the proposed algorithm achieves a mean Dice score of 0.878 and 

0.890 for the left and right thalami, respectively, which are higher Dice scores than the three state-

of-art methods we compared to. We demonstrate the utility of the method with a pilot study 

exploring the difference in the thalamus fraction between 21 multiple sclerosis (MS) patients and 

21 age-matched healthy controls. The left and right thalamic volumes (normalized by intracranial 

volumes) are larger in healthy controls by 7.6% and 7.3% respectively, compared to MS patients 

(though neither result is statistically significant).
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1. Introduction

The thalamus is a key subcortical structure located between the cerebral cortex and 

midbrain. It relays sensory and motor signals to the cerebral cortex and regulates 

consciousness, sleep, and alertness (Sherman and Guillery, 2000). It is composed of gray 

matter and myelinated fibers and has connections to nearly every major region in the brain. 

Figure 1 shows an example of a manual segmentation of the thalamus overlayed on three 

views of the corresponding magnetic resonance image (MRI) and as a volume rendering. 

The thalamus can be subdivided into thalamic nuclei based on histological or functional 

criteria (Ziyan et al., 2006). The medial and lateral geniculates (Morel, 2007), two small 

thalamic nuclei located inferior to the main body of the thalamus, are identified by arrows in 

Fig. 1. The geniculates can be difficult for automatic algorithms to segment due to their low 

contrast compared to surrounding tissue in T1-w MRI, resulting in an inaccurate estimation 

of the thalamic volume. Changes in thalamic volume are correlated with many 

neurodegenerative diseases including multiple sclerosis (MS) (Cifelli et al., 2002; Houtchens 

et al., 2007), Alzheimer’s disease (Braak and Braak, 1991; Zarei et al., 2010), schizophrenia 

(Byne et al., 2002; Cullen et al., 2003; Danos et al., 2003), and Parkinson’s disease 

(Jellinger, 1999). Thus, accurate segmentation of the thalamus is an important part of 

understanding and managing neurological diseases and using an automatic segmentation 

method can facilitate this task.

Our work is motivated by prior studies on the change in volume of the thalamus in multiple 

sclerosis. Cifelli et al. (2002) manually outlined thalamic volumes in 14 secondary 

progressive MS patients and 14 healthy controls (HCs). After normalizing to the intracranial 

volume (ICV), the mean thalamic volume of the MS patients was 17% smaller compared to 

HCs. Cifelli et al. (2002) also performed a postmortem study using a set of 13 secondary 

progressive MS patients and 13 HCs and found a decrease in thalamic volume of 21% 

between MS patients and HCs. Houtchens et al. (2007) studied the change in thalamic 

volume in 79 MS patients (62 relapsing-remitting, 16 secondary progressive, 1 primary 

progressive) and 16 HCs. The thalami were segmented using an edge-finding tool followed 

by manual correction; a decrease of 16.8% in thalamic volume normalized to ICV was 

reported. Wylezinska et al. (2003) studied 14 relapsing-remitting MS patients and 14 HCs 

and reported a 25% decrease in normalized thalamic volume. A significant inverse 

correlation between normalized thalamic volumes and disease duration was also reported by 

Wylezinska et al. (2003). The thalamic volumes and ICV in the study by Wylezinska et al. 

(2003) were segmented manually by an experienced operator. Such studies could be 

replicated and extended more readily by using an accurate automated algorithm for thalamus 

segmentation.

Previous methods developed for thalamus segmentation have used T1-weighted (T1-w) MRI 

alone. Early work by Collins et al. (1999) proposed augmenting a probabilistic atlas with 
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tissue labels. Bazin and Pham (2008) built upon these ideas by combining statistical and 

topological atlases to find subcortical structures, while observing tissue classification 

requirements. More sophisticated methods incorporate shape, or spatial priors, such as shape 

models, topological correction, or spatial information. For example, Patenaude et al. (2011) 

incorporated prior anatomical information using explicit shape models. Fischl et al. (2002) 

(in a method called FreeSurfer) proposed using spatial information of relative locations of 

subcortical structures as a prior. These single probabilistic atlas approaches were replaced 

with multi-atlas-based segmentation techniques in which multiple atlases are registered to 

the target image and the deformed labels are fused and transferred to the target (Aljabar et 

al., 2009; Asman and Landman, 2013). The benefit of multi-atlas techniques is that by 

fusing the results from multiple atlases, it reduces the effect of errors from any single atlas. 

However, none of these algorithms incorporate the diffusion properties exhibited both inside 

and surrounding the thalamus which can be captured from diffusion tensor imaging (DTI).

DTI is an MRI modality that measures the diffusion of water in tissues (Le Bihan and 

Breton, 1985; Westin et al., 2002). Diffusion occurs strongly along the direction of neural 

fibers that make up connections in the brain. Because the thalamus has both gray matter and 

white matter within its structure, additional features derived from DTI are useful to segment 

the thalamus. For example, Liu et al. (2016) extracted a set of features from DTI and learned 

a dictionary of thalamus and non-thalamus voxels to train a linear classifier. Most other 

existing thalamus segmentation algorithms that incorporate features derived from DTI are 

semi-automatic. Jonasson et al. (2007) proposed a level-set method using the similarity of 

tensors to define the region force, but this method requires manual initialization of a contour 

surrounding the thalamus. Duan et al. (2007) proposed a variation of the mean-shift 

algorithm that requires the user to select the clusters of interest from neighboring clusters to 

obtain the final thalamus segmentation. Another method that incorporates DTI in identifying 

the thalamus is Marrakchi-Kacem et al. (2010) which uses fractional anisotropy, as well as a 

probabilistic atlas to drive a deformable model towards the desired segmentation. An 

advantage of the proposed work over that of Marrakchi-Kacem et al. is the inclusion of the 

specific directional information captured by the diffusion tensor. Fan et al. (2010) proposed a 

set of DTI features to assist with manual segmentation of the thalamus, and we build upon 

this work by using a similar set of features within our framework.

In this paper, we propose an automatic thalamus segmentation algorithm that is novel in that 

it incorporates a set of features derived from DTI and both T1-weighted and T2-weighted 

MRI. In brief, our method aligns atlases and their corresponding thalami segmentations with 

a subject image. The deformed segmentations are used to create a region of interest (ROI) as 

an initial estimate of the location of the thalamus. For each voxel in the ROI, a set of features 

is computed and used in a random forest (RF) classifier. We refer to our proposed method 

henceforth as Random Forest Thalamus Segmentation (RAFTS). RAFTS expands on earlier 

work (Stough et al., 2013, 2014; Glaister et al., 2016) by incorporating multiple atlases, 

expanding our validation, and carrying out a pilot study of thalamic volume differences 

between healthy controls and MS subjects. In Sec. 2, we introduce our data and associated 

atlases and we outline the protocol used to develop the atlases. Sec, 3 has a description of 

our algorithm, including identification of the region of interest, feature vector computation, 

and random forest construction and training. Section 4 includes a validation of our 
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delineation protocol on nine thalami (both the left and right hemispheres) by two raters, and 

a comparison between our automated thalamus segmentation method and three state-of-the-

art methods. In Sec. 5 we present a pilot study comparing a cohort of MS patients with an 

age-matched cohort of HCs. In Sec. 6, we discuss the key features of this work and we 

present our conclusions in Sec. 7.

2. Materials

2.1. Data and Preprocessing

The data used to validate the proposed algorithm are from an ongoing multiple sclerosis 

(MS) study acquired on a 3T MR scanner (Intera, Philips Medical Systems, Netherlands), 

which included imaging of healthy controls (HC) for reference purposes. We acquire the 

following sequences: a T1-w magnetization prepared rapid gradient echo (MPRAGE) with 

TR = 10.3 ms, TE = 6 ms, and 0.82 × 0.82 × 1.17 mm3 voxel size; a double spin echo (DSE) 

with TR = 4177 ms, TE1 = 12.31 ms, TE2 = 80 ms, and 0.82 × 0.82 × 2.2 mm3 voxel size; 

and DTI data using a multi-slice, single shot EPI sequence with one b0 image, 32 gradient 

directions (b = 700 mm/s), minimum TR, TE = 69 ms, and an acquired resolution of 2.2 × 

2.2 × 2.2 mm3 reconstructed on the scanner to 0.8 × 0.8 mm2 in plane. The data first 

undergoes standard neuroimage processing, including inhomogeneity correction (Sled and et 

al., 1998), skull stripping (Carass et al., 2011), distortion correction (Studholme et al., 2000), 

and co-registration of the diffusion and anatomical images (Landman et al., 2007). The 

diffusion tensors are estimated using a nonlinear tensor fitting method (Cook et al., 2006).

2.2. Atlases

A set of eight atlases is used to locate the thalamus and compute the thalamus prior. The first 

of the eight atlases is the ICBM brain template (Mazziotta et al., 1995), which was generated 

by averaging 27 T1-w MRI from a single subject; it contains labels for the thalamus and 

thalamic nuclei. The remaining seven atlases (two from MS patients and five from HCs) are 

produced by manually segmenting the left and right thalami on data acquired with identical 

scanning parameters as those described in Sec. 2.1.

Manual segmentation on the seven atlases is carried out using a protocol based on a 

combination of Fan et al. (2010) and Power et al. (2015). Briefly, after the initial 

preprocessing of the data, a manual rater uses the fractional anisotropy (FA) map from the 

DTI to find the boundaries of the thalamus (Fan et al., 2010). The FA map provides good 

contrast between the lateral thalamus boundary and the surrounding internal capsule. This 

initial segmentation is refined using landmarks found in the coronal view of the T1-w MRI 

as described in the protocol by Power et al. (2015). The lateral and medial geniculates are 

found using the T1-w MRI, also described by Power et al. (2015). Examples of the atlases 

and their corresponding manual thalamus segmentations are shown in Fig. 2. Further details 

about the thalamus manual delineation protocol are given in Appendix A.

3. Method

RAFTS consists of three steps: 1) localization of the thalamus and computation of the 

thalamus prior from a set of atlases; 2) feature extraction; and 3) random forest 

Glaister et al. Page 4

Neuroimage. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



classification. Each step is detailed below. A graphical summary showing the major steps of 

RAFTS is given in Fig. 3.

3.1. Thalamus Localization and Construction of Multi-atlas Priors

The thalamus prior is constructed from a set of brain atlases and their corresponding 

manually segmented thalamus segmentations. The set of brain atlases is registered to the 

subject’s T1-w MR image using the ELASTIX deformable registration algorithm (Klein et 

al., 2010). The corresponding thalamus segmentations are deformed to align with the 

subject’s image.

To compute the thalamus priors, the deformed binary masks are fused and then convolved 

with a Gaussian kernel, as described next. Let Ai denote the ith binary thalamus 

segmentation associated with the ith atlas and Ψi be the deformable transformation that takes 

the ith atlas into the subject space; then Ai ○ Ψi transforms the binary mask into the subject 

space. To produce continuous values, the deformed labels are averaged and then convolved 

with a Gaussian kernel  with standard deviation (SD), σ. We use this result as the prior 

probability P(x) of a voxel in the subject image belonging to the thalamus class, where x is a 

voxel coordinate in the image domain Ω and N is the number of atlases. This can be written 

as

(1)

To reduce the computational burden of training, a region of interest (ROI) is constructed 

around the left and right thalamus using the prior probability. To compute an estimated 

thalamus location, the prior probability is thresholded at tP, giving a binary mask . The 

midsagittal plane (Anbazhagan et al., 2006) is used to separate the binary mask into 

estimated locations of the left and right thalamus. For each thalamus, a padded bounding 

box ℬ is constructed around this mask,

(2)

The lower and upper extents of the estimated thalamus location are given by l = arg minx2

x and h = arg maxx2  x respectively. To ensure that the bounding box covers the entire 

thalamus, we choose r = 0.15 × (h – l), which pads the bounding box by 15% along each 

axis. We compute ℬ for the left and right thalami independently yielding ℬl and ℬr, 

respectively. However, to simplify notation, we will only consider one of those bounding 

boxes and refer to it generically as ℬ.

3.2. Feature Extraction

A set of 14 features are extracted at each voxel x in ℬ. The first six features are the voxel 

location p(x) relative to the bounding box origin and normalized within the range [0, 1] for 
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each axis; T1-w intensity IT1(x); T2-w intensity IT2(x); and the thalamus prior probability 

P(x) (see Eqn. 1). The remaining features are derived from the DTI images. Using standard 

methods, we compute the diffusion tensors at every DTI voxel (Cook et al., 2006) and derive 

the principal eigenvector (PEV) u(x), fractional anisotropy (FA) F(x), and mean diffusivity 

(MD) M(x) (Basser and Pierpaoli, 1996). See Fig. 4 for examples of IT1(x), IT2(x), P(x), 

F(x), and M(x).

3.2.1. Knutsson direction and edge map—The principal eigenvector u is a useful 

feature to describe the diffusion at a voxel as it gives the direction of maximum diffusion. 

However, diffusion may occur in either the direction of u or the opposite direction −u. Given 

this ambiguity, instead of using u directly, we use the Knutsson mapping, which transforms 

3D vectors u and −u to the same five-dimensional (5D) vector K in Knutsson space 

(Knutsson, 1985), as follows,

where u = (u1, u2, u3). Other properties of this mapping are that it is continuous and 

preserves distances. For the remainder of our description we will use the slight abuse of 

notation K(x) = (K1(x), K2(x), K3(x), K4(x), K5(x)) to correspond to K(u(x)), that is the 

Knutsson space mapping of the principal eigenvector u associated with the location x. 

Examples of two of the 5D Knutsson space components are shown in Fig. 4.

To find voxels along the boundary between the thalamus and its surroundings, we consider 

an edge map that highlights voxels where the direction of the principal eigenvector is 

changing rapidly (Fan et al., 2010). The gradient matrix G is computed given the principal 

eigenvector in the Knutsson space, as follows,

The edge map is calculated using the Frobenius norm operator || · || on G, as follows,

(3)

The complete feature vector f at voxel x is given by
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(4)

Examples of the many of these features are shown in Fig. 4.

3.3. Random Forest Framework

We use a random forest (RF) (Breiman, 2001) to classify each voxel in the bounding boxes 

as either thalamus or non-thalamus. The RF framework is trained on a data set with manual 

segmentations generated by following the protocol described in Sec. 2.2 and Appendix A. 

We extract the feature vector described in Eqn. 4 at each voxel in the left and right bounding 

boxes (Eqn. 2) in each of the training data sets. In the case of the right thalamus, the features 

are mirrored across the y-axis before the features are extracted. This allows us to augment 

the number of training data sets available and the benefit of training a single RF for both 

thalami. To account for this mirroring across the y-axis, the x-component of the PEV must 

be negated, as well as the 2nd and 3rd components of the Knutsson space. The class 

(thalamus or non-thalamus) is extracted at each voxel in the bounding box from the 

corresponding binary mask generated by our manual segmentation, where thalamus voxels 

correspond to 1 and non-thalamus voxels are 0.

After extracting the feature vector and class at each voxel, we build and train our RF 

framework. Each decision tree in the RF is trained using all samples from the training data. 

At each decision split, four features are selected at random from the 14 features. The split at 

a given node is chosen such that the gain of Gini’s diversity Index is maximized (Breiman et 

al., 1984). The decision tree is grown until all members of a leaf node belong to either the 

thalamus class or non-thalamus class. The tree growing procedure is repeated until a total of 

75 trees in the RF are trained. The optimal number of decision trees was determined by 

running a leave-one-out cross validation experiment using RFs with between 60 and 90 

trees, at increments of five trees. The RF with 75 trees had the highest Dice Similarity 

Coefficient (see Sec. 4.1 for a definition of this metric) averaged across the left and right 

thalamus. This RF framework is implemented using MATLAB’s (version R2015b) 

TreeBagger class.

To apply the RF to a test subject, we extract the feature vector (Eqn. 4) at a given voxel in 

the bounding box, flipping the features if the voxel is associated with the right bounding 

box, as was done with the training data sets. We use the trained RF to predict the class at that 

voxel. To do so, each tree in the RF classifies the test voxel as thalamus or non-thalamus and 

final classification is decided by taking a majority vote across all trees in the RF. After 

repeating this procedure for each voxel in the bounding box, we produce a binary map of 

voxels classified as thalamus. To reduce noise and smooth the final result, the binary map is 

first smoothed using a morphological closing operation with a 3×3×3 structuring element 

and then the largest connected component is selected. If the result is for the right thalamus, 

the resulting segmentation is flipped back across the y-axis to restore it to the proper 

orientation.
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4. Experiments

4.1. Overview and Metrics

In the first experiment, we measure inter-rater variability on nine subjects (five healthy 

controls (HCs) and four MS patients) that were delineated by two raters using the 

segmentation protocol outlined in Sec. 2.2 and described in detail in Appendix A. Using this 

data, the performance of RAFTS is compared with other state-of-the-art methods.

To quantify the performance of the algorithm, we use the Dice Similarity Coefficient (DSC) 

(Dice, 1945), Hausdorff distance (HD) (Huttenlocher et al., 1993), and mean surface 

distance (MSD). DSC captures the overlap between the algorithm segmentation and a 

reference segmentation, whereas HD and MSD are based on the distance between 

boundaries. DSC is given by

where TP are true positives, FP are false positives, and FN are false negatives. DSC is 

unitless and the range of DSC is [0, 1] with values closer to 1 being desired.

To compute MSD and HD, the set of boundary voxels are determined as any thalamus 

voxels that have at least one neighboring voxel in the 18-connected 3-D neighborhood that is 

classified as non-thalamus. This generates two sets of boundary voxels, BR and BA, 

associated with a reference segmentation and an algorithm segmentation, respectively. For a 

given boundary voxel x in BR, the minimum distance d to the set of algorithm boundary 

voxels BA is defined as

This is similarly defined for a boundary voxel in BA to the set of reference boundary voxels. 

MSD is the average of the minimum distances for each boundary voxel in both sets,

where |BR| and |BA| are the total number of boundary voxels in the reference and algorithm 

segmentations, respectively. HD is computed by taking the maximum across all minimum 

distances,
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Both the MSD and HD are reported in units of voxels. The range of possible values for both 

HD and MSD is [0,1), with smaller values being preferred. Statistical significance tests were 

carried out using the Wilcoxon signed rank test (Gibbons and Chakraborti, 2011).

4.2. Inter-rater Variability

Measuring inter-rater variability in thalamus segmentation is important for two reasons. 

First, due to the challenges inherent in manual segmentation of the thalamus, we are 

interested in understanding the variability in the segmentations produced by following the 

same segmentation protocol. Second, because the manual segmentation by Rater #1 is used 

as ground truth to evaluate the automatic algorithms, it is important to understand the inter-

rater variability to compare it to the performance of the automatic methods. To measure 

inter-rater variability, nine subjects (five HCs and four relapsing-remitting MS patients) were 

delineated by two raters following our segmentation protocol (see Sec. 2.2 and Appendix A). 

Examples of the thalamus segmentations from the two raters are shown in Fig. 5. The color 

of the contours represents the minimum distance from a voxel to a boundary voxel from the 

other rater. Table 1 provides the mean thalamus volume, DSC, HD, and the MSD on the 

manual delineations provided by the two raters. A Bland Altman plot comparing the 

volumes of the manual segmentations from the two raters is shown in Fig. 6.

Overall, the thalami from the two raters were very similar. This is evident by the mean 

difference between the volume being almost zero (see Fig. 6), the DSC being above 0.8 with 

a small standard deviation, and the MSD being only 1.2. The areas with the most 

disagreement occurred in the inferior and superior portions of the thalami, including the 

geniculates and the inferior and superior boundaries of the thalamus. The Bland Altman plot 

(Fig. 6) shows good agreement between the volumes produced by the two raters, with no 

outliers outside of the 95% limits of agreement and in particular shows no systematic bias. 

This shows that two raters following our delineation protocol produce consistent 

segmentations.

4.3. Comparison to Manual Segmentation

To quantify the performance of RAFTS, we compared it with four state-of-the-art thalamus 

segmentation algorithms and two versions of RAFTS trained by excluding differing portions 

of the feature vector. From an ongoing multiple sclerosis (MS) study, nine patients were 

selected and manually delineated in accordance with the protocol outlined in Sec. 2.2. To 

validate RAFTS, we used delineations from seven of these patients produced by Rater #1; 

the two excluded patients have lesions around the thalamus. The seven validation data sets 

are used in a leave-one-out cross validation scheme, with six patients training our RF and 

testing been carried out on the seventh data set. The standard neurological preprocessing 

steps described in Sec. 2.1 take 7.25 hours to run. The steps exclusive to RAFTS, including 

deformable registration of the atlases and applying the RF classifier, take 2.5 hours. Training 

the RF classifier takes less than an hour.

First we compare the thalamus segmentations to that produced by FreeSurfer (Fischl et al., 

2002), a publicly available whole brain segmentation software, and FSL FIRST, a publicly 

available subcortical brain structure segmentation tool (Patenaude et al., 2011). We also 
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compare with two multi-atlas methods. The NMM-NLSS method registers 12 atlases from 

the Neuromorphometrics data set1 using Elastix (Klein et al., 2010) and fuses the results 

using Non-local Spatial Staple (NLSS) (Asman and Landman, 2013). NLSS is a statistical 

fusion algorithm that integrates the underlying T1-w MRI intensity into the fusion process. 

The MA-NLSS method registers the manual segmented atlases used to find the thalamus 

priors using Elastix (Klein et al., 2010) and fuses the results using NLSS (Asman and 

Landman, 2013). Finally, we compare with RAFTS trained without the thalamus prior 

feature and RAFTS trained without any features derived from the DTI.

Table 2 shows the mean DSC, HD, and MSD for all the segmentation algorithms. RAFTS 

has the highest DSC and the lowest HD and MSD compared to the other algorithms. These 

differences are statistically significant (p < 0.05) in all cases except when comparing the 

MSD of the left thalamus obtained using MA-NLSS and RAFTS. Figure 7 shows a Bland 

Altman plot comparing the volumes of the Rater #1’s manual segmentations and the 

automatic segmentation by RAFTS. We note that the limits of agreement are tighter between 

the Rater #1 and RAFTS (see Fig. 7) than between Rater #1 and Rater #2 (see Fig. 6). Figure 

8 shows some example segmentations of the main body of the thalamus, and Fig. 9 includes 

examples of segmentations of the inferior thalamus. The colored contour indicates the 

minimum distance to the manually delineated surface. Qualitatively, FreeSurfer has 

difficulty segmenting the lateral and medial geniculates and NMM-NLSS typically 

overestimates the lateral boundaries of the thalamus. RAFTS and MA-NLSS produce results 

similar to the ground truth since they both incorporate information from an atlas set with 

corresponding manual delineations produced by the same rater.

5. Thalamus Volume Study

We carried out a pilot study examining the change in thalamic volume between age-matched 

HCs and MS patients. We use a set of 42 age-matched subjects from the same MS study (21 

HC and 21 MS subjects) to carry out a volumetric study on thalamus atrophy in MS. The 

MS and HC subjects had a mean (±SD) age of 33.6 (±8.0) and 34.5 (±8.4), respectively. All 

MS patients had a disease sub-type of relapsing-remitting. Subject demographics are 

summarized in Table 3.

Thalamus volumes were computed using RAFTS and then normalized by intracranial 

volume (ICV) to produce the thalamus fraction. ICV was computed using the brain masks 

produced by the skull-stripping algorithm (Carass et al., 2011). The thalamus fractions of the 

HC and MS cohorts are given in Table 4.

To quantify the difference in thalamus fraction, the thalamus fraction ratio was calculated by 

dividing the thalamus fraction of each HC by that of its age-matched MS pair and the mean 

was taken across all pairs. A ratio greater than one indicates that the thalamus is larger in the 

HC subjects compared to their age-matched MS pair. We found that the mean left thalamus 

fraction ratio was 1.076 (p = 0.0630) and the mean right thalamus fraction ratio was 1.073 (p 

1The Neuromorphometrics data set is available for purchase from http://neuromorphometrics.com/.
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= 0.0680). This indicates that the HC thalamus is 7.6% and 7.3% larger compared to age-

matched MS subjects, although both results were not statistically significant.

Figure 10 shows the thalamus fractions versus disease duration (DD), with the HCs plotted 

with DD = 0. The relationship between MS thalamus fractions and DD had a Pearson 

correlation coefficient of −0.3842 (p = 0.0855) for the left thalamus fraction and −0.4419 (p 
= 0.0449) for the right thalamus fraction.

In both HC and MS subjects, the left thalamus fractions were smaller than the right thalamus 

fractions. In HCs, the mean ratio between left and right thalamus was 0.983 and in MS, this 

ratio was 0.982 (p = 0.0853 and p = 0.0735, respectively). This difference in left and right 

thalamus fractions has not been reported in other studies of MS patients and we find that this 

difference was not statistically significant. Our finding for the HCs is consistent with a 

previous study of thalamic volume in HCs by (Szabó et al., 2003), which found no 

statistically significant asymmetrical differences in the thalamus.

6. Discussion

In our experiment comparing RAFTS with other state-of-the-art algorithms and manual 

segmentations, RAFTS has higher Dice scores of 0.878 and 0.890 for the left and right 

thalamus, respectively. The NMM-NLSS method is hindered because the commonly-used 

Neuromorphmetric atlas set does not include the medial and lateral geniculates in their 

segmentations. As a result, these inferior nuclei are not properly segmented in the final 

NMMNLSS segmentations, as seen in Fig. 9. Furthermore, the atlases tend to overestimate 

the thalamus volume by positioning the lateral thalamus boundary too far laterally. 

FreeSurfer also has difficulty segmenting the lateral and medial geniculates. The MA-NLSS 

method uses our manually segmented atlases, delineated using the protocol in Sec. 2.2 

(detailed in Appendix A) and these segmentations include the medial and lateral geniculates. 

Therefore, MA-NLSS is able to find the geniculates accurately. RAFTS also uses these 

atlases to find the thalamus prior and is able to segment the geniculate. In addition, RAFTS 

includes DTI features in our RF framework. By including these features the lateral 

boundaries of the thalamus, which are difficult to find using only T1-w images, can be better 

estimated, improving the DSC.

In the small pilot study calculating the change in the thalamus fraction of brain volume 

across a small set of relapsing-remitting MS and HC subjects, we find a decrease of 7.3% 

and 7.6% in the left and right thalamus of MS subjects, but the results are not statistically 

significant. Due to the reported performance shortcomings of the other methods (see Table 

2), we believe that studying the volume trends of output from those methods would 

misrepresent the underlying cohort behavior. As such, we have chosen to not include other 

existing segmentation methods in our pilot study.

Other studies (Cifelli et al., 2002; Houtchens et al., 2007) of thalamic volume have found a 

larger difference in thalamus fraction between MS and HC, with Cifelli et al. (2002) 

reporting a difference of 17% and Houtchens et al. (2007) reporting a difference of 16.8%. 

There are differences between the study performed in this paper and the aforementioned 
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studies. The subjects used in this study are younger, with an mean age of 33.6 years 

compared to 51.5 in Cifelli et al. (2002) and 42.0 in Houtchens et al. (2007). The average 

disease duration in this study is 5 years, compared to 18.5 years in Cifelli et al. (2002) and 

9.7 years in Houtchens et al. (2007). Finally, we only used relapsing-remitting MS patients 

in our study, while Cifelli et al. (2002) only studied secondary progressive MS patients in 

their in-vivo study and Houtchens et al. (2007) primarily studied relapsing-remitting MS 

patients, but included some secondary and primary progressive MS patients. If we assume a 

linear decrease in thalamic fraction per DD years, then we can extrapolate to a representative 

estimate of the case of a mean DD of 9.7 years—the reported DD in Houtchens et al. (2007). 

In our case, this would give a difference of 14.2% and 14.7% between HC and MS patients 

for the left and right thalamus fractions, respectively, which is comparable to the decrease of 

16.8% reported by Houtchens et al. (2007).

7. Conclusion

We have presented RAFTS, an automatic algorithm to segment the thalamus using 

multimodal imaging data and thalamus priors. We register a set of atlases to obtain a 

thalamus prior and extract a set of features derived from T1-w, T2-w, and DTI to train a 

random forest. In a comparison with three other state-of-the-art algorithms using nine 

subjects with manual delineations, RAFTS obtained higher DSC, lower HD, and lower MSD 

for the left and right thalamus. Averaging over the nine subjects, RAFTS produced DSC of 

0.882 and 0.890, HD of 4.05 and 4.23 voxels, and MSD of 0.829 and 0.802 voxels for the 

left and right thalami, respectively. In all cases except for the comparison of MSD between 

MA-NLSS and RAFTS for the left thalamus, the difference between RAFTS and the state-

of-art-algorithm was statistically significant with p < 0.05. In a small pilot study comparing 

thalamic fraction of 21 MS and 21 HC, we find a decrease of 7.3% (p = 0.0630) in the 

thalamic fraction of the left thalamus of MS subjects and a decrease of 7.6% (p = 0.0680) in 

the thalamic fraction of the right thalamus of MS subjects compared to HC. Future work 

includes segmenting the individual thalamus nuclei by using probabilistic tractography and 

computing thalamic nuclei priors, based on the nuclei priors from the ICBM atlas and 

manually delineated thalamic nuclei parcellation, and using the binary mask as an 

initialization for a deformable model (Ye et al., 2013) to find the surface of the thalamus 

with subvoxel accuracy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Thalamus Segmentation Protocol

In this section, the steps of the thalamus segmentation protocol are provided in detail. The 

protocol is a combination of the protocols by Fan et al. (2010) and Power et al. (2015).

1. In MIPAV (Medical Image Processing, Analysis, and Visualization, http://

mipav.cit.nih.gov/), open the co-registered T1-w and FA volumes. By default, the 

volumes load in axial view.

2. In the FA volume, locate the lateral ventricle, third ventricle, internal capsule and 

stria medullaris. The ventricles show up as dark regions in the FA volume. The 

internal capsule shows up as bright regions and form the lateral boundaries of the 

thalamus.

3. The structures found in step 2 give the approximate location of the thalamus. 

Adjust the contrast of the FA volume to clearly see the edges of the thalamus.

4. Open the MIPAV powerpaint tools and select the 2times2 paintbrush.

5. In the axial slices, paint the thalamus in areas of the FA volume between the 

ventricles and internal capsule. These voxels appear as the same intensity as gray 

matter.

6. Continue painting the thalamus in axial slices until you reach the inferior and 

superior parts of the thalamus, where the FA volume is unreliable for 

segmentation.

7. Save the preliminary thalamus segmentation as a mask.

8. In the T1-w volume, locate the thalamus and nearby structures and adjust the 

contrast.

9. Open the preliminary thalamus segmentation as a mask in the powerpaint tools.

10. Open the T1-w volume with the thalamus mask in triplanar view to see coronal 

and sagittal views of the thalamus.

11. Scroll through the preliminary thalamus mask in coronal view and adjust the 

mask using the paintbrush and eraser based. Most of the adjustments are the 

lateral boundaries of the thalamus, which appears as gray matter intensities. 

Furthermore, the lateral and medial geniculates are found. For corrections, we 

divide the thalamus into three sections: posterior thalamus, middle thalamus, and 

anterior thalamus.
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12. In the posterior thalamus, the thalamus is bordered by the lateral ventricle and 

superior cistern. The thalamus appears very round, which can be used to inform 

the general shape of the lateral boundaries.

13. In the anterior thalamus, the thalamus loosely appears as an upside-down 

rounded right angle triangle. The caudate can be used to indicate the most lateral 

point of the thalamus and the third ventricle indicates the medial boundaries and 

most inferior point of the thalamus. The lateral ventricles give the superior 

boundary.

14. The middle thalamus is where the lateral and medial geniculates occur. Starting 

from the posterior, scroll through the thalamus in the anterior direction in the 

coronal view. The boundaries of the main body of the thalamus (not including 

the geniculates) are similar as steps 12 and 13, so adjust the boundaries 

accordingly.

15. The lateral and medial geniculates are small gray matter structures inferior to the 

rest of the thalamus. As you progress through the coronal slices, the lateral 

geniculate moves laterally and eventually detaches from the main body of the 

thalamus and eventually connects to the optic tract. The medial geniculate does 

not detach.

16. Once you have adjusted the boundaries in coronal view and painted the 

geniculates, the thalamus segmentation must be adjusted in axial view to ensure 

that each slice is consistent with the previous slice. Iterate between the coronal 

view and axial view, adjusting the boundary in areas where the thalamus is 

blocky or spiky.

17. Once the coronal and axial views of the thalamus look consistent and realistic, 

scroll through the sagittal view and check that there are no blocky or spiky areas.

18. Save the thalamus segmentation mask.
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Figure 1. 
Examples of the thalamus anatomy (outlined as a red contour) overlaid on a T1-w MRI. The 

black arrows in the coronal and sagittal views as well as in the volumetric rendering show 

the locations of the medial and lateral geniculates.
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Figure 2. 
Examples of the atlases with the manual segmentation of the thalamus outlined in red.
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Figure 3. 
Graphical summary of RAFTS.
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Figure 4. 
Shown are several of the features used in our approach, including the T1-w intensity 

(IT1(x)), T2-w intensity (IT2(x)), fractional anisotropy (F(x)), mean diffusivity (M(x)), edge 

map (|G(K(x))|F), the multi-atlas prior (P(x)), and two of the Knutsson space components 

(K1(x) and K5(x)). The red outline indicates the manually delineated ground truth.
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Figure 5. 
Examples of the manual segmentations on two HCs and two MS patients generated by the 

two raters following the protocol outlined in Sec. 2.2 and described in detail in Appendix A. 

Colored voxels are boundary voxels of the thalamus. The color of the contour indicates the 

absolute minimum distance from a voxel on the surface generated by one rater to the surface 

of the other rater, with the scale of the distance shown in the color bar in the bottom row.
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Figure 6. 
Bland Altman plots of left and right thalamus volume from manual segmentations generated 

by the two raters. The solid blue line indicates the mean difference and the dashed red lines 

indicate the 95% limits of agreement.
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Figure 7. 
Bland Altman plots of left and right thalamus volume comparing the manual segmentations 

from Rater #1 and the automatic segmentation generated by RAFTS. The solid blue line 

indicates the mean difference and the dashed red lines indicate the 95% limits of agreement.
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Figure 8. 
Examples of thalamus segmentations shown with a colored contour overlaid on the 

corresponding axial T1- w MR image. The rows from top to bottom are the ground truth 

manual segmentation of Rater #1, and segmentations generated by FreeSurfer, FSL FIRST, 

NMM-NLSS, MA-NLSS, and RAFTS, respectively. The columns show two example 

healthy control (HC) subjects and two MS patients. The color contour indicates the absolute 

minimum distance from a voxel on the surface of the segmentation to the manually 

delineated surface of Rater #1 (top row). The color bar in the bottom row shows the scale of 

the distance.
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Figure 9. 
Examples of thalamus segmentations of the lateral and medial geniculates shown with a 

colored contour overlaid on an inferior axial T1-w MR slice. The rows from top to bottom 

are the ground truth manual segmentation of Rater #1, and segmentations generated by 

FreeSurfer, FSL FIRST, NMM-NLSS, MA-NLSS, and RAFTS, respectively. The columns 

show an example healthy control (HC) subject and MS patient. The color contour indicates 

the minimum distance from a voxel on the surface of a segmentation to the manually 

delineated surface of Rater #1.
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Figure 10. 
Thalamus fraction vs. disease duration for (a) the left thalamus and (b) right thalamus.
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Table 1
Inter-Rater Variability

Mean Volume, Dice Similarity Coefficient (DSC), Hausdorff distance (HD), Mean Surface Distance (MSD), 

and the corresponding standard deviation in parenthesis for each metric, across both the left and right thalami 

of nine subjects (five HCs and four relapsing-remitting MS patients) delineated by two raters.

Left Thalamus Right Thalamus

Rater 1 Volume (mm3) 5666.65 (±882.46) 5327.02 (±745.52)

Rater 2 Volume (mm3) 5660.45 (±990.48) 5306.20 (±1038.14)

DSC 0.819 (±0.048) 0.814 (±0.042)

HD (voxels) 6.83 (±1.60) 7.41 (±1.98)

MSD (voxels) 1.220 (±0.222) 1.224 (±0.252)
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Table 2
Method Comparison

Mean (standard deviation) of the Dice Similarity Coefficient (DSC), Hausdorff Distance (HD), and mean 

surface distance (MSD) for the left and right thalamus validated against Rater #1. Compared are FreeSurfer 

(Fischl et al., 2002), FSL FIRST (Patenaude et al., 2011), Non-Local Spatial STAPLE (Asman and Landman, 

2013) using either the Neuromorphometrics atlas (NMM-NLSS) or our own thalamus atlas set (MA-NLSS). 

The * and † indicate a statistically significant difference between the algorithm and RAFTS with p < 0.05 and 

p < 0.01, respectively.

Left Right

DSC

FreeSurfer 0.799 (±0.057)† 0.823 (±0.024)†

FSL FIRST 0.821 (±0.031)* 0.843 (±0.027)†

NMM-NLSS 0.795 (±0.028)† 0.797 (±0.035)†

MA-NLSS 0.859 (±0.057)* 0.874 (±0.016)†

RAFTS w/o Prior 0.842 (±0.028)† 0.816 (±0.047)†

RAFTS w/o DTI 0.841 (±0.041)* 0.825 (±0.046)†

RAFTS 0.882 (±0.033) 0.890 (±0.013)

HD (voxels)

FreeSurfer 10.79 (±2.63)† 10.50 (±1.75)†

FSL FIRST 10.94 (±1.22)† 11.62 (±1.75)†

NMM-NLSS 10.75 (±3.44)† 10.58 (±1.79)†

MA-NLSS 5.61 (±1.85)† 6.43 (±2.58)*

RAFTS w/o Prior 5.26 (±1.46)† 5.94 (±1.55)†

RAFTS w/o DTI 5.05 (±1.20)* 4.93 (±0.78)*

RAFTS 4.05 (±1.07) 4.23 (±0.79)

MSD (voxels)

FreeSurfer 1.410 (±0.300)† 1.296 (±0.111)†

FSL FIRST 1.456 (±0.201)† 1.333 (±0.158)†

NMM-NLSS 1.578 (±0.166)† 1.575 (±0.169)†

MA-NLSS 0.895 (±0.289) 0.856 (±0.061)†

RAFTS w/o Prior 1.079 (±0.183)† 1.294 (±0.328)†

RAFTS w/o DTI 1.101 (±0.294)* 1.236 (±0.336)†

RAFTS 0.829 (±0.174) 0.802 (±0.054)
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Table 3

Demographic information for the age-matched cohort comparison between MS patients (all with the relapsing-

remitting sub-type of MS) and HCs.

Healthy Controls MS Patients

No. of Subjects (Male/Female) 21 (13/8) 21 (16/5)

Mean Age in years (range) 34.5 (22–52) 33.6 (21–52)

Mean Disease Duration in years (range) 0 5 (0–12)
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Table 4

Mean (standard deviation) of the thalamus fraction of the intracranial volume for the left and right thalami of 

our two cohorts of age-matched healthy controls (HC) and MS patients.

HC MS

Left 3.68 × 10−3 (±2.66 × 10−4) 3.50 × 10−3(±5.25 × 10−4)

Right 3.75 × 10−3(±1.90 × 10−4) 3.57 × 10−3(±5.07 × 10−4)
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