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Abstract: Schistosomiasis japonica is an infectious disease caused by Schistosoma japonicum, and it
remains endemic in China. Flooding is the main hazard factor, as it causes the spread of Oncomelania
hupensis, the only intermediate host of Schistosoma japonicum, thereby triggering schistosomiasis
outbreaks. Based on multi-source real-time remote sensing data, we used remote sensing (RS)
technology, especially synthetic aperture radar (SAR), and geographic information system (GIS)
techniques to carry out warning research on potential snail habitats within the snail dispersal range
following flooding. Our research result demonstrated: (1) SAR data from Sentinel-1A before and
during a flood were used to identify submerged areas rapidly and effectively; (2) the likelihood
of snail survival was positively correlated with the clay proportion, core area standard deviation,
and ditch length but negatively correlated with the wetness index, NDVI (normalized difference
vegetation index), elevation, woodland area, and construction land area; (3) the snail habitats were
most abundant near rivers and ditches in paddy fields; (4) the rivers and paddy irrigation ditches in
the submerged areas must be the focused of mitigation efforts following future floods.
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1. Introduction

Schistosomiasis caused by Schistosoma japonicum is a type of parasitic disease. It is endemic
in 12 provinces south of the Yangtze River in China, and millions of people are infected [1,2].
The distribution of Oncomelania hupensis, the only intermediate host of Schistosoma japonicum,
corresponds closely to the epidemic area of Schistosoma japonicum [3,4]. The geographic distribution
of Oncomelania hupensis is closely related to climate and environmental factors, including
temperature, rainfall, latitude, elevation, hydrology, soil and vegetation, which affect its growth and
reproduction [1,5]. Among these important factors, abundant rainfall and frequent floods facilitate the
diffusion of Oncomelania hupensis, which increases the prevalence of Schistosoma japonicum infection in
humans [2,6–11]. Therefore, identifying the areas at risk of possible dispersal of Oncomelania hupensis
after torrential rains and simulating the potential high-risk habitats are of great importance in
forecasting the transmission of schistosomiasis.

Numerous studies have studied the impact of floods on the dispersal of Oncomelania hupensis and
the potential habitats of Oncomelania hupensis separately [11–13]. Studies have rarely combined
these aspects to determine the potential high-risk habitats within the transmission reach of
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Oncomelania hupensis after floods. In previous studies, the application of remote sensing Landsat
TM data has been used to measure the impact of flooding on the dispersal of Oncomelania hupensis or to
identify its habitats [14–17]. Compared with Landsat TM satellite data, synthetic aperture radar (SAR)
is a more powerful source of data with a wide swath, short re-visit cycle, all-weather capability and
high resolution. This technique uses a microwave band to obtain accurate images under all weather
conditions, including cloudy and rainy days and at night, whereas optical sensors cannot penetrate
clouds. SAR time series data have been successfully used to simulate flood inundation, map flood
dynamics, and predict water levels [18–20]. Sentinel-1A, the first satellite in the European Space
Agency’s Copernicus program for monitoring the environment, was launched in April 2014 and
carries a C-band radar system. Its radar images are now available routinely every 12 days and are
systematically used for land monitoring. Sentinel-1A data have been used in studies to determine
waterlines, to estimate ocean wave heights and to assess grassland yields [21–23]. SAR data from
Sentinel-1A before and during a flood can be used to extract the flood-inundated areas fast and
effectively; however, these data have rarely been used in previous Oncomelania hupensis research.
Flood-inundated areas are usually accompanied by snail dispersal due to the hydrologic regime
changes. The potential range of the snail dispersal after a flood can be determined by predicting the
potential snail habitats of the submerged zone.

Remote sensing technologies, geographic information system (GIS) spatial analysis tools
and statistical analysis methods provide technical support for the analysis of geography-related
factors and the simulation and prediction of the spatial distribution of Oncomelania hupensis [24,25].
Landscape patch analysis metrics of patches, edges and corridors are a good way to investigate the
environmental determinants of disease transmission [13,26,27], and this type of analysis has been
applied successfully to study the effects of a number of environmental variables on intermediate
hosts [28–30]. Statistical analysis methods have achieved good results in spatial distribution estimates
and simulations in environmental research [31,32]. These analytical methods and techniques can
be used to explore natural environmental factors and to analyze and predict the areas at risk of
Oncomelania hupensis after floods.

Thus, the main objectives of this study were to: (1) investigate the applicability of Sentinel-1A
radar data for snail research, (2) identify areas at risk of dispersal of Oncomelania hupensis after torrential
rains and (3) forecast potential high-risk snail habitats within the transmission reach. Results of this
study will provide scientific guidance for Oncomelania hupensis control after flooding.

2. Materials and Methods

2.1. Study Area

Gongan County (Figure 1) in Hubei Province is located on the southern bank of the Yangtze
River and has been one of the most severe endemic areas for schistosomiasis in China. It has a humid
subtropical monsoon climate and four distinct seasons with a short frost period, long sunshine period
and abundant rainfall. Gongan County is primarily composed of plains and lake regions, with an
average elevation of approximately 36 m above sea level. These climatic and geographical attributes of
Gongan County have created hospitable habitats for Oncomelania hupensis to grow and breed. In 2015,
Oncomelania hupensis was detected in 205 villages among a total of 354 administrative villages of
Gongan County.

2.2. Data Sources

All relevant input data used in this study are shown in Table 1. Sentinel-1A data collected on
9 June 2016 and 9 July 2016, before and after a flood, respectively, were obtained from the Sentinel-1
Scientific Data Hub (https://scihub.esa.int). Both images were high-resolution (10 m) V-H polarized
C-band data acquired in the interferometric wide swath mode. A multispectral image of Landsat 8 OLI
over Gongan County, taken on 30 June 2016, was obtained from the Geospatial Data Cloud. The data
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on Oncomelania hupensis were based on annual field investigation at the administrative village scale
performed by health professionals in 2015, which were official Oncomelania hupensis data from Hubei
Provincial Center for Disease Control and Prevention. The land use data of Gongan County, with
accurate classifications from 2013 to 2015, and the soil texture data in the study area, i.e., the proportions
of silt, sand and clay, were acquired from the Resources and Environmental Science Data Center of
the Chinese Academy of Sciences. The elevation data were from the Advanced Spaceborne Thermal
Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) product with
a 30-m resolution, as provided by the Computer Network Information Center, Chinese Academy
of Science.Int. J. Environ. Res. Public Health 2017, 14, 986    3 of 14 
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Figure 1. The location of Gongan County and the distribution of snail sample sites overlaid on
a satellite image.

Table 1. Relevant input data.

Data Classification

Sentinel-1A data RS data
Landsat 8 OLI image RS data

Elevation data RS data
Snail survey data Snail data

Village-scale vector map vector data
Land-use data vector data

Soil texture data Raster data

2.3. Data Processing

The data processing to determine the potential high-risk habitats within the transmission
reach of Oncomelania hupensis after floods consisted of seven parts: (1) submerged area extraction;
(2) environmental factor data extraction; (3) snail site selection; (4) land use data processing;
(5) landscape pattern index calculation; (6) significant factor and probability equation acquisition; and
(7) high-risk potential habitat simulation. The process is illustrated in Figure 2.
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2.3.1. Submerged Area Extraction

As the process of submerged area extraction shown in Figure 2, the two Sentinel-1A images were
processed by change detection first [33]. Then we used speckle filter to filter the results by lee sigma
filtering method. After that, we segmented the change threshold. From the log ratio image statistics,
it can be found that 95% of the observed value (log ratio) in the range from −0.84 to 0.84. Due to
precipitation, the radar had a low scattering coefficient. Lower pixel values were reflected on the image.
Therefore, we selected pixels with pixel value above 0.84 as significant changes in the region. That is,
the ratio of the two images before and after the flood is greater than 1.8 pixels as a significant area of
change. After geocoding the extracted results, we finally obtained the submerged areas.

2.3.2. Environmental Factor Data Extraction

Most Vegetation indices, including the leaf area index (LAI), fractional vegetation cover, and
biomass [34–37], derived from satellite images are based on algebraic combinations of reflectance
in the red, R, and near-infrared, NIR, spectral bands [38–41]. After atmospheric correction through
Spectral Hypercubes (FLAASH) module, the normalized difference vegetation index (NDVI), fractional
vegetation cover (Fv) and land surface temperature (LST) were extracted from Landsat 8 image using
ENVI 5.3 software (Exelis Inc., Boulder, CO, USA) via algebraic band combinations [42–45].

And the wetness index, greenness index, and brightness index were calculated via tasseled
cap transformation. The tasseled cap transformation, constructed by Kauth and Tomas in 1976 [46],
is a useful tool for incorporating more information into vegetation indices by using the original
six different bands of the TM image associated with physical scene characteristics [47]. In general,
the resulting first three features, i.e., brightness, greenness, and wetness, contain the vast majority
of the information [47]. The first feature, brightness, measures soil brightness, or total reflectance.
The second feature, greenness, reflects vegetation spectral information. The third feature, wetness,
primarily expresses the soil moisture status. The resolution of the basic spatial unit of environmental
factor data extraction is 30 m.

2.3.3. Snail Site Selection

Based on the spatial database of snail established by combining the Oncomelania hupensis
village-scale survey data sheets, village-scale vector map and detailed distribution map, samples were
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chose. In total, 1602 snail sites were randomly selected in Gongan County: 443 snail-positive (present)
sites were selected in the snail area and 1159 snail-negative (absent) sites were randomly selected
throughout non-snail area based on two conditions [48]: (i) being at a minimum distance of 100 m
from any positive site to prevent falling in the snail area; and (ii) being at a minimum distance of 400 m
between two negative sites to avoid aggregation. The different numbers for positive and negative
sites is a random result for the samples random and well-distributed. Accordingly, 75% of snail sites
(i.e., 334 snail-positive sites and 886 snail-negative sites) was randomly selected as training data set
and the rest was kept for accuracy assessment. The sample locations are shown in Figure 1.

2.3.4. Land Use Data Processing

We selected paddy fields, dry fields, ditches, woodlands, grasslands, waters, and built-up land
from the land use classification data using ArcGIS (ESRI INC., Redlands, CA, USA) software.

2.3.5. Landscape Pattern Index Calculation

The landscape pattern indices of land use data around the snail sites were determined with
Patch Analyst version 5, an extended landscape pattern analysis tool of ArcGIS. The landscape pattern
indices from landscape analysis are highly concentrated landscape pattern information that can be used
to quantitatively evaluate the structural composition and spatial configuration. Landscape metrics
can be stratified into six types: area metrics, patch density and size metrics, edge metrics, shape
metrics, diversity metrics and core area metrics. A mathematical definition of each metric is detailed in
reference [49]. Basing on the ecological significance and avoiding information redundancy, we selected
the following landscape metrics: interspersion juxtaposition index (IJI), core area standard deviation
(CASD), mean patch fractal dimension (MPFD), patch richness density (PRD), mean proximity index
(MPI), total landscape area (TLA) and mean euclidean nearest-neighbor index (MNN).

2.3.6. Significant Factor and Probability Equation Acquisition

The correlative environmental factors of the distribution of Oncomelania hupensis were ascertained
with a univariate logistic regression model. Independent variables and coefficients were quantified
through training data by a forward likelihood ratio (LR) method of the multifactorial binary logistic
regression model. Then, an equation for Oncomelania hupensis survival probability was obtained.
Oncomelania hupensis survival probability, namely risk probability of snail habitats, represents the risk
extent of a place suitable for snail survival. Receiver operating characteristic (ROC) curve test [50]
was used to assess the performance of binary logistic regression model for Oncomelania hupensis
survival probability. The remaining 25% validation data from both snail-positive (present) sites and
snail-negative (absent) sites was used for the purpose.

2.3.7. Potential Habitat Simulation

A predictive risk map of snail habitats was established for the study area based on the probability
equation acquired in Section 2.3.6. Potential habitats with risk probability after a flood was extracted
from submerged areas and predictive risk map by ArcGIS 10.4.

3. Results

3.1. Submerged Area after a Flood

The submerged areas extracted from Sentinel-1A data are shown in Figure 3. The map shows
that most submerged areas were mainly distributed along the river, partly in the fields and ditches.
If submerged areas are featured the presence of snails, then these areas are the potential snail habitats
after flooding.
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3.2. Snail Survival and Natural Factors

After univariate logistic regression analysis, the NDVI, wetness index, clay proportion, elevation,
land use data and landscape pattern indices were the highly correlated variables inputted into the
subsequent multifactorial binary logistic regression model. Then, the forward LR method indicated
that the WI (wetness index), NDVI, E (elevation), CP (clay proportion), CASD, WA (woodland area),
CLL (construction land length) and DL (ditch length) were the significant risk factors for the presence of
snails. The factors exhibiting significant positive correlations were CP, CASD and DL, while the factors
exhibiting significant negative correlations were WI, NDVI, E, WA and CLL. The AUC (area under
the curve) value of the ROC curve was 0.874 (95% CI: 0.840–0.908), which meant that the logistic
regression model could effectively fit the relationship between the environmental factors and snail
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presence. The final risk probability, P, pdiction model of the snail potential habitats after flooding can
be represented as follows:

p = 1
1+Exp [−(−2.496−5.402×WI−1.519×NDVI−0.020×E+0.015×CP+0.034×CASD−6.216×WA−0.229×CLL+2.764×DL )]

(1)

3.3. Predicted Potential Snail Habitats within the Snail Transmission Reach after Flooding

Based on the risk prediction, i.e., Equation (1), we created a 400-m grid with risk probability as cell
value to determine the potential snail habitats. Combined the gird and the submerged areas obtained
in Section 3.1 (Figure 3), a predictive risk map of snail habitats after flooding was established for the
study area. In the map, the deeper the color, the higher the risk of potentially favorable snail habitats.
The snails spread to the submerged areas and they grew and bred in the high-risk habitats within these
ranges (Figure 4).Int. J. Environ. Res. Public Health 2017, 14, 986    8 of 14 
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4. Discussion

4.1. The Factors Influencing Snail Habitats after a Flood

The prevalence of schistosomiasis is closely related to natural factors, such as vegetation,
temperature, NDVI, humidity, elevation, soil, landscape pattern indices and other factors [51].
However, these factors of snail habitats are complicated and exert combined effects [12],
especially in a flood at an unusual time. Typical factors were selected and quantified using binary
logistic regression model analysis (Equation (1)). From the results, we determined the significant factors:
clay proportion, CASD and ditch length were positively correlated independent variables, while the
wetness index, NDVI, elevation, woodland area and construction land area were the negatively
correlated independent variables.

The clay proportion was shown to have a positive relationship with snail habitat. The macroscopic
distribution pattern of snails depends on the surface features and hydrologic conditions, while the
microscopic distribution pattern depends on the vegetation and soil conditions [1]. Soil type is
important to Oncomelania hupensis. Loamy clay and clay were found to be suitable for snail breeding,
whereas sandy loam and sand were not suitable. Therefore, the clay proportion is a good indicator for
predicting favorable snail habitat.

CASD also had a positive relationship with snail habitat, indicating that the greater the variability
in core area size, the more suitable the environment is for snails. Oncomelania hupensis is a type of
amphibious freshwater snail that usually grows and breed at the boundary between water and land,
such as along ditches, irrigation canals and river banks [1], and the area of water and the area of other
land use types usually differ considerably. For example, near ditches, the area of water is usually much
smaller than that of land; on river banks, the area of water is usually much larger than that of the river
bank. CASD synthesize these differences and can be used to evaluate snail habitats.

Ditch length, which also exhibited a positive relationship with snail habitats, is used as a
quantifiable measure of the likelihood of a person coming into contact with snails due to the presence
of ditches or canals. The breeding environment of Oncomelania hupensis corresponds to areas that
alternate between submerged and exposed [52]. Irrigation channel conditions alternate between
dry and wet seasonally because the soil moisture and liquid manure levels for crops vary among
the different growth stages. These changes regularly coincide with the timing of snail growth and
breeding. The snails can spread via water flow in the ditches during periods of irrigation, and can
survive in wet soil after irrigation.

The wetness index represents the humidity of the environment and has been shown to be
negatively correlated with snail habitat after a flood. Water is one of the necessary conditions for the
growth and reproduction of the snails, but the humidity requirements for snail growth are strict and
vary among the different stages of growth. Oncomelania is an amphibious snail, and its larva need
to live in water. As it grows into the adult stage, it tends to inhabit humid areas, such as grass [53].
Because of its special growing habits, flooding is an unfavorable living condition for adult snails and
will inhibit spawning or other reproductive functions, even leading to death. However, flooding
promotes the growth of juvenile snails. Additionally, an annual rainfall higher than 1192.2 mm has
a negative influence on snails [54]. The density of adult snails on the sides of a channel is greater
than that in the center [55]. After a flood, excessive rainfall can increase the environmental humidity.
Thus, the wetness index is a negative factor for adult snail habitats.

Appropriate vegetation conditions, which maintain the temperature and humidity, are important
for protecting snails from cold in winter and sunshine in summer [56]. The NDVI is a representative
index used to detect the vegetation growth status and vegetation coverage. The NDVI appears to have
a negative relationship with snail survival, meaning that as the value of the NDVI increases, the snail
survival probability decreases. This finding directly opposes those of some previous studies [13,14,17].
One reason is that, spatially, Gongan County is a small-scale study area with many lakes, rivers,
ditches, ponds and patty fields. Thus, a high NDVI value usually indicates that the ground is covered
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with woodland and agricultural land during the vegetative period, whereas a low NDVI value usually
indicates that the ground is covered with water bodies or built-up land [48]. Another reason is
that, as a rainstorm raises the water level meadows and the sides of ditches become submerged.
Therefore, after a flood, lower NDVI values correspond to more suitable environments for snails.
In contrast, the NDVI values of ground covered with taller vegetation, such as woods or crops, i.e.,
areas unfavorable to the survival of the snails, were much higher. Thus, to use the NDVI to study the
effects of vegetation on Oncomelania hupensis, researchers should also account for the specific ground
coverage at the micro-level in the study area.

Elevation also affects the distribution of snails. Oncomelania hupensis lives primarily at low
elevations, ranging from sea level to 200 m. It inhabits horizontal or nearly horizontal habitats [1].
Most snails usually live within 3 m above the water line along ditches and ponds [56]. From the results,
we can conclude that, in a plain area, such as Gongan County, elevation has a negative effect on snails.

Woodland areas and construction land areas appear to have a negative effect on snail habitat.
The distribution and reproduction of snails differ among different land uses. Snails are mainly
distributed in channels, rivers and the associated paddy fields, ponds, wastelands beside fish ponds
and shelter forests [57]. Other areas, such as construction lands, are not suitable for snails due to the
lack of water and/or plants. Additionally, the humidity and the distance to waters in these places are
not suitable for snail reproduction.

The selection of these particular factors as independent variables for the prediction of snail
habitats does not mean that other factors have no influence. The interaction of factors collectively
determines the suitability of snail habitats [58]. Numerous environmental factors exert similar effects
on snail habitat, and it is necessary to identify representative factors depending on the environment
and season.

4.2. Potential Habitats of Oncomelania Hupensis in Dispersal Ranges

The area submerged after a flood, as extracted via SAR techniques, is shown in Figure 3.
From Figure 3, we can summarize some distribution characteristics of potential snail habitats in
Gongan County following a flood. In general, the submerged areas are concentrated in the middle
and southeast of Gongan County, which feature low-lying plains and water networks. In the map,
nearly half of the visibly submerged areas were along the rivers. In these areas, the common pre-flood
boundaries between water and land with snails became submerged during the flood. These submerged
areas are considered potential snail habitats because flood-induced inundation of snail-rich areas is
usually accompanied by snail dispersal due to the hydrologic regime changes. Being carried by flowing
water is the main dispersal method of snails. A large number of snails, especially those exhibiting
long-distance migration, spread via flowing water. There are several ways for snails to spread during
floods. Snail eggs become exposed when the soft soil covering the surface of the snail eggs gradually
dissolves during repeated rain events and ultimately spread via the runoff to surrounding areas or
even more distant areas [59]. Very young snails can withstand the flood and live as aquatic snails; thus,
they can exploit the surface water currents as a means of locomotion to spread to other places. Adult
snails can also take advantage of the water currents by attaching themselves to diverse waterborne
objects to spread to new places [52]. Floods can cause significant increases in the snail-positive area
in the short term [60], and significant snail migration occurs from upstream to downstream during
the flood season in the lower basin of the Yangtze River [15]. Additionally, the spread of snails
and schistosomiasis commonly occurs in farmland irrigation systems, such as electrically powered
irrigation in a water network region and irrigation systems downstream of a reservoir [61]. The snails
spread from snail areas to no-snail areas. When the environment of the no-snail area is suitable, snails
will grow and breed quickly, and the snail area will increase rapidly over a short period of time.
Therefore, the potential snail habitats in the dispersal range can be determined by delineating the
submerged zone.
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After determining the surroundings and causes of Oncomelania hupensis migration after a flood,
we finally simulated and predicted the snail habitats in Gongan County. The risk probability is
universally low in the southwestern part of Gongan County, which is characterized by mountains,
covered with trees and bushes. Based on a comparison with the land use map (Figure 2), the areas at
highest risk are mostly linearly distributed along the rivers, in grasslands and along ditches in paddy
fields. The areas with the lowest risk are generally located in construction lands, woodlands, and the
interiors of lakes and fields without irrigation canals. The areas with a moderate risk are mainly
distributed along ditches in dry fields and occasionally along ditches in patty fields. One reason is that
the dispersal range was concentrated in paddy fields with an irrigation system. Implementation of
irrigation systems often leads to an expansion of snail habitats, which consequently represent new
potential transmission sites for schistosomiasis [2]. The extent of the irrigation system is a strong
determinant of the endemic infection levels [62]. Overall, river banks and paddy irrigation ditches
represent the most favorable snail habitats after a flood. Adult snails will survive and propagate well
along the rivers and ditches. Juvenile snails will then grow in the rivers and be spread to submerged
areas via the flowing water. Thus, the rivers and ditches in submerged areas should be a focus
of attention.

The potential high-risk snail habitats in the submerged areas should be a focus of attention.
The rivers and paddy irrigation ditches are the highest risk habitats for snails in submerged areas.
These results will provide scientific guidance for Oncomelania hupensis and schistosomiasis control
after flooding.

5. Conclusions

Floods facilitate the dispersal of snails and can therefore spread schistosomiasis. The potential
high-risk habitats within the transmission reach of Oncomelania hupensis after floods are worthy of
research and identification. Use of Sentinel-1A radar techniques has been shown to be an effective way
to identify areas inhabited by snails and submerged due to flooding. We found that the distribution
of snails was directly and indirectly related to river systems and paddy irrigation ditches. Based
on submerged area map, the potential snail dispersal can be studied. Remote sensing inversion,
GIS spatial analysis and statistical analysis are useful in exploring the potential snail habitat and the
relevant parameters after a flood. In terms of the suitability of snail habitat, the positively correlated
factors are clay proportion, CASD, and ditch length, whereas the negatively correlated factors are
wetness index, NDVI, elevation, woodland area, and construction land area. Snail habitats with the
highest risk probabilities are mostly linearly distributed along rivers, and along ditches in paddy fields.
The rivers and paddy irrigation ditches in the submerged areas are potential habitats with a high
probability of snail dispersals after a flood. Accurate simulation of the range of snail dispersal through
rivers and ditches is worthy of further research.
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