Skip to main content
. 2017 Aug 4;57(9):2294–2308. doi: 10.1021/acs.jcim.7b00222

Table 1. Final Set of Representative LIE Binding Affinity Models Derived from the Stochastic Approximate Inference of Model Parameters for the Data Set of 132 Putative Aromatase Inhibitorsa.

Model n α β γ RMSE r2 q2LOO SDEPLOO r2bstr RMSEbstr
1, center 16 0.203 0.663   1.30 0.95 0.94 1.47 0.960.01 1.100.17
1, center 16 0.200 0.627 –2.59 1.27 0.95 0.93 1.56 0.930.10 1.410.72
1, full 31 0.233 0.675   2.36 0.86 0.83 2.57 0.870.03 2.230.22
1, full 31 0.226 0.576 –7.32 2.11 0.89 0.85 2.41 0.890.04 1.980.23
2, center 13 0.161 0.796   1.69 0.89 0.82 2.14 0.900.03 1.540.28
2, center 13 0.162 0.830 2.45 1.69 0.89 0.78 2.38 0.900.03 1.480.32
2, full 52 0.107 0.748   2.59 0.76 0.76 2.59 0.730.03 2.710.10
2, full 52 0.101 0.696 –2.54 2.55 0.77 0.74 2.69 0.750.02 2.650.07
3, center 15 0.134 0.893   1.47 0.93 0.91 1.69 0.930.02 1.460.16
3, center 15 0.125 0.838 –3.23 1.42 0.93 0.86 2.11 0.940.05 1.300.12
3, full 31 0.108 0.868   1.68 0.92 0.91 1.80 0.920.02 1.620.17
3, full 31 0.110 0.877 0.495 1.68 0.92 0.90 1.89 0.920.02 1.660.11
a

Model statistics are reported for three representative LIE binding affinity models trained with and without γ parameter (kJ mol–1) for ligands belonging to the full model cluster (full) and the cluster center only (center, within 75% confidence interval). Root-Mean-Square Error (RMSE, kJ mol–1) and coefficient of determination (r2) model statistics are reported for the model, as well as for the bootstrap cross-validated model (bstr) and Leave-One-Out (LOO) cross-validated model (as Standard Error in Prediction (SDEP, kJ mol–1) and cross-validated r2 (q2)). Bootstrap cross validation was performed using a 20-fold random sampling with a training set of 75% of the model data set.