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Abstract

Objectives: The US Veterans Health Administration (VHA) has begun using predictive modeling to identify Veterans at high suicide risk to

target care. Initial analyses are reported here.

Methods: A penalized logistic regression model was compared with an earlier proof‐of‐concept logistic model. Exploratory analyses then

considered commonly‐used machine learning algorithms. Analyses were based on electronic medical records for all 6,360 individuals classified

in the National Death Index as having died by suicide in fiscal years 2009–2011 who used VHA services the year of their death or prior year

and a 1% probability sample of time‐matched VHA service users alive at the index date (n = 2,112,008).

Results: A penalized logistic model with 61 predictors had sensitivity comparable to the proof‐of‐concept model (which had 381 predictors)

at target thresholds. The machine learning algorithms had relatively similar sensitivities, the highest being for Bayesian additive regression

trees, with 10.7% of suicides occurred among the 1.0% of Veterans with highest predicted risk and 28.1% among the 5.0% of with highest pre-

dicted risk.

Conclusions: Based on these results, VHA is using penalized logistic regression in initial intervention implementation. The paper concludes

with a discussion of other practical issues that might be explored to increase model performance.
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1 | INTRODUCTION

The US Department of Veteran Affairs (VA) is the cabinet‐level depart-

ment with responsibility for providing services and benefits to US Mil-

itary Veterans. The VA has three main subdivisions: the Veterans

Benefits Administration (compensation and pensions, home loans,

insurance, vocational services, education through the GI Bill); the Vet-

erans Health Administration (VHA; health care and biomedical

research); and the National Cemetery Administration (burial services

and maintenance of VA cemeteries). VHA is the largest of these subdi-

visions and also the largest integrated health care system in the United

States, with 168 VA Medical Centers and 1,053 outpatient clinics that

currently serve over six million Veterans each year (https://www.va.

gov/health/).

The most recent estimates suggest that an average of 20 Veterans

die by suicide each day in the United States, representing 18% of all US

suicide deaths among individuals ages 18 and older, which is substan-

tially higher than expected given that Veterans make up 8.5% of the

population (Office of Suicide Prevention in Veterans Health Adminis-

tration, 2016). Six of these deaths occur among current and recent

users of VHA health care services. A new VHA program addresses this

problem using a statistical prediction model to target Veterans using

VHA services deemed to be at highest suicide risk for a preventive

intervention (Office of Public and Intergovernmental Affairs in Vet-

erans Health Administration, 2017). The feasibility of using such a

model was demonstrated in a proof‐of‐concept study by McCarthy

et al. (2015), which showed that a logistic regression model using

VHA data could significantly predict future suicides. However,

multicollinearity among the predictors in that model raised concerns

that prediction accuracy might be lower than in a model containing

fewer predictors. The current report presents the results of an analysis

designed to improve on the McCarthy model using the same logistic

link function and initial predictor set but selecting a smaller set of pre-

dictors. We also explored the possibility that more complex algorithms

might improve prediction accuracy. The paper closes with a discussion

of important practical considerations for future modeling and program

planning.
2 | MATERIALS AND METHODS

2.1 | Sample

We began with the same database as in the McCarthy et al. (2015)

analysis, which consisted of all 6,360 individuals classified in the

National Death Index (NDI; Centers for Disease Control and Preven-

tion & Department of Health and Human Services, 2015) as having

died by suicide in fiscal years 2009–2011 (October 1, 2008–Septem-

ber 30, 2011) who used VHA services in the year of their death or

the prior year and a 1% probability sample of time‐matched (to sui-

cide decedents) patients alive at the end of the month the suicide

decedent died who received VHA services over the same period of

time (n = 2,112,008). The logic of the data array was that of dis-

crete‐time survival analysis with person‐month the unit of analysis

and time‐varying predictors defined as of the month before the death
(Willett & Singer, 1993). The controls received a weight of 100 (i.e.

1/1.0%) to adjust for the under‐sampling of non‐cases, which was

implemented to reduce computational intensity. An average of

176.7 recorded suicides occurred per month in this population over

the study period, equivalent to 36.1 per 100,000 person‐years

among the roughly 5.9 million Veterans meeting study criteria at a

point in time. Unlike McCarthy et al. (2015), we excluded the 29 orig-

inal sample members for whom administrative data were missing on

patient gender or age as well as the 3,484 original sample members

who were classified as either younger than 18 or older than 100 at

the date of death, resulting in a final sample of 6,359 cases and

2,108,496 controls.

McCarthy et al. (2015) divided the sample into random halves,

estimated coefficients in one half, then applied these coefficients to

the other half to check for out‐of‐sample model performance, and

then created a prospective sample of all individuals who were alive

as of September 30, 2010 and had received VHA services in fiscal

year 2010 or 2011 to explore other outcomes for the patients who

were identified as being at high risk, including deaths from suicide

over a 12‐month time horizon. It is noteworthy that 33% of the sui-

cide decedents in the model development sample (fiscal years 2009–

2011) were also included in the prediction sample (fiscal year 2011),

resulting in lack of independence. We used a different approach to

validate our model that corrected this problem by dividing suicide

decedents in fiscal years 2009–2010 and their controls into random

halves to create separate training and contemporaneous test samples

and then applying these coefficients to an independent prospective

fiscal year 2011 validation sample. We used a consistent 30‐day time

horizon both in estimating and evaluating model fit, again in order to

be consistent with McCarthy et al. (2015), even though an argument

could be made for alternative time horizons being of equal or greater

clinical and policy importance. We return to the issue of alternative

time horizons in the discussion section.
2.2 | Predictors

In order to facilitate direct comparison, we considered the same pre-

dictors as McCarthy et al. (2015): 381 measures of VHA service use

as defined over the 730 days before the death (or selection as a con-

trol). As described by McCarthy et al. (2015), these predictors were

selected based on evidence in previous empirical studies of risk fac-

tors for suicide and on the availability of appropriate indicators in

VHA electronic medical records. Given our focus on overall model

prediction accuracy across different estimation methods rather than

substantive interpretation of individual predictors, and given the large

number of predictors considered by McCarthy et al. (2015), we do

not provide details about these predictors here but only note that

they assessed variables in five broad domains that have been shown

in previous research to predict future suicides (Kessler et al., 2015;

Kessler, Stein et al., 2017): intensity‐recency of inpatient, outpatient,

and emergency service use for various mental disorders over time

lags between 1 and 24 months; parallel measures of VHA service

use for other health problems; measures of prescriptions filled for

various classes of psychotropic and other medications over the same

time periods; basic socio‐demographic variables (e.g. age, sex, region
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of the country); and a number of interactions between socio‐demo-

graphics and selected health care measures. Interested readers are

referred to the original McCarthy et al. (2015) paper for a more

detailed description of the precise predictors.
2.3 | Analysis methods

De‐identified data analysis was carried out remotely on a secure

VHA server by Harvard Medical School analysts with approval by

the Harvard Medical School Human Subjects Committee. Model‐

building began by estimating the McCarthy et al. (2015) model in

the training sample and applying coefficients to the test and prospec-

tive validation samples to evaluate out‐of‐sample performance in

determining the proportions of suicides among the 0.1%, 1.0%, and

5.0% of VHA patients with the highest predicted probabilities of sui-

cide death (thresholds used by McCarthy et al., 2015). It is conven-

tional in such analyses to evaluate prediction accuracy at each

threshold by estimating the test operating characteristics of sensitiv-

ity (the proportion of suicides among Veterans with predicted proba-

bilities above the threshold), specificity (the proportion of non‐

suicides among Veterans with predicted probabilities below the

threshold), positive predictive value (PPV; the proportions of

screened positives that did, in fact, commit suicide), negative predic-

tive value (NPV; the proportion of screened negative that did not

commit suicide), and area under the receiver operating characteristic

curve (AUC; the probability that a randomly selected true case had a

higher predicted probability than a randomly selected non‐case).

However, given the rarity of death from suicide, we focus here only

on sensitivity, as specificity and NPV will be very close to 1 – the

threshold regardless of sensitivity and PPV will be no higher than

0.3% (i.e. 99.7% of screened positives would not commit suicide over

a 30‐day time horizon) even if 100% of true suicide deaths occurred

among Veterans above the 0.1% threshold. The feasibility of devel-

oping interventions for such a rare outcome is a separate matter con-

sidered in the discussion section.

As noted earlier in describing the sample, McCarthy et al. (2015)

included all suicide deaths and a 1% sample of other person‐months

in the sample. This kind of under‐sampling of non‐cases is one of the

standard approaches used to deal with the problem of “class imbal-

ance,” which occurs when the outcome of interest is rare (He &

Garcia, 2009). The problem here is that most prediction algorithms

aim to optimize overall classification accuracy and fail to adjust for

the fact that false negatives may be more costly than false positives,

leading the algorithms to focus on correctly classifying the much

more common non‐cases at the cost of misclassifying the rare cases.

A number of strategies involving under‐sampling of non‐cases,

pseudo‐sampling of cases, and combinations have been developed

to address this problem (Chawla, 2010). Some of these approaches

have been shown to improve on simple sub‐sampling (e.g. Lee,

2014; Rahman & Davis, 2013). However, in order to maintain compa-

rability with the McCarthy et al. (2015) analysis, we retained their

sampling design in our analysis rather than use alternative

approaches to address the problem of the highly skewed outcome

distribution.
The McCarthy et al. (2015) model, which included all 381 predic-

tors, was estimated with proc logistic in SAS 9.3 (SAS Institute Inc,

2010). However, this model was under‐identified due to perfect multi-

variate associations among some model predictors. This identification

problem was resolved in SAS by the program excluding the redundant

predictors to achieve convergence, but this kind of over‐fitting is

known to reduce out‐of‐sample performance (Upstill‐Goddard, Eccles,

Fliege, & Collins, 2013). The challenge in refining the model was to

select an optimal subset of predictors to avoid over‐fitting. We did this

initially by using elastic net penalized regression (Zou & Hastie, 2005)

estimated with the R‐package glmnet (Friedman, Hastie, & Tibshirani,

2010) to select the best additive subset of predictors to optimize clas-

sification of future suicide deaths. Elastic net regression penalizes

over‐fitting with a composite penalty that combines a ridge penalty

(which handles multicollinearity by shrinking all coefficients smoothly

towards zero but retains all variables in the model) (Hoerl & Kennard,

1970) and a lasso penalty (which allows simultaneous coefficient

shrinkage and variable selection, tending to select at most one predic-

tor in each strongly correlated set, but at the expense of giving unsta-

ble estimates in the presence of high multicollinearity) (Tibshirani,

1996). A range of elastic net models that varied the relative importance

of the two penalties was estimated in the training sample and applied

in the test sample to decide on an optimal mix. This elastic net

approach of combining the ridge and lasso penalties has the advantage

of yielding more stable and accurate estimates than either alone while

maintaining model parsimony and using the same link function (i.e.

logistic model assuming additivity among predictors) as the original

McCarthy et al. (2015) model (Zou & Hastie, 2005). Estimates of sensi-

tivity based on the final elastic net model and the McCarthy et al.

(2015) model were compared in the independent prospective valida-

tion sample among the 0.1%, 1.0%, and 5.0% of Veterans with highest

predicted probabilities of suicide in each model.

We then investigated whether more complex machine learning

models would yield higher sensitivities by working with eight machine

learning algorithms that allow complex non‐linearities and interactions

among predictors. These algorithms, which were selected based on

prior recommendations in the literature (Fernández‐Delgado,

Cernadas, Barro, & Amorim, 2014; Wu et al., 2008), included two deci-

sion tree algorithms (Bayesian additive regression trees [BART;

Chipman, George, & McCulloch, 2010]; random forest [Breiman,

2001]), two spline algorithms (adaptive splines [Friedman, 1991]; adap-

tive polynomial splines [Stone, Hansen, Kooperberg, & Truong, 1997]),

generalized boosting (Freund & Schapire, 1999), and support vector

machines with linear, polynomial, and radial kernels (Steinwart &

Christmann, 2008). A basic overview of each algorithm is provided in

Table 1. Each algorithm was implemented in the training sample using

internal cross‐validation to select the optimal specification, tuned in

the test sample to set optimal hyper‐parameter values, and then

applied in the independent prospective validation sample to compare

out‐of‐sample performance with the McCarthy et al. (2015) and elastic

net models. Importantly, out‐of‐sample performance was tested in

data for future years in the independent prospective validation sample

(i.e. fiscal year 2009–2010 data used to develop the models and fiscal

year 2011 data used to evaluate model performance), as this is the way

the final model will be used in practice by VHA in the future.



TABLE 1 Overview of the algorithms used in the analysis

Algorithm R package Description

I. Spline • adaptive spline regression flexibly captures interactions and linear and non‐linear
associations

Adaptive splines earth (Milborrow, Hastie,
Tibshirani, Miller, & Lumley,
2016)

• linear segments (splines) of varying slopes are connected and smoothed to create
piece‐wise curves (basis functions)

• final fit is built using a stepwise procedure that selects the optimal combination of
basis functions

Adaptive polynomial splines polspline (Kooperberg, 2015) • earth and polymars are generally similar, but differ in the order in which basis
functions (e.g. linear versus non‐linear) are added to build the final model

II. Decision tree • decision tree methods capture interactions and non‐linear associations

Random forest randomForest (Liaw &
Wiener, 2002)

• independent variables are partitioned (based on values) and stacked to build
decision trees and ensemble an aggregate “forest”

• random forest builds numerous trees in bootstrapped samples and generates an
aggregate tree by averaging across trees (reducing overfit)

Bayesian additive
regression trees (BART)

BayesTree (Chipman &
McCulloch, 2016)

• Bayesian trees are based on an underlying probability model (priors) for the
structure and likelihood for data in terminal nodes; aggregate tree is generated by
averaging across tree posteriors (reducing overfit)

III. Support vector machines
(SVM)

e1401 (Meyer et al., 2015) • support vector machines treat each independent variable as dimensions in high
dimensional space and attempt to identify the best hyperplane to separate the
sample into classes (e.g. cases and non‐cases)

Linear kernel • goal is to find the hyperplane with the maximum margin between the two closest
points in space

Polynomial kernel • captures linear associations, but alternate kernels can be used to capture non‐
linearities (polynomial and radial basis kernels were used here)

Radial kernel

IV. Generalized boosted
regression models

Adaptive boosting gbm (Freund & Schapire, 1999) • adaptive boosting is a meta‐algorithm that iteratively fits decision‐trees using
weights to adjust for cases classified incorrectly in the prior iteration

• this allows subsequent iterations to focus on predicting more difficult cases

TABLE 2 Comparative model fit of best‐fitting elastic net model with
the McCarthy et al. (2015) model estimated in the fiscal years 2009–
2010 training sample and applied to both the fiscal years 2009–2010
test sample and the independent prospective fiscal year 2011 valida-
tion sample

Sensivity among Veterans with
predicted risks in the top …

0.1% 1.0% 5.0%

I. Elastic net model applied to

Testing sample 2.8 11.8 28.2

Validation sample 2.2 9.9 26.3

II. McCarthy model applied to

Testing sample 2.9 11.6 27.1

Validation sample 2.0 9.5 25.3
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3.1 | Performance of the optimal elastic net model
compared to the McCarthy et al. (2015) model

The best elastic net model in the training sample had 61 predictors and

exclusively used the lasso penalty. Sensitivities of that model in the

test sample among patients in the top 0.1%, 1.0%, and 5.0% of risk

were 2.8%, 11.8%, and 28.2%, respectively (Table 2). These values

were all comparable to or slightly higher than those of the McCarthy

et al. (2015) model even though the latter included 381 predictors.

Sensitivities were lower in all models in the prospective validation sam-

ple but the sensitivities of the 61‐variable elastic net model remained

the same or higher (2.2–26.3%) than those of the 381‐variable

McCarthy et al. (2015) model (2.0–25.3%).

3.2 | Performance of machine learning models that
allowed for non‐linearities and interactions

A number of the other algorithms we considered required tuning in the

test sample to fix parameters that had to be specified in advance for

the model to converge. As we used the test sample for this purpose,

we focus only on comparative model performance in the prospective

validation sample. BART had the highest sensitivity among the 0.1%

of patients with highest predicted risk (2.7%) followed by adaptive

polynomial regression splines (2.4%) and elastic net (2.2%) (Table 3).

BART also had highest sensitivity among the 1% of patients with
highest predicted risk (10.7%) followed by elastic net (9.9%) and gradi-

ent boosting (9.8%). BART again had highest sensitivity among the 5%

of patients with highest predicted risk (28.1%) followed by gradient

boosting (27.0%) and elastic net (26.3%).
4 | DISCUSSION

We showed that a penalized logistic model containing only 61 predic-

tors had comparable sensitivity in an independent prospective valida-

tion sample to the logistic model with 381 predictors in the original

McCarthy et al. (2015) analysis. We also showed that more complex



TABLE 3 Comparative model fit of elastic net with other machine
learning classifiers estimated in the fiscal years 2009–2010 training
sample, tuned in fiscal years 2009–2010 test sample, and applied in
the independent prospective fiscal year 2011 validation sample

Sensitivity among Veterans with
predicted risks in the top …

0.1% 1.0% 5.0%

I. Elastic net 2.2 9.9 26.3

II. Splines

Adaptive splines 1.8 9.0 24.0

Adaptive polynomial splines 2.4 9.6 26.0

III. Decision trees

Random forest 2.0 9.3 24.1

Bayesian additive regression
trees (BART)

2.7 10.7 28.1

IV. Support vector machines (SVM)

Linear kernel 1.0 6.1 17.3

Polynomial kernel 1.0 7.1 19.7

Radial kernel 1.2 6.9 21.2

V. Generalized adaptive boosting 2.0 9.8 27.0
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machine learning algorithms allowing for non‐linearities and interac-

tions had comparable sensitivities at the same thresholds, but with

BART seeming to have a slight advantage over the other algorithms.

BART uses Bayesian averaging of regression trees across multiple sam-

ples to address the problem of over‐fitting that exists in random for-

ests and other tree‐based approaches. Comparison studies have

shown that BART often out‐performs other commonly‐used machine

learning algorithms, including random forests, neural networks, and

gradient boosting, in head‐to‐head comparisons (Chipman et al.,

2010). However, to confirm the reliability of this advantage in

predicting Veteran suicides, it would be useful to evaluate the stability

of the relatively modest advantage we found here for BART by carry-

ing out simulations to calculate the standard errors of the sensitivity

estimates and replicating the analyses over different years and time

lags. Based on the relatively modest advantages of BART and the other

complex machine learning methods over penalized logistic regression

in the analyses reported here, VHA is using the penalized logistic

model to target Veterans for preventive intervention while the possi-

bility of using more complex models is under investigation.

Taken together with recent advances from the literature, the find-

ings presented here suggest a number of opportunities for enhancing

and extending the current model. First, alternative methods could help

deal with the problem of extreme imbalance (i.e. the rarity of suicide

deaths). As noted earlier in the section on analysis methods, a number

of methods have been developed to address this problem (Chawla,

2010). Toolkits exist to evaluate the relative effectiveness of these dif-

ferent methods in specific empirical cases (Kuhn, 2015; Lemaitre,

Nogueira, & Aridas, 2016). We are carrying out a systematic compari-

son of these different methods to determine the best one for

predicting VA suicide deaths.

Second, we are exploring the value of expanding the predictor set

beyond information about treatment available in the VHA electronic

medical record. Under consideration here are such things as: (i) resi-

dential zip code data to code small area geocode information on
variables known to predict suicides (e.g. local unemployment rate)

(Nordt, Warnke, Seifritz, & Kawohl, 2015); (ii) historical US Department

of Defense administrative data known to predict post‐discharge

suicides (Reger et al., 2015); (iii) data from commercial search engines

calling up various public records (e.g. legal, financial, criminal justice)

that might predict suicides (http://www.accurint.com/); (iv)

surveillance of postings on social media for patients who consent to

monitoring; (v) surveillance of data from phone apps (Onnela & Rauch,

2016) and wearables (Alam, Cho, Huh, & Hong, 2014).

Third, we are exploring the possibility that prediction accuracy

could be improved not only by using machine learning methods that

allow for complex non‐linear‐interactive associations, but also by

combining predictions across algorithms rather than selecting one best

algorithm. This ensemble approach can be especially useful when cer-

tain algorithms predict some types of cases better than others. For

example, the SuperLearner ensemble method yields a level of predic-

tion accuracy at least as high as that of the best‐performing algorithm

in the ensemble set and often considerably higher than that value

(Polley, LeDell, Kennedy, Lendle, & van der Laan, 2016). As a result,

the questions that need to be investigated are which algorithms to

include in the ensemble and whether the level of improvement in pre-

diction accuracy based on the ensemble compared to the best single

algorithm is sufficient to warrant the increased effort of using the

ensemble approach. We are exploring both of these issues.

Fourth, the 30‐day time horizon used by McCarthy et al. (2015)

(which, as noted in the section on the sample, we accepted for pur-

poses of comparison) needs to be reconsidered. In characterizing the

individuals identified as being at high risk in their model, McCarthy

et al. (2015) found that they were at increased risk for a period of at

least one year. However, the risk decayed rapidly over longer time

horizons, especially for the highest‐risk patients. This should not be

surprising, as the optimal predictors of imminent suicide risk are

unlikely to be the same as the predictors of suicides over a longer time

period. The only way to address this issue, recognizing that longer time

horizons are of clinical and policy importance, is to estimate models

that allow for different predictors (or different coefficients associated

with the same predictors) for different time horizons. One approach

of this sort would be to use survival analysis to predict suicide deaths

over a longer time horizon than the 30 days considered here and build

into the model the possibility that some baseline predictors vary in

their coefficients with increased time from baseline (van Houwelingen

& Putter, 2011). Another approach would be to estimate separate

models for different time windows (e.g. suicide deaths in the 30 days

from baseline, in days 31–60 from baseline, days 61–90 from baseline,

etc.), and evaluate the extent to which prediction accuracy decays over

time. Both approaches are promising.

Fifth, the possibility is being investigated of developing models

to predict which high‐risk patients are most likely to be helped by

specific interventions to complement models that predict which

patients have the highest suicide risks (Kessler, van Loo et al.,

2017). The two types of predictions need not be the same, as

patients at the very highest risk might be less responsive than those

at slightly lower risk to some preventive interventions. Consistent

with this possibility, clinical researchers have shown that mentally ill

patients differ not only in absolute treatment response (i.e. the impact

http://www.accurint.com
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of treatment on a given patient) but also in relative treatment

response (i.e. the specific treatment that is optimal for a given

patient) and that a wide range of variables other than disorder sever-

ity predicts both types of differences (Kessler, van Loo et al., 2017).

One way to advance our understanding of differential treatment

response would be for the VHA to randomize their initial preventive

intervention over a wider range of risk rather than implement the

intervention only with the highest‐risk patients (e.g. to intervene

with a random one‐tenth of the patients at the highest 1.0% of pre-

dicted risk rather than with all of the patients at highest 0.1% of

predicted risk). This design would make it possible to search for sys-

tematic predictors of differential treatment response using recently‐

developed machine learning methods developed for that purpose

(Imai & Ratkovic, 2013; Rosenblum & van der Laan, 2011) and then

to use the results to target future intervention assignments to the

patients most likely to be helped and randomize additional interven-

tions among patients less likely to be helped by the earlier interven-

tions. This use of sequential pragmatic trials would make it possible

to build an increasingly sophisticated clinical decision support

scheme for optimizing patient treatment response across a coordi-

nated set of interventions.
5 | CONCLUSIONS

Based on the results reported here, VHA has implemented a program

using the elastic net model reported here to target patients for preven-

tive interventions. At the same time, as a part of ongoing program

development, VHA is considering the expansion of predictors to con-

sider in future models and evaluating the extent to which more

advanced machine learning algorithms and ensemble methods could

improve prediction. It is evaluating the impact of developing models

that use different approaches to address the class imbalance problems

and that are designed specifically to allow prediction across the range

of time horizons that are of importance to policy and practice. VHA is

also strongly encouraging research to consider the benefits of strate-

gies that target patients with the highest probabilities of responding

to interventions rather than focusing only on those with the highest

probabilities of death from suicide.
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