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Potential for natural evaporation as a reliable
renewable energy resource
Ahmet-Hamdi Cavusoglu 1, Xi Chen2,5,6, Pierre Gentine3 & Ozgur Sahin 2,4

About 50% of the solar energy absorbed at the Earth’s surface drives evaporation, fueling the

water cycle that affects various renewable energy resources, such as wind and hydropower.

Recent advances demonstrate our nascent ability to convert evaporation energy into work,

yet there is little understanding about the potential of this resource. Here we study the energy

available from natural evaporation to predict the potential of this ubiquitous resource. We

find that natural evaporation from open water surfaces could provide power densities

comparable to current wind and solar technologies while cutting evaporative water losses by

nearly half. We estimate up to 325 GW of power is potentially available in the United States.

Strikingly, water’s large heat capacity is sufficient to control power output by storing excess

energy when demand is low, thus reducing intermittency and improving reliability. Our

findings motivate the improvement of materials and devices that convert energy from

evaporation.
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Evaporation, with an average global energy flux of about
80Wm−2, is a powerful process in nature1–3 that
affects ecosystems, water resources, weather, and climate4–7.

Recent advances in water responsive materials8–11 and
devices12–15 demonstrate the ability to convert energy from
evaporation into work. These materials perform work through a
cycle of absorbing and rejecting water via evaporation. These
water-responsive materials can be incorporated into evaporation-
driven engines that harness energy when placed above a body of
evaporating water (Fig. 1a–c). With improvements in energy
conversion efficiency, such devices could become an avenue to
harvest energy via natural evaporation from water reservoirs.
However, little is known about the potential of natural evapora-
tion as a renewable energy source—specifically, the power avail-
ability, intermittency, and the impact on water resources.

The evaporation rate E is governed by the surface energy
balance between net radiation and heat losses due to turbulent
convection and evaporation (Fig. 1d). Combining this energy
balance with equations of heat and mass transfer can predict E
over a saturated water surface from meteorological data (i.e., net
solar radiation, relative humidity, air temperature, and wind
speed)16. This model has been adapted to understand changes in
E over varying surfaces, such as plants17 and soil18, 19.

In this work, we estimate the power available from natural
evaporation from open bodies of freshwater, such as lakes and
water reservoirs, by modeling the effects of an evaporation-driven
engine on the energy balance and coupled heat and mass trans-
port. We then study the power potential of natural evaporation
from open water surfaces in the United States–along with the
potential impact of such evaporation driven engines on water
resources and energy reliability. We find that natural evaporation
could provide power at areal densities up to 10Wm−2 (triple that
of modern wind power) along with evaporative water losses being
cut by nearly half. When restricted to existing lakes and reservoirs
larger than 0.1 km2 in the contiguous United States (excluding the

Great Lakes), we estimate the total power available to be up to
325 GW, which is over 69% of the US electrical energy generation
rate in 2015. Finally, we investigate the possibility to control
power output from an evaporation driven engine by using water’s
heat capacity to store and release energy. Strikingly, we find that
storing energy thermally in the water below an evaporation dri-
ven engine could substantially reduce intermittency by varying
power supply to match power demand.

Results
A relationship between power and evaporation rate. An
evaporation-driven engine placed just above the water surface is
powered by absorbing water at a high chemical potential, μs, and
releasing it at a lower chemical potential, μe, to the atmosphere, μa
(μs> μe> μa; Fig. 1e). For a reversible and isothermal engine, the
power output depends on E and the work done per mole of
evaporating water w= μs–μe. However, one cannot simply mul-
tiply existing E data by w, as the energy conversion process alters
the evaporation rate. Therefore, predicting the power available
from natural evaporation requires a relationship between w and E.

E is affected by w in two ways. First, the chemical potential
drop w across the engine results in a reduction in water vapor
pressure across the engine, which reduces the mass transport. In
the case of an ideal gas20, w is − RTs ln(α), where R is the molar
gas constant, Ts is the temperature of the surface, and α is the
ratio of the vapor pressures above and below the engine. Note
that the air immediately above the water surface is saturated with
water vapor, therefore the ratio α is also the relative humidity at
the top of the engine (in dimensionless units 0.00–1.00)21. We
can rewrite α as follows:

α wð Þ ¼ e
�w
RTs ð1Þ

Because the evaporation rate depends on the vapor pressure
deficit between the engine surface and the atmosphere, an
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Fig. 1 The surface energy balance in the absence and presence of an evaporation-driven engine. a The net radiative energy into a water body is balanced by
convection and evaporation. b An example of an evaporation-driven engine, incorporating water-responsive materials, placed at the water surface can
harness energy from evaporation12. c Such an engine harnesses energy from evaporation through a 4 stage cycle: (I) With the upper shutters (gray jagged
line) closed, the water-responsive material (green block) swells, absorbing water vapor at the high chemical potential μs. (II) At maximum absorption, the
upper shutters open as the bottom shutters close. (III) With the upper shutter open, the water-responsive material shrinks, releasing water that evaporates
away into the atmosphere at a lower chemical potential μe. (IV) At maximum desorption, the upper shutters close as the bottom shutters open, restarting
the engine cycle. d The flows between the water body and the atmosphere occur along a thermal gradient between Ts and Ta for convection and along a
chemical gradient between μs to μa for evaporation. e The new energy balance can be illustrated between net incoming radiation, convection, evaporation,
and work extracted between μs and μe
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increase in w causes a reduction in evaporation rate. Second, the
total energy required to evaporate water and extract energy from
an evaporation-driven engine is the sum of the latent heat L and
the work energy w. We define the ratio of this total energy to the
unperturbed case as β:

β wð Þ ¼ Lþ w
L

ð2Þ

Here, L is the molar latent heat of vaporization of water in
J/mol. Thus, β represents the energy penalty for evaporating
water through an evaporation-driven engine versus the case
with no engine. Consequently, w affects the energy balance
between net radiation and heat loss due to convection and
evaporation, because some portion of the energy from net
radiation is now removed from the system as work.

Using parameters α and β, it is possible to derive a model
that predicts the evaporation rate and power generated from it.
Note that w can be dynamically adjusted during operation
by varying the resistance of the load so that the water responsive
material in the engine must exert a larger force on the load.
Thus, it is possible to control α and β. At steady-state, the net
radiation leaves the engine surface via convection, evaporation
(i.e., latent heat), and power generation. The convective heat
flux is proportional to the temperature difference between
the engine surface and the atmosphere, whereas the latent
heat flux is proportional to the difference in vapor pressures
between the engine surface and the atmosphere. The magnitudes
of these two energy fluxes also depend on the transport
characteristics of the air, which is primarily determined
by turbulence and wind speed. Using these relationships,
we derived an equation that relates the latent heat flux, F, to

α and β (Methods):

F ¼ αΔ

αβΔþ γ
I þ γ

αΔ
f uð Þ α� RHð Þpa

� �
ð3Þ

Here, f(u) is the convective mass transport coefficient of water
vapor as a function of wind speed u, I is the net radiation, Δ is the
slope of the saturation vapor pressure versus. temperature curve,
γ is the psychrometric constant, RH is the relative humidity of the
air, and pa is the saturated vapor pressure of water at the
air temperature. Equation (3) shows that evaporation occurs even
when the net radiation is zero, as long as the relative humidity
of the air is less than α. Under this condition, the remaining
term in the parenthesis can be viewed as the drying power of the
sub-saturated atmosphere.

Once F is calculated, the evaporation rate E can be obtained
from the relationship F= ELρMv, where ρ and Mv, are the
respective liquid density and molecular weight of water. Finally,
the areal power density W is given by W= Fw/L.

Power generation and evaporative losses vary with weather
conditions. Figures 2a, b illustrates predictions for W and E as a
function of α(w, Ts) for a range of RH values at conditions
representative of typical mild weather conditions. As α is lowered
from unity (w = 0), the surface temperature rises while E gradu-
ally falls (Fig. 2b, c). This gradual increase in surface temperature
results in a proportional increase in convective heat losses C.
Evaporation ultimately stops at a certain α value, at which point
heat is released mostly as convective heat C. Importantly, W
peaks at an optimal α value (i.e., an optimal w that maximizes
the power density for given weather conditions). Interestingly, E
at optimal power density is approximately half the open water
E (α= 1) under the same weather conditions (Supplementary
Fig. 1).

To better understand which weather variables most influence
the optimal power density, we plot the optimal power densities
and corresponding evaporation rate reductions as a function of
relative humidity for a range of weather conditions (Fig. 2d, e).
Interestingly, we find that the optimal power density varies
weakly with wind speed, and increases strongly with decreasing
atmospheric relative humidity. We also find that the potential
water savings increases with increasing wind speed and
decreasing relative humidity. The results suggest power densities
of up to 15Wm−2 and parallel evaporation rate reductions up to
7.5 mmH2O per day at some of the warmest and driest
conditions. Note that these conditions vary over time and
geography. For example, the distribution of daily relative
humidity values at Daggett-Barstow, California shows that the
days where the relative humidity falls below 40% occurs about
65% of the time (Supplementary Fig. 2). Therefore, one has to
take into account the variability of weather conditions to
determine the average power available.

Using regional meteorological data22, our model can now
provide insight into the distribution of power densities available.
By calculating maximum daily W and averaging it across an
entire year, we generate a 5′ resolution map of power density and
parallel water savings across the contiguous USA (Fig. 3 and
Supplementary Fig. 3). These maps suggest average annual power
densities and corresponding water savings up to 10.49Wm−2 and
5.9 mmH2O per day, respectively. These maximums are located
at Needles Airport in California, only 11 km from Goose Lake
and 47 km from Lake Havasu. This result is particularly striking
since the locations of peak power potential and water savings
occur simultaneously in the US Southwest, a region that
frequently suffers from water scarcity. As a point of reference,
the current mean total area power densities for current US
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Fig. 2 Steady-state power generation and effects on evaporative losses.
a Energy fluxes, b evaporation rates, and c surface temperatures are
calculated as a function of α(w,Ts) for weather conditions of 200Wm−2 I,
16 °C Ta, 101.3 kPa P, and 2.7 m s−1 (6 mph) u at 5 values of RH (mild
conditions). d Maximum energy flux and e water saved from evaporation
as a function of RH at cool (pale, 12 °C, 150Wm−2), mild (neutral, 16 °C,
200Wm−2), and warm (dark, 20 °C, 250Wm−2) weather conditions
and three wind speeds: 1.8 (4mph, solid), 2.7 (6 mph, dashed), and
3.6 m s−1 (8 mph, dotted)
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wind and photovoltaic installations are 2.90 and 8.06Wm−2,
respectively23, 24.

The data in Fig. 3 allow us to predict the total power and water
savings potentially available from lakes and reservoirs in the US
via a database of open water bodies25. By identifying the location
and surface area of each open water body, we predict the potential
annual mean power output and corresponding water savings
available at each water body if it was covered entirely with an
ideal evaporation driven engine. Our analysis reveals that 325
GW (2.85 million MWh per year) is potentially available by
covering lakes and reservoirs larger than 0.1 km2 across the
contiguous US (excluding the Great Lakes). Additionally, an
additional 96.4 billion cubic meters of water could be recovered
each year due to lower evaporation rates. Our results shown in
Table 1 indicate that potential power available exceeds demand in
15 of 47 US states studied26, and saves more freshwater than
consumed in 7 of those 15 US states27. The summary results of all
US states studied can be found in Supplementary Table 1.

Potential effects of feedback between the engine and the
atmosphere. Our estimates of steady state evaporation rates and
power do not currently consider potential changes in atmospheric
conditions due to the reduction in evaporation rates. This can be
viewed as a feedback interaction between the engine and the
atmosphere. Such feedback mechanisms can be critical to
distributed renewable energy systems. For example, atmospheric
feedback imposes limits to the maximum power generation of
wind turbines28, 29. Therefore, it is important to consider
potential feedback effects in our model.

One potential feedback pathway is caused by the changes
on the atmosphere due to covering lakes and reservoirs with
evaporation-driven engines. The evaporation-driven engine
reduces the evaporation rate while increasing the rate of
convective heat loss (due to higher surface temperatures). This

shift of energy from evaporation to convection mimics the
conditions seen when moist soils become dry, where higher
convective heat fluxes warm the air due to reduced water
availability for evaporation. Previous studies30–36 show that as
previously moist soil become drier, the atmosphere becomes
more arid, consistently shifting toward higher air temperatures
and lower relative humidities37, 38. These changes contribute
toward a reduction in cloud cover39, 40 (i.e., an increase in net
radiation). Individually, these changes would increase the
potential for evaporation that could result in power densities
greater than those for fixed weather conditions, as seen in eq. (3).

Another feedback pathway is to expand the total available
area for evaporation driven engines. This could be due to
artificially creating new reservoirs. This would have the opposite
effect; with more open water surfaces made available, more
evaporation would occur, leading to reduced air temperature and
increased humidity. Such feedback has been shown in studies
involving large-scale changes in land-use (e.g., urbanization,
irrigation)41, 42. This would result in power densities lower than
those for fixed weather conditions.

However, the magnitude of these feedback pathways is likely to
be small for the daily mean temperature and would primarily
modify temperature extremes43. Globally, any changes that could
occur in the atmosphere is small since ocean evaporation
dominates total global evaporation and the resulting temperature
and humidity responses44, 45. Locally, feedback effects will also be
small if the dimensions covered by an engine are below 500 km46.
This is due to the important role of horizontal heat and moisture
transport in the atmosphere that couples neighboring regions.
Therefore, we are neglecting potential feedback effects, as they
would not drastically affect our estimates.

Control of power output under varying weather conditions.
While the model described by eq. (3) allows estimating power
density and its dependence on meteorological variables, the
ability to predict variability of power from evaporation at
short timescales is limited due to the approximation that the net
heat storage in the body of water is negligible. Evaluating
this variability is crucial to understand the potential of evapora-
tion as a renewable energy source since many renewable energy
technologies suffer from intermittent availability.

To explore the variability of power from evaporation, we
incorporate heat storage in the body of water below an
evaporation driven engine into the energy balance among net
radiation, evaporation, convection, and power generation. To
approximate the heat storage, we assume a simple mixed-layer
water body with density ρ, specific heat capacity cw, and mixed-
layer depth d (i.e., the epilimnion; typically, at least 5 m deep for
lakes larger than 1 km2)47, 48. The energy balance is then given by
(Methods, Supplementary Fig. 4):

ρdcw
∂Ts

∂T
¼ I � βF � C ð4Þ

Here, the rate of heat storage is balanced by incoming
net radiation (I) and outgoing convective heat losses (C) and
the sum of latent heat flux (F) and power output (W). Note that
βF= F +W. Thus, eq. (4) allows us to predict the water temperature
Ts, the latent heat flux F, and the power density W as a function of
the chemical potential drop w and changing weather conditions
over time. Importantly, w can be independently controlled. This
feature might allow us to control power generation, potentially
mitigating the effect of changing weather conditions.

To demonstrate this, we develop a control system that adjusts w
to match a power demand target over time (Supplementary
Fig. 5). We set the system’s power demand to that of three major
U.S. energy markets in 2010 (South-East Central California49,
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North Central Texas50, and New York City51) along with their
respective varying typical weather conditions22. Because the power
output of an evaporation driven engine scales with area, we are
interested in relative variations in power demand over time rather
than absolute values. Thus, we normalize each power demand
curve to a target annual mean power density. Figure 4 illustrates
the results of a simulation year in California with a target annual
mean power demand of 2Wm−2. The results show that power
generation matches demand 95% of the time, exhibiting some
shortages on winter days where net radiation is low and relative
humidity is higher. Supplementary Fig. 6 illustrates results for
Texas (93% match) and New York (67% match).

As the annual mean power demand increases, the frequency of
power shortages increases despite an increase in the mean power
generation. Figures 5a, b illustrates this aspect by comparing the
2Wm−2 case to a 10Wm−2 case in California. As this
comparison shows, the 10Wm−2 case suffers from more power
shortages during cooler months and is only able to match
demand 48% of the time. However, some power generation still
occurs during these cooler months resulting in the system’s
annual generation-to-demand ratio to climb above 80%.

To better understand the relationship between generation and
demand, we repeat these calculations for a range of mean power
demands. Figure 5c plots mean generation versus mean demand
at each test location along with a generation-to-demand ratio heat
map (see also Supplementary Fig. 7 for water savings versus mean
demand). As demand increases, the system eventually saturates
and provides no more additional generation. These simulations
predict a maximum generation of 2.4, 5.1 and 8.4Wm−2 for the
respective New York, Texas, and California test locations.
Compared to the map in Fig. 3a, the control system delivers at
least 85% of the power generation predicted by eq. (3) (2.8, 5.3,
and 8.4Wm−2 for the respective New York, Texas, and California
locations). Importantly, as the imposed generation target is
reduced, the reliability of the system to match power demand
increases.

Discussion
By developing a model of how an evaporation-driven engine
perturbs the evaporation rate, this work provides the first
predictions on how these energy harvesters could optimally
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perform in the natural environment. Although these evaporation
energy harvesters are in the early stages of development, recent
advances water-responsive materials8–11 and devices12–14 suggest
several pathways toward achieving the predicted performance
levels. With advances in energy conversion performance, these
materials and devices could potentially contribute toward solving
energy and water related challenges.

Figure 3 illustrates the broad availability of energy and water
savings by covering a water reservoir with evaporation
driven engines. These maps show that the regions of
highest potential power generation and water savings are located
where water is scarce. This is striking because water and energy
are typically seen as competing challenges while harnessing nat-
ural evaporation could address both challenges at once. As an
example, we consider the possibility of converting the E.V. Spence
Reservoir in Texas (31.93°N 100.57°W) into an evaporation
power plant. If this reservoir (38.0 km2 surface area in 2004)25 is
completely covered by an evaporation driven engine, it would
generate an average annual power output of 178MW. This is 62
MW (53%) greater than the nearby Sweetwater Phase IV Wind

Farm23. Moreover, the E.V. Spence Reservoir, which has been
drastically impacted by a recent multi-year drought52, could
benefit from the potential water savings as a result of energy
harvesting.

It is important to note that using evaporation driven materials
and devices on lakes or reservoirs could affect freshwater
resources53 (e.g., altering the water withdrawal rate, gas exchan-
ges, water quality, and recreational use). These consequences
would impose additional design and planning constraints on such
systems that could reduce the area available for energy harvesting.
However, the potential area available for open water energy
harvesting is substantial—lakes and reservoirs cover at least
95,000 km2 (excluding the Great Lakes) of the contiguous United
States25—and are found across a geographically diverse range of
locations54. Some of these regions suffer from periods of water
stress and scarcity52, which might favor implementation of these
energy harvesting systems due to the reduction of evaporative
losses.

Finally, a key challenge for current renewable energy resources
is intermittency: wind turbines55 and solar photovoltaic panels56
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annual average demand targets for the final simulation year in California. In a, generation matches demand 95% of the time with 99% annual generation to
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generation is 2.4, 5.1, and 8.4Wm−2 for the respective New York, Texas, and California test locations

Table 1 US States where the potential power available due to evaporation from open water surface area exceeds the net energy
generation rate

US State Open water surface
area (km2)

Potential power
available (MW)

Potential water savings
(106 m3 per year)

Net energy-generation
rate (MW)

Freshwater withdrawals
(106 m3 per year)

Utah 8393.0 47,200.53 10,540.70 4788.71 5711.02
California 4844.8 27,550.54 6376.01 22,454.78 43,048.52
Minnesota 8996.0 19,251.52 6651.15 6504.54 5279.30
Louisiana 4413.7 14,353.23 4704.11 12,307.35 11,804.42
Nevada 1710.4 12,292.26 2586.21 4457.40 3614.10
Oklahoma 2729.3 9831.92 3159.98 8691.28 2454.63
Oregon 2382.9 8994.33 2332.57 6605.77 9312.79
Montana 2854.4 8628.27 2615.48 3345.02 10,546.27
Maine 4029.0 8357.80 2845.18 1340.33 564.93
South Dakota 3030.5 7617.27 2762.17 1099.66 864.67
Idaho 1816.9 6896.89 1795.02 1788.48 23,806.20
North Dakota 2831.9 6833.77 2425.13 4241.62 1566.52
Wyoming 1420.4 6004.67 1543.46 5589.79 6414.11
New Mexico 598.6 3734.85 874.37 3733.04 4366.53
Vermont 1246.7 2775.62 1018.56 226.26 595.77
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produce power only when the wind and the sun are available.
Since the supply of power must match demand on a real-time
basis to maintain a stable electric grid, energy storage is a critical
component of stable renewable energy systems to mitigate
intermittency57. The results in Figs. 4, 5 show that the natural
thermal energy storage capability of water is potentially sufficient
to match realistic power demand variability. This is a dramatic
result for a renewable energy source that depends on variable
environmental conditions. Thus, natural evaporation could
provide a way to address the intermittency problem of
renewable energy. Therefore, these findings suggest that natural
evaporation could potentially be a widely available source of low-
intermittency renewable energy.

Methods
Derivation of equation (3). For steady-state evaporation, the incoming energy
from net radiation leaves the water surface via convection and evaporation (i.e.,
latent heat). The energy flux due to convection is proportional to the temperature
difference between the surface and the atmosphere, whereas the energy flux due to
evaporation is proportional to the difference in vapor pressures between the surface
and the atmosphere. We can eliminate the need to have surface temperature data
by combining these fluxes with the energy balance16.

By introducing the power output due to water evaporating through an
evaporation-driven engine placed above a water surface, this new energy balance is

I ¼ F þW þ C ð5Þ
This system is now described by the energy balance between net radiation

energy I (solar plus longwave) into a body of water against the energy losses
through evaporative latent heat flux F, power per unit area W, and convective heat
flux C.

The latent heat flux F is proportional to the vapor pressure deficit between the
engine and the atmosphere and a mass transfer coefficient

F ¼ f uð Þ αps � RHpað Þ ð6Þ
Here, f(u) is the mass transport coefficient and αps – RH pa is the vapor pressure

deficit between the engine surface (αps) and the sub-saturated atmosphere (RH pa).
The Clausius–Clapeyron relation describes the relationship between the change in
saturation vapor pressure of water p and the change in temperature T, which yields
the following form when the molar latent heat of vaporization L is assumed to be
constant

p ¼ exp 18:371� 5132
T

� �
ð7Þ

Here, p is in kPa and T is in K. A more accurate relationship is given by the
Antoine equation. However, differences are negligible for the temperature ranges
involved in this analysis.

The convective heat flux is proportional to the temperature difference between
the engine and the atmosphere and a heat transfer coefficient

C ¼ γf uð Þ Ts � Tað Þ ð8Þ
Here, the psychrometric constant γ (units kPa K−1) represents the ratio between

the heat capacity of moist air to the latent heat of water, and combined with f(u)
represents the heat transport coefficient58. The similarity in the relationships
between F and C is because the fundamental mechanisms of heat and mass
transport are essentially the same for water vapor in the air (i.e., the Reynolds
analogy). For this work, we have used an empirical transport coefficient:59

f uð Þ ¼ 74:43ð1þ 0:536uÞ ð9Þ
This equation calculates the value of f(u) in Wm−2 kPa−1 when u is given in

m s−1 at 2 m height.
We can couple F, C, and W together to simplify the right-hand side of the

energy balance in eq. (5) as a function of the latent heat flux F. By our definition of
β in eq. (2) as the ratio of the total engine energy to latent heat, F +W= βF.
Likewise, because of the similarity in the relationships between the latent heat flux
F and the convective heat flux C, we can express C as a ratio to F. This simple ratio
is known as the Bowen ratio58

B ¼ γ
Ts � Ta

αps � RHpa
ð10Þ

We can now rewrite the energy balance as I= F(β + B). However, this equation
still requires currently unknown surface temperature data to solve. To reduce the
need for surface temperature data, we use the Clausius–Clapeyron relation Δ,
which is the slope of the vapor pressure versus temperature curve

Δ � ∂
∂T

p Tð Þ ¼ L
RT2

p Tð Þ � ps � pa
Ts � Ta

ð11Þ
We can now estimate the temperature difference between the surface and the

atmosphere by using (ps–pa)/Δ, thus eliminating the need to know the surface

temperature to predict the thermal gradient in eq. (10). We can now rewrite the
Bowen ratio from eq. (10) as

B ¼ γ

Δ

ps � pa
αps � RHpa

ð12Þ

However, we still need a relationship to eliminate our dependence on surface
vapor pressure data. To address this challenge, we introduce the latent heat flux of
the atmosphere

Fa ¼ f uð Þ αpa � RHpað Þ ð13Þ
Here, the surface vapor pressure ps for F in eq. (6) has been replaced with the

saturated vapor pressure of the atmosphere pa. Thus, Fa represents the drying
power of the sub-saturated atmosphere if the surface was at the same temperature
as the air. Therefore, the ratio of Fa to F is

Fa
F

¼ 1� α
ps � pa

αps � RHpa
ð14Þ

We can use Fa/F in eq. (12) to estimate the ratio between the saturation vapor
pressure deficit due to temperature differences (ps–pa) and the true vapor pressure
deficit between the engine and the sub-saturated atmosphere (αps–RHpa), thus
eliminating the need to know the surface temperature to predict the vapor pressure
gradient.

By re-writing the Bowen ratio from eq. (12) with this new information, we get

B ¼ γ

αΔ
1� Fa

F

� �
ð15Þ

We use eq. (13) and (15) to solve I= F(β + B) and get the expression for F in eq.
(3)

F ¼ αΔ

αβΔþ γ
I þ γ

αΔ
f uð Þ α� RHð Þpa

� �

There are two important caveats to this model. First, we have not completely
eliminated the need to know the surface temperature for this model, since it is
used to set α in eq. (1). Second, we need to choose a temperature to evaluate Δ in
eq. (11) to estimate the ratio of the saturation vapor pressure deficit (ps–pa) to the
thermal gradient (Ts–Ta). We can address both issues through an iterative
approach.

For the first iteration, we approximate both α and Δ at the air temperature.
After determining F, we re-approximate the surface temperature Ts by using the
aerodynamic equation for the convective heat flux C in eq. (6) and the Bowen ratio
shown in eq. (15)

Ts ¼ Ta þ F � Fa
αΔf uð Þ ð16Þ

This is an improved estimate of the surface temperature for α. Next, we
calculate the mean temperature between the air and surface, Tm= (Ts + Ta)/2, for
solving Δ in eq. (13). This provides a better estimate of the ratio between the
saturation vapor pressure deficit (ps – pa) and the thermal gradient (Ts – Ta). With
these improvements, we can iterate through eqs. (3), (16) until the surface
temperature converges toward a solution.

Generation of geographical maps. For our steady state model, we generate
daily mean I, Ta, RH, u, and P values at each TMY3 station in the contiguous USA
(934 total stations) and calculate the maximum power output and corresponding
water savings for that day. This calculation is repeated for 365 days in the dataset,
and the annual average power output and corresponding water savings is calculated
across these 365 samples (Supplementary Fig. 3). The annual mean at each location
is then used to develop the geographical maps in Fig. 3 by natural-neighbor
interpolation.

Calculation of total power and water savings possible. For our steady-state
model, we identify the location and size of each contiguous lake and reservoir
in the Global Lakes and Wetlands Database25 found within the contiguous
United States. We then interpolate between our data from Fig. 3 to calculate the
total power generation and corresponding annual water savings possible for that
location if the entire water body was covered with an evaporation driven engine.
Additionally, the distance to the nearest TMY3 weather station and the US Air
Force code of that station is stored for each station. The results of this calculation
are used to develop the summary statistics shown in Supplementary Table 1. Data
from the Energy Information Administration26 and US Geological Survey27 are
used to determine the respective net energy generation rate and freshwater
consumption in each state.

Derivation of equation (4). Our non-steady state (dynamic) model is exactly
described by the energy balance between net radiation energy I (solar plus long-
wave) into a body of water against the energy losses through evaporative latent heat
flux F, power density W, convective heat flux C, horizontal conduction G, and
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heating of the water S from the water body:

I ¼ F þ C þW þ Sþ G ð17Þ
The horizontal conduction G represents the heat transfer due to the

difference in temperatures between the water and the soil of the shore. Over
the longer time scales of the steady-state analysis, G is estimated to be negligible.
To continue disregarding this heat transfer in the shorter time scales being
explored, we assume that the sides and the bottom of the water body are
insulated. The remaining energy flows out of the body of water is power,
evaporation, and convection. The evaporative heat flux F is defined in eq. (6),
the convective heat flux C is defined in eq. (8), and the power density W is defined
by W= F w/L.

The final remaining item in the energy balance is the heat storage term S.
We describe S with a lumped capacitance model. In this model, the energy storage
capability of the body of water is proportional to the heat capacity of water and the
change in temperature over time

S ¼ ρdcw
∂Ts

∂t
ð18Þ

Here, ρ is the density of water, d is the epilimnion depth of water (the warmest,
near isothermal, upper layer of a body of water), cw is the heat capacity of water,
and ∂Ts/∂t is the rate of change in water temperature over time due to heat storage/
loss.

By substituting our new expressions for F, C, W, and S, we rearrange the energy
balance of eq. (16) to produce eq. (4)

ρdcw
∂Ts

∂t
¼ I � βF � C ð4Þ

We confirm that the non-steady-state energy balance defined by eq. (4) does
converge toward the steady state energy balance of eq. (3) (Supplementary
Fig. 4a–c). Due to the storage term S, the water surface temperature depends on the
past history of the energy balance, thus exhibiting a memory effect. The time
needed for this system to forget the past is called the relaxation time, which is
strongly dependent on the depth of water d (Supplementary Fig. 4d), with some
additional dependence on the wind speed u and the work load w.

Generation of simulation data for power demand matching. TMY3 data
from stations 723815 (Daggett-Barstow Airport), 722650 (Midland International
Airport), and 725020 (Newark International Airport) are used to provide hourly
typical meteorological data for our three respective test markets in California,
Texas, and New York. To simulate the varying power demand for each respective
test location, each hourly regional power load data set is normalized by the
respective mean power load for 2010 and then scaled by a pre-factor to gauge the
potential power density of this power system. Hourly data is linearly interpolated
to generate data at one-second intervals for calculations, with data sampling at
one-hour intervals.

Derivation of controller parameters. To control the power delivery of the model
system (Supplementary Fig. 5a), a combined feedback and feedforward controller
with saturation limits is designed (Supplementary Fig. 5b). By looking at Fig. 2, it is
evident that operating on the high w (low α) side of the W curve would lead to
lower evaporation rates (therefore greater water savings) and higher thermal energy
storage. To achieve this, a feedforward model is designed where the α required for
zero evaporation, α0, is defined at any moment by knowing the current Ts, Ta, and
RH. This is defined as the ratio between the sub-saturated vapor pressure in the air
and the saturation vapor pressure at the water surface:

α0 ¼ pd
ps

¼ RHpa
ps

ð19Þ
This solution can be used to determine the w0 required for zero evaporation:

w0 ¼ L
Ts

Ta
� 1

� �
� RTs log RHð Þ ð20Þ

For convenience, we use α in our implemented ideal Proportional-Integral (PI)
controller scheme. The controller gain is tuned to the inverse slope of the W(α)
curve at α0

K ¼ ∂α
∂W

jα0 ¼ � L
f uð ÞpsRTs log α0

ð21Þ
However, to reduce the computational time, an estimated gain of 0.0015m2 W−1

is used in this work. The integral time is tuned to the time step of the simulation,
one second in this work. A saturation range of 0.0–0.2 is applied to the PI feedback
controller to prevent controller overshoot due to the non-linearity of the system.
A final saturation control range of 0.0001–1.0 is applied to the sum of the
feedforward and feedback controllers to prevent illogical controller values. The
clamping anti-windup method provided by MATLAB-Simulink is used to prevent
PI controller overshoot due to saturation.

The non-linear characteristics demonstrated by the power density versus
surface vapor pressure curve in Fig. 2a can be adequately linearized near the
zero-evaporation and zero work condition (low α). However, at higher power
density levels, there is a risk of the controller going ‘over the hill’ and leading to a

catastrophic failure of the PI control scheme. To avoid this, we use saturation
controls to design a relatively safe controller at the cost of losing out on the
maximum power potential of the system. It may be of interest to investigate
alternative control methods to further improve the output of the proposed power
plant system.

Code availability. The code used for this work is accessible in figshare60.

Data availability. The revised TMY3 data22 is accessible at http://rredc.nrel.gov/
solar/old_data/nsrdb/1991-2005/tmy3. 2010 real-time power demand data was
downloaded from the California Independent System Operator (CAISO) OASIS
database49, the Electric Reliability Council of Texas (ERCOT) Hourly Load Data
Archive50, and the New York Independent System Operator (NYISO) Custom
Report database generator51. The data that support the findings of this study are
available in figshare60.
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