
1Scientific Reports | 7: 12297  | DOI:10.1038/s41598-017-12069-0

www.nature.com/scientificreports

Retention of Mitochondria in 
Mature Human Red Blood Cells 
as the Result of Autophagy 
Impairment in Rett Syndrome
Diego Sbardella1, Grazia Raffaella Tundo1, Luisa Campagnolo2, Giuseppe Valacchi3,4,  
Augusto Orlandi2, Paolo Curatolo5, Giovanna Borsellino6, Maurizio D’Esposito7,8,  
Chiara Ciaccio1, Silvia Di Cesare9, Donato Di Pierro1, Cinzia Galasso5, Marta Elena Santarone5, 
Joussef Hayek10, Massimiliano Coletta1 & Stefano Marini1

Rett Syndrome (RTT), which affects approximately 1:10.000 live births, is a X-linked pervasive neuro-
developmental disorder which is caused, in the vast majority of cases, by a sporadic mutation in 
the Methyl-CpG-binding protein-2 (MeCP2) gene. This is a transcriptional activator/repressor with 
presumed pleiotropic activities. The broad tissue expression of MeCP2 suggests that it may be involved 
in several metabolic pathways, but the molecular mechanisms which provoke the onset and progression 
of the syndrome are largely unknown. In this paper, we report that primary fibroblasts that have been 
isolated from RTT patients display a defective formation of autophagosomes under conditions of 
nutrient starvation and that the mature Red Blood Cells of some RTT patients retain mitochondria. 
Moreover, we provide evidence regarding the accumulation of the p62/SQSTM1 protein and ubiquitin-
aggregated structures in the cerebellum of Mecp2 knockout mouse model (Mecp2−/y) during transition 
from the non-symptomatic to the symptomatic stage of the disease. Hence, we propose that a 
defective autophagy could be involved in the RTT clinical phenotype, which introduces new molecular 
perspectives in the pathogenesis of the syndrome.

Rett Syndrome (RTT) is a X-linked pervasive neuro-developmental disorder affecting approximately 1:10.000 
live births which was originally classified as an autism-related disorder with abnormalities linked to the 
Central Nervous System (CNS). Within the first 6–12 months of life, individuals with RTT develop progres-
sive intellectual and motor disabilities that strongly limit life expectancy1,2. Due to the broad expression of the 
Methyl-CpG-binding protein-2 (MeCP2) gene, which is mutated in the 90–95% of patients (while the remain-
ing 5–10% carry mutations either in the CDKL-5 or in FOXG1–2 genes), there have been several clinical and 
biochemical observations demonstrating that MeCP-2 mutations can lead to abnormalities and dysfunction in 
several tissues3–22. MeCP2 is a transcriptional activator/repressor which is thought to be involved in pleiotropic 
activities, but exactly how the spectrum of MeCP-2 mutations leads to RTT phenotypes is unclear and unfortu-
nately, to date, no cure for the disease exists1,2.

A preliminary set of data in our lab showed: (i) a reduced ability to grow in a low-nutrient medium of primary 
skin fibroblasts (hereafter referred to as fibroblasts) that had been isolated from RTT patients (unpublished obser-
vation); (ii) an increase in intracellular Reactive Oxygen Species (ROS) and a reduced ATP content in fibroblasts 
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and also in RBCs harvested from RTT patients23. On the basis of these data, we investigated the major intracellu-
lar proteolytic pathway which regulates homeostasis under low-nutrient and other stressful (i.e. heat and oxida-
tive stress, infections) conditions, i.e. autophagy and, in particular, macroautophagy24–30.

Macroautophagy is a tightly regulated process which is triggered under stressful conditions, such as nutri-
ent starvation, whereby cells engulf in a double membrane vesicle (i.e., autophagosomes) unnecessary/damaged 
organelles or cytosolic components that should be delivered to lysosomes for degradation and the recycling of 
nutrients24–30.

It is interesting to note that autophagy also plays a key role in physiological processes, such as axon sprouting 
and dendritic spine arborisation during CNS development as well as clearance of mitochondria during reticulo-
cyte maturation to RBCs31–34.

In this paper, we describe a defective autophagy in RTT patients. This discovery is supported by evidence 
obtained in primary skin fibroblasts and RBCs isolated from human patientsand by monitoring the accumulation 
of autophagy-markers in the cerebellum of a murine model of the disease.

Results and Discussion
RTT fibroblasts show a defective autophagy activation under starving conditions.  In order to 
verify the hypothesis regarding a defective autophagy in RTT patients, we analyzed autophagy activation under 
starving conditions in skin primary fibroblasts isolated from RTT patients (n = 4) and healthy subjects (n = 4)17,19.

We first defined the viability over time of healthy and RTT fibroblasts cultured in starvation medium by 
both MTT and Trypan blue exclusion tests. With respect to the viability of RTT fibroblasts grown in standard 
medium, RTT fibroblast viability decreased after 4 h of starvation (20 ± 3.3% of dying cells, p < 0.05); this per-
centage considerably increased after 6–8 h of starvation (60 ± 5.1% of dying cells, p < 0.05) (Fig. 1a). Conversely, 
healthy fibroblasts were still fully viable after 4 h of starvation with only a very low reduction in viability after 
6–8 h (10 ± 1.2% of dying cells, p < 0.01) with respect to the viability of fibroblasts grown in standard medium 
(Fig. 1a). Thus, as from a direct comparison of the viability of the two cell lines at each time-point, it came out 
that the viability of RTT fibroblasts was severely compromised starting from time 4 h (see details in the figure 
legends, p < 0.05). Moreover, a Western blotting (WB) analysis highlighted that in RTT fibroblasts which had 
been starved for 4 h, a band corresponding to the p25 fragment of the poly (ADP-ribose)polymerase-1 (PARP) 
was greatly increased (96 ± 4%, p < 0.001) with respect to the faint detection at time 0. This fragment is released 

Figure 1.  Decreased viability of RTT fibroblasts in starvation medium. (a) Time-dependent viability of RTT 
and healthy fibroblasts cultivated over 24 h in the starvation medium. Results are reported as percentage 
of living cells vs the number of cells at time 0 of the assay. Results presented are the means ± S.E. of five 
independent experiments performed in triplicate. *Significantly different from healthy cells at time 0; 
**significantly different from either RTT cells time 0 and from the viability of healthy cells at the corresponding 
time point (*p < 0.01, **p < 0.05, oneway ANOVA, followed by Tukey’s test, n = 15). (b) Western blotting 
analysis of the p25 fragment of PARP (Poly (ADP-ribose) polymerase (PARP), a family of proteins involved 
in a number of cellular processes concerning mainly DNA repair and programmed cell death) in RTT and 
healthy fibroblasts grown under starving condition for 2 and 4 h. Beta-tubulin was used as internal control. 
A representative immunoblot of three independent experiments is reported. Results presented are the 
means ± S.E. of three independent experiments performed in triplicate. *Significantly different from control 
(either healthy and RTT cells at time 0) (*p < 0.001, one-way ANOVA, followed by Tukey’s test, n = 9).
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by the caspase-dependent degradation of the protein during the early phase of apoptosis induction (Fig. 1b)35. 
The p25 fragment was almost undetectable in the healthy fibroblasts under the same experimental conditions.

These data confirmed that RTT fibroblasts did not tolerate growth in a starving medium, and quickly under-
went apoptosis. Therefore, we further investigated the autophagic flux by monitoring the LC3B-II marker clear-
ance in the presence and in the absence of a lysosome-inhibitor, such as chloroquine (CQ)24–30.

After having ruled out a CQ-linked cytotoxic effect (Supplementary Fig. S1), healthy and RTT fibroblasts were 
cultivated either in resting or in starvation media for 2 h in the presence or absence of 20 µM of CQ to quantify the 
LC3B-II/GAPDH ratio by WB (Fig. 2a). The pattern of the LC3B-II/GAPDH ratio (or any other internal control 

Figure 2.  Defective autophagy activation in RTT fibroblasts. (a) WB analysis of RTT and healthy fibroblasts 
cultivated either in DMEM or starvation medium (2 h) in the presence or absence of 20 µM of CQ (upper 
panel). Filters were probed with an anti-LC3B or an anti-GAPDH antibody. A representative immunoblot of 
three independent experiments performed on the cell lines available (n = 4 for both the healthy and the RTT 
fibroblasts) is reported. Densitometric determination of LC3B to GAPDH content was performed by ImageJ 
software (lower panel). Results are the means ± S.E. of three independent experiments. Differences between the 
different experimental conditions in the same group are significantly different (*p < 0.05; **p < 0.001, one-way 
ANOVA, followed by Tukey’s test, n = 32). (b) Healthy and RTT fibroblasts (n = 4 in both cases) cultivated in 
a starvation medium for 2 and 4 h in the absence of CQ were assayed for p62/SQSTM1 and PSMA-3 content 
by WB (upper panel). The average intensity of the band was normalized to that of β-tubulin (for p62) and 
GAPDH (for PSMA-3) by ImageJ software (lower panel). The image shown is representative of four independent 
experiments. Even though the viability of RTT fibroblasts at 4 h of starvation was already compromised (see 
Fig. 1), this time-point was necessary to follow degradation of p62 which is normally delayed32. The results 
are the means ± S.E. of four independent experiments performed in triplicate. *,**,*Significantly different from 
the specific (see bars) experimental condition (*,*p < 0.05; **p < 0.001 one-way ANOVA; followed by Tukey’s 
test, n = 24). (c) Immunofluorescence microscopy analysis of autophagy activation by healthy (upper panel) 
and RTT fibroblasts (lower panel) (n = 4 in both cases). Resting (left), starved (middle) and starved + 20 µM 
of CQ (right) cells were stained with an anti-LC3B antibody. Due to the low detection of autophagosomes 
under resting conditions, the cells positive for autophagy induction under starving condition were quantified 
as the percentage of those displaying at least 10 dots. The results are the means ± S.E. of three independent 
experiments. **Significantly different from the specific (see bars) experimental condition (*p < 0.001; 
**p < 0.005, Unpaired τ Student’s test, n = 24).
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which is not modulated by autophagy) under conditions of autophagy activation and in the presence and in the 
absence of CQ (or any other lysosomal inhibitor) is considered a valid strategy to monitor the autophagy flux.

In healthy fibroblasts, cultivated in standard medium, LC3B-I was clearly immuno-detected, whereas LC3B-II 
was faint. The LC3BII/GAPDH ratio of healthy fibroblasts cultivated in standard medium in the absence and in 
the presence of CQ was comparable (Fig. 2a, left panel). This observation suggests that the basal autophagy was 
almost undetectable in the healthy fibroblasts (Fig. 2a, left panel).

When these cells were grown in the starvation medium and in the absence of CQ for 2 h, the LC3B-II/GAPDH 
ratio increased (60 ± 4.8%, p < 0.05) compared to that of healthy fibroblasts cultivated in standard medium either 
in the absence or the presence of CQ (which was, as previously mentioned, identical) (Fig. 2a, left and right 
panel). This behaviour, indeed, indicates that LC3-I actually underwent lipidation to form LC3B-II, which is an 
early marker of autophagy activation24–30. In order to test the presence of this autophagy activation, we cultivated 
cells in a starvation medium in the presence of CQ for 2 h and they displayed a further increase of the LC3B-II/
GAPDH ratio (94 ± 5.5%, p < 0.001) with respect of healthy fibroblasts cultivated in standard medium (Fig. 2a, 
left and right panel).

Furthermore, the difference between the LC3B-II/GAPDH ratio of healthy fibroblasts grown in starvation 
medium in the absence and in the presence of CQ was statistically significant (p < 0.05, Fig. 2a, left panel)

Thus, according to the standard interpretation of the LC3B-II pattern by WB analysis, the overall result 
indicates that, in the absence of nutrients, healthy fibroblasts stimulate the formation of autophagosomes 
which undergo accumulation in the presence of CQ. This behaviour is compatible with a normal autophagic 
flux24–30. Interestingly, in the case of RTT fibroblasts grown in standard medium, while LC3B-I was clearly 
immuno-detected, LC3B-II was very faint in cells both in the absence and in the presence of CQ (Fig. 2a, left 
panel). Under starving conditions and in the absence of CQ, the appearance of a faint band corresponding to 
LC3B-II in RTT fibroblasts only after long exposure of the filter suggested that at least a minimal lipidation of 
LC3B-I occurred (Fig. 2a, left panel). Hence, the LC3B-II/GAPDH ratio between RTT fibroblasts grown in star-
vation medium in the absence of CQ was increased (93 ± 5.5%, p < 0.001) with respect to that of RTT fibroblasts 
grown in standard medium in the absence of CQ (Fig. 2a, right panel).

However, the administration of CQ to RTT fibroblasts grown in starvation medium did not further increase 
the LC3B-II/GAPDH ratio which was increased (95 ± 3.5%, p < 0.001) if compared to cells grown in standard 
medium in the absence of CQ, but was not significantly increased with respect to the LC3B-II/GAPDH ratio of 
RTT fibroblasts grown in starvation medium in the absence of CQ (Fig. 2a, left panel). This finding suggested that 
no accumulation of autophagosomes occurs in RTT cells and the WB analysis supported a block, at some level, 
in the autophagy flux24–31.

To further strengthen our hypothesis concerning a possible defective autophagic flux, we verified the deg-
radation of two recognized autophagy reporter substrates in healthy and RTT fibroblasts starved for 2 and 4 h 
in the absence of CQ, namely: (i) the p62/SQSMT1 protein, which assists the clearance of poly-ubiquitinated 
protein aggregates and is itself degraded by the lysosomal hydrolases36; (ii) the 20 S proteasome, which is quickly 
degraded under starving conditions37,38. With respect to the basal level of the two proteins (i.e. time 0), a decrease 
over time of the p62/tubulin ratio (44 ± 10% after 4 h, p < 0.001) and of the PSMA-3/GAPDH ratio (i.e. the α7 
subunit of the 20 S proteasome) (45 ± 3.1% after 2 h, 11 ± 5.2% after 4 h, in both cases p < 0.001) was observed in 
healthy fibroblasts (Fig. 2b, upper panel).

In the case of RTT fibroblasts, the decrease of the p62/tubulin ratio over time was not statistically significant 
even after 4 h (89 ± 9%), whereas the decrease of the PSMA3/GAPDH ratio at 2 h (81 ± 4.4%, p < 0.05) and 4 h 
(78 ± 5.1%, p < 0.05) was significantly different if compared with the basal level of the protein (i.e. time 0) (Fig. 2b, 
lower panel). However, differences between the healthy and RTT groups were statistically significant in the case of 
the p62/tubulin ratio only at 4 h (p < 0.05), whereas the PSMA3/GAPDH ratio was significantly different between 
the experimental groups both at 2 h (p < 0.05) and 4 h (p < 0.001) (Fig. 2b, lower panel).

Interestingly, the β-tubulin and GAPDH patterns, used as internal controls for the p62 staining and the 
PSMA3 staining, respectively, were unaltered over 4 h of starvation in healthy fibroblasts. However, the intensity 
of the β-tubulin band, as well as that of the GAPDH band, decreased significantly in RTT fibroblasts starved for 
4 h compared to what was observed at time 0 or time 2 h for these cells (Fig. 2b, higher panel). This reduction was 
probably due to the lower number of living RTT fibroblasts harvested at this time point (in accord with the poor 
viability of RTT fibroblasts at 4 h of starvation reported in Fig. 1a) and not due to a down-regulation of β-tubulin 
over time. As a whole, it was found that RTT fibroblasts did not efficiently degrade these autophagy reporter sub-
strates, supporting the hypothesis of a defective autophagy.

To cast further light on the features of this block, we performed an immuno-fluorescence analysis by using the 
LC3B antibody. We analysed healthy and RTT fibroblasts grown in standard medium in the absence of CQ (rest-
ing condition) and in the starvation medium for 2 h in the presence or absence of 20 µM CQ (Fig. 2c). Consistent 
with the slow metabolic rate of the primary cells, we found that resting healthy and RTT fibroblasts displayed a 
weak and diffuse LC3B+ staining with a low percentage of cells showing more that 10 dots (i.e. autophagosomes) 
(8 ± 5% and 1 ± 0.5%, respectively) indicating that, by immuno-fluorescence, the basal autophagy was poorly 
detectable in accord with the data reported in Fig. 2a.

With respect to cells grown in standard medium, the percentage of healthy fibroblasts grown in starvation 
medium (in the absence of CQ) displaying at least 10 LC3B+ autophagosomes was markedly increased (82 ± 10%, 
p < 0.005), whereas RTT fibroblasts grown in starvation medium showed a slight increase (17 ± 8%, p < 0.001). 
As a matter of fact the percentage of healthy fibroblasts grown in starvation medium displaying at least 10 auto-
phagosome was significantly higher than that of RTT fibroblasts grown under the same experimental condi-
tion (p < 0.005). The autophagosomes were mainly localized to the perinuclear region. In the presence of CQ an 
expected diffuse and intense LC3B+ staining was further observed, even though in this case, the diffuse staining 
did not allow to precisely quantify the number of dots.
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Administration of CQ was ineffective in RTT fibroblasts, clearly indicating a severely impaired autophago-
some biogenesis (Fig. 2c).

Given the relevance of the putative impairment on autophagosome biogenesis, an additional approach was 
adopted to confirm this observation. Both healthy and RTT fibroblasts, starved for 2 h in the absence of CQ, were 
stained with a specific dye (Cyto-ID) for the autophagosomal membrane and analyzed by immuno-fluorescence. 
Even in this case, while in healthy fibroblasts several autophagosomes were actually detected, in RTT fibroblasts 
only a limited number of small and isolated vesicles was observed (Supplementary Fig. S2). The difference in the 
percentage of cells displaying at least 5 Cyto-ID positive dots between healthy and RTT fibroblasts was markedly 
significant (80 ± 4% vs 8 ± 6%, respectively, p < 0.001). Therefore, the overall analysis provided evidence that a 
defective autophagosome biogenesis occurs in RTT primary fibroblasts.

Mature RBCs of RTT patients carrying the R255X MeCP2 mutation retain mitochondria.  We 
next sought to determine whether additional signs of defective autophagy could be observed ex vivo in RTT 
patients. Due to the fact that mitochondria clearance is a classic autophagy-based mechanism occurring in cir-
culating reticulocytes at the final stage of maturation to RBCs32–34 we extended our investigation also to ex vivo 
human RBCs to verify whether mitochondria are retained in these cells.

Hence, RBCs from RTT patients (n = 15) and from healthy donors (n = 11) were analyzed by transmission 
electron microscopy (TEM). The TEM investigation highlighted the presence of structures resembling mito-
chondria (SRM) in bi-concave shaped RBCs isolated from the majority of the RTT patients (11 out of 15). Among 
those 11 RTT patients, three of them displayed the most severe cohort of symptoms and also a high frequency of 
RBCs (20 ± 4%) (Fig. 3a–h). As expected, SRM were undetectable in healthy RBCs (Fig. 3I). Differences between 
healthy and RTT subjects were statistically significant (p < 0.0004; Fig. 3, lower panel).

Nonetheless, the severity of the symptoms was based on the clinical assessment and, accordingly, those three 
patients with the most severe of symptoms all bore the R255X mutation of the MeCP2 gene which is associated 
to a severe prognosis39.

As a consequence and in consideration of the fact that we had no possibility to enroll a higher number of 
subjects harbouring other mutations whit a low or null frequency of mitochondria-retaining RBCs, we focused 
our attention on the analysis of those three patients. TEM analysis documented, in those three above-mentioned 
cases, the presence of structures resembling intact or partially digested mitochondria (either electron-dense or 
lucent), which were normally or dumbbell (elongated) shaped, and generally small with faint cristae (Fig. 3a–h). 
In fact, the size and the overall shape of these structures were found to be be consistent with those of mitochon-
dria retained into mature RBCs in non-RTT murine models of defective macroautophagy (i.e., the Ulk1−/− mice) 
or mitophagy (i.e. the Nix−/− mice) reported by other authors32,33. Interestingly, the morphological alterations of 
mitochondria we observed, such as the reduced dimension, the elongated (i.e. dumbbell shaped) structure and, 
in particular, the presence of faint cristae have already been described in the muscle and in the cerebellum of 
RTT patients20,21. To confirm the mitochondrial identity of the SRM, we stained RBCs from healthy donors and 
these RTT patients with severe symptoms with an anti-COX-IV (cytochrome c oxidase) antibody. A statistically 
significant number of RBCs from the three RTT patients in comparison to RBCs of healthy subjects(35 ± 5% vs 
0.2 ± 0.01%, respectively, p < 0.005) displayed a COX-IV+ dotted pattern which suggested mitochondria reten-
tion (Fig. 4). The average content of mitochondria per cell was calculated to be 1.2 ± 0.2 organelles per RBC 
in RTT patients and 0.002 ± 0.0002 in healthy subjects (p < 0.005) (Fig. 4). Differences in percentage of RBCs 
displaying mitochondria between TEM and the IF investigations can be put down to the fact that the possibility 
of detecting the organelles by TEM is strictly dependent on the thin section of the cell, which can hinder their 
presence, whereas the IF approach is not limited in this way.

To further confirm those results, we performed a cytofluorimetric analysis of the RBCs of both healthy 
subjects and the three RTT patients by using an anti-CD71 (transferrin receptor) and anti-COX-IV antibod-
ies. The frequency of CD71 positivity, a marker of immature RBCs, was not significantly different in healthy 
and RTT patients (1.34 ± 0.13% vs 1.03 ± 0.3%; Supplementary Fig. S3). It should be underlined that the RTT 
patients included in the study displayed normal haematological parameters and, even though the reticulo-
cyte index was, at least in a couple of subjects, lower than that found in healthy subjects, the overall differences 
between the two patients groups were not statistically significant (Table 1). Conversely, a very faint COX-IV+ 
population was observed in healthy RBCs, whereas a higher frequency of COX-IV+ cells was detected in RTT 
RBCs (0.056 ± 0.004% vs 1.15 ± 0.19%, respectively, p < 0.01). These results were further confirmed by using 
Mitotracker Green (MT) staining (Supplementary Fig. S3), that documented an increase of MT+ RBCs in one 
RTT patient (bearing the R255X MeCP2 mutation) vs one healthy patients (0.37% vs 0.16%), similar to that 
observed with the COX-IV antibody previously described.

In order to further validate the identity of SRM, an equal number of RBCs was lysed and analyzed by WB 
under denaturing and reducing conditions. Filters were stained with antibodies against sirtuin-3, a de-acetylase 
specifically expressed in the mitochondrial matrix40. Sirtuin3 was chosen as a mitochondrial marker in this 
approach because, differently from COX-IV and other mitochondrial markers, its molecular weight doesn’t over-
lap with that of haemoglobin chains or haemoglobin oligomers in the electrophoretic pattern. In the three RTT 
patients examined, a statistically significant increase of the sirtuin-3/GAPDH ratio was observed for each patient 
with respect to the same ratio in lysates from healthy RBCs (p < 0. 001) (Supplementary Fig. S4).

Those three patients, all bearing the MeCP2 mutation (i.e., R255X), displayed the worst phenotype, with a 
very high percentage of RBCs displaying at least 1 mitochondria. However, the very limited number of patients 
at our disposal made it difficult to draw any statistically significant conclusion regarding the possibility of a 
relationship between the severity of the disease and the extent of mitochondrial retention inside mature RBCs. 
Another point, which appears to be worth mentioning, is that retention of mitochondria inside mature RBCs 
in the previously cited Ulk1−/− and Nix−/− murine models led to anaemia or other blood pathologies likely 
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determined by the increased clearance of these abnormal erythrocytes by spleen macrophages32,33. In the RTT 
patients enrolled in this study, only a very limited and not statistically significant decrease in haematological 
values was registered, and they seemed not to be anaemic or to suffer of other blood pathologies. The discrep-
ancy between our results and those from the murine models could be due to the fact that the knock-down of 
macroautophagy or mitophagy genes (i.e. Ulk1−/− and Nix−/− mice, respectively) induces a very high percentage 
of mitochondria-retaining RBCs and the retention of several organelles within RBCs, which is considerably a 
more severe defect compared with that documented in RTT patients32,33. Even though we observed a significantly 

Figure 3.  TEM acquisition showing mitochondria in mature RBCs of RTT patients. Upper panel: Transmission 
Electron Microscopy acquisitions of RTT (n = 3) and healthy (n = 3) (bottom right) patients’ RBCs. Structures 
Resembling Mitochondria (SRM) of different shapes were observed with a significant frequency in RTT RBCs 
of patients bearing the R255X MCP2 mutations (a total of 3 out of 15 subjects) (a–h). These structures were 
not detected in healthy patients (i). Images were acquired at different magnification ranging from 20,000× to 
60,000×. Lower panel: Statistical analysis. The number of RBCs displaying at least one SRM were counted in 10 
different fields. The differences were statistically significant for p < 0.0004 (Unpaired τ Student’s test).
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high number of mitochondria-retaining RBCs in patients carrying the R255X mutation (Fig. 4), the number of 
organelles in each cell was very low in RTT RBCs (Fig. 4). This might not be enough to drive major morphologi-
cal and functional alterations in RBCs. It is worth mentioning that, although the mitochondrial retention inside 
RBCs could be at least one factor determining the severe redox imbalance observed in RTT RBCs in association 
with a significant change of energy state and metabolism (i.e., ATP/ADP and NADH/NAD ratio), recent stud-
ies reported that the kinetics of oxygen bindings to haemoglobin and oxygen diffusion almost overlap those of 
healthy patients16,17,23,41.

Figure 4.  Identification of mitochondria in mature RBCs of RTT patients by IF. Upper panel: 
Immunofluorescence microscopy analysis of the RBCs isolated from the RTT patients carrying the R255X 
MeCP2 mutation (n = 3) (left panel) and from healthy individuals (n = 3) (right panel). RBCs were allowed 
to adhere to glasses by cytospinning and were probed with an anti COX-IV antibody. RTT RBCs displayed a 
COX IV+ dotted pattern that was undetectable in healthy RBCs. Clear field acquisition highlighted a normal 
bi-concave shape of the RBCs. The experiment was carried out in triplicate by using the same blood specimen. 
Lower panel: the percentage of RBCs displaying at least 1 mitochondria was calculated in 10 different fields (left 
panel); the average number of mitochondria per RBC was calculated by counting the number of dots for each 
RBC in the different fields (right panel). The results are the means ± S.E.; **significantly different from control 
(**p < 0.005, unpaired τ Student’s test).
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The apparent discrepancy between our results and those deriving from murine models might also find an 
explanation in the fact that the RTT syndrome is an X-linked disorder that affects almost exclusively the female 
gender and inactivation of one of the two copies of the X-chromosome (XCI) is a random phenomenon occurring 
during embryogenesis, as widely documented42,43. Thus, in the case of the RTT syndrome, the random XCI would 
be expected to produce, in somatic cells, a mosaicism with half of the cells expressing the wild-type allele, with the 
remaining half expressing the mutated allele of the MeCP2 gene. Interestingly, the possibility that at least some 
MeCP2 mutations could be associated with a non-random XCI in the neuronal tissue is in agreement with the 
phenotypical variability of RTT patients (and also for the familiar cases of RTT), a characteristic which has been 
extensively documented42,43. Theoretically, if half of the haematological progenitors in the bone marrow retain the 
X chromosome bearing the MeCP2 mutation, only half of the circulating mature RBCs would carry the patho-
logical allele, thus restricting the number of circulating mitochondria-retaining RBCs. Nevertheless, an increased 
prevalence of non-random XCI in favour of the wild-type allele has been observed in circulating leukocytes in 
sporadic RTT patients42,43. Regarding this point, it would be very challenging to address whether the patients that 
display or not a low number of mitochondria-retaining RBCs also display a less significant impairment of mito-
phagy or the non-random XCI, which would lead to the positive selection of haematological progenitors bearing 
the wild-type MeCP2 allele.

Hence, given the complexity of the RTT pathology, we prefer to assert that the RTT patients, together with the 
patients affected by the Pearson Syndrome, could represent the first cases of mitochondria retention in human 
mature RBCs44.

Evidence of defective autophagy in the cerebellum of Mecp2-null mice.  Given that RTT is 
a neurodevelopmental disorder, in order to further support our results which point toward a systemic defec-
tive autophagy, we performed immuno-histochemical analyses for p62 and ubiquitin of the cerebellum (i.e. an 
organ in which mitochondria alterations and other major histological abnormalities have been observed)21,45 of 
9-weeks-old wild-type mice and 5-weeks-old (asymptomatic) and 9-weeks-old (symptomatic) Mecp2−/y mice. 
For each experimental condition, the organ isolated from three animals was analyzed. Compared to wt, RTT 
cerebellum showed an increase in the intensity of p62 (Fig. 5a) and Ub (Fig. 5b) staining in all layers (i.e., gran-
ules, Purkinje and cortical layers), which was linear with the animals age. Moreover, the hyper-stained structures 
resembled intracellular aggregates. According to the semiquantitative evaluation of the intensity of the staining 
of either p62/SQSTM1 and Ub, differences between the cerebellum of 5-weeks animals vs healthy animals, and of 
9-weeks animals vs 5-weeks animals were statistically significant (p < 0.05).

The histological difference between asymptomatic and symptomatic animals suggests that the autophagy alter-
ation could be absent or weak at birth, while it progressively enhances during the first weeks of life (and possibly 
when the MeCP2 activity reaches a peak), giving rise to the symptoms.

Conclusions
A putative autophagy impairment has been previously suggested (but not explored) in non-syndromic autism as 
a consequence of an increased mTOR signalling which physiologically blocks autophagy activation. However, in 
RTT, there is contradictory evidence which indicates a decrease in mTOR signalling13,46.

The biological rationale behind our evidence of systemic autophagy impairment in RTT patients carrying the 
MeCP2 mutation is difficult to interpret because the MeCP2 nuclear role remains unclear and few genes whose 
expression is altered in MeCP2 mutated tissues have been reported. Nonetheless, it is, in any case, important to 
recall that each MeCP2 mutation (and a myriad of different mutations has been reported) is potentially associated 
with a different set of genes whose transcription is altered. However, recently, Nott and co-workers highlighted 
that MeCP2 positively regulates the transcriptional activity of FOXO, which is a major factor in autophagy gene 
expression47. Although further studies are required to address the role of FOXO in our systems, this observation 
is the only molecular detail to date available which is in line with our hypothesis that a systemic defective auto-
phagy could be one of the driving causes of the RTT syndrome phenotype. Therefore, we must emphasize that, at 
this stage, we are unable to prove that the molecular defect observed is directly caused by the MeCP2 mutation.

In conclusion, in this paper, we describe an unprecedented retention of organelles in the mature RBCs of 
human subjects and we cast light on autophagy, which is a central metabolic pathway in cell biology, whose 
dysregulation could characterize the RTT syndrome onset and progression, thus paving the road to strategies of 
therapeutic intervention.

Healthy RTT

RBC (106/µL) 5.45 ± 0.5 5 ± 0.6

HGB (g/dL) 16.5 ± 0.8 15.5 ± 1.5

HCT (%) 49.8 ± 1 46.2 ± 3

MCV (fL) 92 ± 4 85 ± 6

RI (%) 1.81 ± 0.3 1.77 ± 0.5

Table 1.  Haematological parameters of the patients involved in the study. Results are presented as the 
mean ± SEM of the patients analyzed in the study. The parameters were obtained through collaboration with 
the Clinical Biochemistry Unit of the Tor Vergata Hospital. Notably, the differences were found to be not-
statistically significant by unpaired Student’s test.
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Materials and Methods
Autophagy induction in fibroblasts.  RTT fibroblasts were isolated from patients as previously indi-
cated17,19. Rett patients bore the following MeCP2 mutations: R168X, P152R, R190 (frame-shift), R255X. Normal 
fibroblasts were harvested from healthy subjects and then matched for age and gender. Healthy and RTT fibro-
blasts were grown in DMEM supplemented with 10% FBS. To induce autophagy, an equal number of cells (i.e. 
5 × 105) was seeded the day before the experiment and, in the case of the starved cell, the cell mono-layer was 
washed once with pre-warmed PBS and twice with starvation medium (140 mM NaCl, 1 mM CaCl2, 1 mM MgCl2, 
5 mM D-Glucose, 20 mM Hepes, 1% BSA, pH 7.4). Thereafter, cells were incubated for the indicated time in the 
starvation medium in the presence or absence of 20 μM chloroquine (CQ). Whenever the cells were not grown 
in the starvation medium, the medium was replaced with standard medium supplemented or not with 20 μM 
CQ. Of note, different starvation media were used (EBSS, HBSS), but the buffer we used provided the strongest 
induction in healthy fibroblasts in accordance with findings from other authors48.

The cells from each experimental condition were then harvested after 2 h of incubation and lysed (25 mM 
Hepes, 0.1% SDS, 1% NP-40, 1 mM EDTA, 0.1% DTT, pH 7.4 supplemented with protease and phosphatase 
inhibitor cocktails) on ice. The supernatant was then cleared by centrifugation at 13.000 rpm for 30 min at 4 °C 
and the proteins were separated through a 15% (or 12% depending on the protein of interest) acryl-amide 
gel. Proteins were then blotted onto a PVDF or nitrocellulose filter and probed with the following antibod-
ies: anti-LC3B (raised against the N-terminal, thus bearing higher affinity for LC3B-II than for LC3B-I) (Cell 
Signaling Technologies); anti-p62/SQSTM1, anti-PSMA-3; anti-tubulin; anti-GAPDH (Abcam, CO, UK).

LC3B-I (Microtubule associated protein 1A/3B-light chain) is a cytosolic protein involved in the early steps of 
autophagosome biogenesis. During autophagy activation, LC3B-I is labelled with a phosphatidylethanolammine 
(PE) tail, forming LC3B-II. This protein is then recruited by the autophagosomal membrane where it mediates 
membrane expansion and fusion with lysosomes.

LC3B-II degradation during the autophagic process is therefore a reliable method to assess the formation and 
the degradation of the autophagosomes23,24,30–32.

However, it is important to bear in mind that LC3B-I lipidation also occurs at non-autophagosomal sites: 
hence, the increase in LC3B-II must be compared to that of cells starved over the same time in the presence of a 
lysosome inhibitor, such as chloroquine (CQ) (Sigma-Aldrich, CO, St. Louis)30,31.

Densitometric analysis of the bands was performed through ImageJ Quant Software.

Figure 5.  Accumulation of autophagy reporter substrates in the cerebellum of murine models of RTT. 
Immunohistochemistry analysis of the cerebellum from 9-weeks-old wild-type mice and 5- (asymptomatic) 
and 9-weeks (symptomatic) old RTT mice knock-out for MeCP2 (n = 3 for each experimental group). For the 
three experimental conditions, the organs isolated from the different animals were studied. Slices (n = 4) from 
each organ were probed with anti-p62/SQSTM1 (a) and an anti-Ub antibody (b). An age-linear increase in the 
staining for both p62/SQSTM1 and Ub was observed in all the cerebellum layers of RTT mice compared to the 
cerebellum of wild-type animals. (c) Bar graph showing the semiquantitative evaluation of p62/SQSTM1 and 
Ub immunoreactivity, expressed as arbitrary unit. The results were expressed as mean number ± S.E., with an 
interobserver reproducibility of ±95%. The staining of the cerebellum of 5-weeks mice was compared to that 
of wild-type mice, and the staining of the 9-weeks mice to that of 5-weeks mice. Differences were evaluated by a 
Student’s τ test and were considered significant at p value ≤ 0.05.
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Fibroblast viability under starving conditions was assessed by MTT and a Trypan blue exclusion test following 
the manufacturer’s instructions.

Immunofluorescent analysis of LC3B in primary skin fibroblasts.  Fibroblasts were seeded at a den-
sity of 8 × 105 cells in IF cover slips the day before starting experiments and incubated overnight at 37 °C, 5% CO2. 
The following day, autophagy was induced as indicated above and, at the end of the treatment, cells were washed 
in PBS and fixed in 4% paraformaldehyde for 10 min at R.T. Then, the cells were washed twice with PBS and incu-
bated in PBS + 0,03% Triton + 3% BSA for 30 min at R.T. Thereafter, the cells were washed twice with PBS and 
incubated overnight at 4 °C with an anti- LC3B primary antibody. The following day, after two washings with PBS 
of 15 min at R.T. each, the cells were incubated with Alexa Fluor-conjugated specific secondary antibodies for 1 h 
at R.T. Finally, after two washings with PBS for 15 min at R.T. each, the coverslips were mounted and the images 
were taken with a Zeiss Axioplan 2 fluorescence microscope connected to a digital camera. The number of LC3B 
positive dots was quantified through a manual count of three independent observers.

Alternatively, healthy and RTT cells starved for 2 h in the absence of CQ were stained with a specific fluores-
cent dye which binds to the autophagosomal membrane (Cyto-ID Enzo Life Sciences). The overall procedure 
was performed according to the manufacturer’s instructions and, in this case, the cells were acquired at 40X 
magnification.

Transmission Electron Microscopy.  RTT patients enrolled in the study were analyzed by TEM. The 
figures presented are relative to the analyses performed on the patients carrying the R255X MeCP2 mutation. 
Additional patients were analyzed and are not included in the results. They carry the following MeCP2 mutations: 
T158M (2 patients), R270X (2 patients), P384 (early truncation), Exon-3 complete deletion and Exon-4 partial 
deletion, A168X, R294X, T327fs, plus one with unknown mutation. Blood samples were fixed with an equal 
volume of buffered Karnosky’s fixative. The samples were then dehydrated through an alcohol series and then 
infiltrated and embedded in a liquid EPON resin (Agar Scientific, Stansted Essex CM24 8GF United Kingdom), 
for morphological and ultrastructural analysis. After embedding, the resin blocks were then thin sectioned; sec-
tions of 50–70 nm thickness were collected on metal mesh ‘grids’ and stained with heavy metal solutions before 
observation in the TEM. All sections were examined by a Hitachi 7100 FA electron microscope.

Citofluorimetric analyses.  In order to stain RBCs, 5 µL of whole blood that was freshly isolated from RTT 
patients and healthy patients were diluted in saline buffer in the presence of an anti CD71 (1:200) and an anti 
COX-IV (1:200) antibody (Proteintech Group, Inc. U.S.A.) for 30 min at R.T. Thereafter, the cells were washed 
twice in PBS and then incubated with Alexa Fluor-conjugated specific secondary antibodies for 30 min at R.T.

An additional investigation by using Mitotracker Green (Molecular Probes) was performed by diluting 
the blood in saline buffer in the presence of 100 nM dye (30 min, room temperature). Data were acquired on a 
CytoFlex Cytometer and analysed with FlowJo software. Cell doublets were excluded using a pulse geometry gate 
(FSC-H × FSC-A).

Immunofluorescent intracellular staining of RBC.  Peripheral blood from healthy and RTT individuals 
(those bearing the MeCP2 R255X mutation) was harvested in tubes containing 2 mM EDTA and was centrifuged 
at 3500 rpm for 5 min. Then, the cells were washed four times with PBS supplemented with 2 mM EDTA and 
were centrifuged at 3000 rpm, 2 min, 4 °C. The cells were then re-suspended in PBS supplemented with 2 mM 
EDTA and 20% fetal bovine serum (ratio 5 μL cells: 200 μL buffer) and 200 μL of this suspension was spotted onto 
poly-L-lysine-coated slides (500 rpm for 10 min). The cells were fixed with 4% paraformaldehyde and incubated 
for 30 min at R.T. Thereafter, the cells were washed four times with PBS + 0,1% Tween (T-PBS) and permeabilized 
with PBS + 0,1% Triton for 10 min at R.T. Then, the cells were washed four times with T-PBS and incubated in 
a solution of 50% PBS and 50% High Contrast Diluent (Inova Diagnostics, USA) 30 min at R.T. to reduce the 
haemoglobin background. Finally, the cells were washed four times with T-PBS and incubated overnight at 4 °C 
with an anti COX-IV antibody (Proteintech Group, USA) and a CD71 antibody (Proteintech Group, USA). The 
following day, the unbound antibody was removed through four washes in T-PBS and the cells were incubated 
with Alexa Fluor-conjugated specific secondary antibodies for 1 h at R.T. After four washings with T-PBS to 
remove the unbound antibody, the coverslips were mounted. The images were acquired with a Zeiss Axioplan 2 
fluorescence microscope connected to a digital camera.

Western blotting analysis of RBCs.  To search for the accumulation of mitochondrial proteins inside the 
RBCs of RTT patients, 4 × 106 RBCs were withdrawn from the 3 RTT patients carrying the R255X MeCP2 muta-
tion and from 2 healthy subjects.

The RBCs were lysed in the lysis buffer previously indicated for the fibroblast lysis procedure and kept on ice 
for 30 min followed by centrifugation at 13000 rpm for 30 min.

Thereafter, an equal volume of supernatant was loaded onto a 12% acryl-amide gel and analyzed by Western 
blotting using an anti-sirtuin3 antibody (Sigma-Aldrich, St. Louis, USA) and an anti-GAPDH antibody (Abcam, 
CO, UK).

Experimental mice.  Breeding.  The Mecp2 knockout mouse (Mecp2−/y; strain B6.129 P(C) −Mecp2tm1.1Bird/J 
Jax stock number: 003890) was used as a mouse model for RTT in this study. Mecp2 mutant hemizygous males 
and heterozygous females were generated by crossing heterozygous females (Mecp2+/−) with C57BL/6J wild type 
males, purchased from The Jackson Laboratory (Bar Harbor, ME, USA). Animals were kept in a temperature- 
und humidity-controlled 12 h light/dark cycle and had free access to water and standardized pellet food. Mice 
maintained under standard conditions and in accordance with Home Office regulations and licenses. Wild type 
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littermates were used as controls. The animals were sacrificed and the tissues were recovered and stored at −80 °C. 
The national or institutional guidelines were used for the care and use of animals, and approval for the experi-
ments was obtained from the ethical committees of the Italian Ministry of Health, and the UK Home Office.

Genotyping.  Genomic DNA was extracted from ear clips or tail tips of pups. The genotype of the mice was 
determined by polymerase chain reaction using PCR primers and following the conditions described in the web 
site of the Jackson Laboratories (USA).

Scoring of symptoms.  Mice were scored on a weekly basis for a number of symptoms arising from Mecp2 defi-
ciency as reported49.

Brain collection.  After transcardial perfusion with saline, brains were removed and bisected on the sagittal 
plane. Brain hemispheres were immediately frozen in dry ice and stored at −80 °C until assay. At the time of the 
assays, brain was homogenized (10% W/V) in phosphate-buffered saline (PBS), pH 7.4.

Statistical analysis.  A one-way analysis of variance (ANOVA) was used to assess statistically significant 
differences among groups and Tukey’s honest significance post hoc test was used for pairwise comparisons after 
the analysis of variance.

An unpaired student test was also used when indicated.

Ethic Committee Approval.  All methods were carried out in accordance with relevant guidelines and reg-
ulations. Furthermore, the enrolment of the patients as well as the experimental protocols adopted in the study 
were approved by the local ethic committee (University of Rome Tor Vergata) (protocol: 0028735/2015). An 
informed consent was obtained from all subjects.
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