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Stimulation of IL-1β and IL-6 through NF-κB
and sonic hedgehog-dependent pathways
in mouse astrocytes by excretory/secretory
products of fifth-stage larval
Angiostrongylus cantonensis
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Abstract

Background: Angiostrongylus cantonensis is an important causative agent of eosinophilic meningitis and eosinophilic
meningoencephalitis in humans. Previous studies have shown that the Sonic hedgehog (Shh) signaling pathway
may reduce cell apoptosis by inhibiting oxidative stress in A. cantonensis infection. In this study, we investigated the
relationship between cytokine secretion and Shh pathway activation after treatment with excretory/secretory
products (ESP) of fifth-stage larval A. cantonensis (L5).

Results: The results showed that IL-1β and IL-6 levels in mouse astrocytes were increased. Moreover, ESP stimulated the
protein expression of Shh pathway molecules, including Shh, Ptch, Smo and Gli-1, and induced IL-1β and IL-6 secretion.
The transcription factor nuclear factor-κB (NF-κB) plays an important role in inflammation, and it regulates the expression
of proinflammatory genes, including cytokines and chemokines, such as IL-1β and TNF-α. After ESP treatment, NF-κB
induced IL-1β and IL-6 secretion in astrocytes by activating the Shh signaling pathway.

Conclusions: Overall, the data presented in this study showed that ESP of fifth-stage larval A. cantonensis stimulates
astrocyte activation and cytokine generation through NF-κB and the Shh signaling pathway.
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Background
Astrocytes are the most abundant cells in the human
and murine central nervous system (CNS). These cells
can protect neurons and induce inflammatory responses
by releasing anti-apoptotic proteins or cytokines in re-
sponse to pathogen infection [1, 2]. During infection, the
activated astrocytes generate IL-1β and IL-6 through the
p38/IκB- or TNFα/NF-κB-mediated pathway [3–6] and
delay neuronal death in pathological situations with
H2O2 generation [7]. Astrocytes also form the blood-

brain barrier with endothelial cells to regulate molecular
transportation [8]. This barrier protects the CNS by sep-
arating the blood and brain cells, and it only allows spe-
cific small molecules, such as O2, CO2, and glucose, to
cross into brain tissue [9]. Several studies have shown
that approximately 100% of large-molecule drugs and
more than 98% of small-molecule drugs cannot reach
the brain through the blood-brain barrier. Viruses are
also required to cross this barrier to infect brain cells via
induction of cell death in astrocytes [10].
The Hedgehog (Hh) signaling pathway and secreted

proteins play important roles in animal development.
This pathway regulates morphogenesis of a variety of
tissues and organs [11]. Hh has three homologs, includ-
ing Sonic hedgehog (Shh), Desert hedgehog (Dhh) and
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Indian hedgehog (Ihh) [12]. Shh signaling is mediated
via a series of inhibitory steps, and it can trigger a com-
mon signaling pathway. In the absence of Shh, trans-
membrane Patched (Ptc) receptors block the function of
another transmembrane protein, Smoothened (Smo). In
contrast, following Shh interaction with Ptc, Smo can be
activated via inhibition of Ptc. These changes initiate a
signaling cascade that activates the Glioma-associated
oncogene (Gli) family of transcription factors (Gli1-Gli3)
[13, 14]. Several studies have shown that cytokine
expression in response to infections is stimulated by Shh
signaling. In Helicobacter pylori infection, the Shh path-
way can positively regulate the expression of
Interleukin-1β (IL-1β), IL-10, IL-12, IFNγ and MIP-2 in
mouse stomach tissues [15]. IL-1β is a pro-inflammatory
cytokine that plays an important role in brain inflamma-
tion and promotes the production of other cytokines,
such as TNF-α and IL-6, in microglia and astrocytes [16,
17]. IL-1β and IL-6 play an important role in CNS im-
mune responses. The expression levels of IL-1β and IL-6
in brains are increased on brain injury, parasites infec-
tion and autoimmune encephalomyelitis [18–20].
Angiostrongylus cantonensis, the rat lungworm, was

found in the hearts and pulmonary arteries of Rattus
rattus and Rattus norvegicus in Guangzhou (Canton),
China, by Chen in 1935 [21, 22]. This parasite is an
important causative agent of human cerebral angiostron-
gyliasis (eosinophilic meningitis and eosinophilic menin-
goencephalitis), particularly in the Pacific islands and
Southeast Asia [23–28]. By 2010, more than 3000 cases
had been reported in approximately 30 countries world-
wide [29, 30]. In A. cantonensis infection, the fifth-stage
larvae (L5) induce a wide range of immune responses,
including eosinophil recruitment and cytokine release
(IL-1β, IL-4, IL-5, IL-6, IL-10, IL-13 and TNF-α) in the
CNS of humans [31, 32].
In our previous studies, A. cantonensis infection in

mice increased reactive oxygen species (ROS) and anti-
oxidants in the astrocytes, and activation of the Shh sig-
naling pathway inhibited cell death through the GRP78/
Bcl-2-dependent pathway [33]. Moreover, excretory/
secretory products (ESP) from A. cantonensis L5 induced
oxidative stress and cell apoptosis in astrocytes, but Shh
pathway activation could reduce cell injury [34]. In the
present study, we reported that ESP increases IL-1β and
IL-6 levels in mouse astrocytes in a time-dependent
manner, and the NF-κB/Shh pathway plays an important
role in cytokine secretion.

Methods
Parasite and experimental infection
Angiostrongylus cantonensis (Taipei strain) was main-
tained in our laboratory through cycling in Biompha-
laria glabrata snails and Sprague-Dawley (SD) rats [33].

On day 21 post-infection, the third-stage larvae (L3)
were isolated from the infected snails by digestion with
0.6% (w/v) pepsin-HCl (pH 2–3) for 1 h. Each BALB/c
mouse was inoculated with 25 L3 via stomach intubation.
In this study, SD rats and BALB/c mice were purchased
from the National Laboratory Animal Center, Taipei. All
procedures involving animals and their care were reviewed
and approved by the Chang Gung University Institutional
Animal Care and Use Committee.

Preparation of A. cantonensis ESP
Live L5 of A. cantonensis were isolated from the brain
tissues of rats by anesthetizing with 30 μl Zoletil 50
(Virbac) after 21 days post infection. After the worms
were washed with saline, phosphate-buffered saline,
distilled water and RPMI (Sigma-Aldrich, St. Louis,
USA), they were incubated in RPMI without foetal
bovine serum (FBS) for 24, 48 and 72 h. The ESP of
L5 were collected and concentrated by Amicon Ultra-
15 10 K centrifugal filter devices (Merck Millipore,
Darmstadt, Germany) from the culture medium. The
ESP concentration in the medium was determined
using a Bio-Rad Protein Assay Kit (Bio-Rad, Hercules,
CA, USA), according to the manufacturer’s instruc-
tions. The ESP were used to treat the astrocytes, and
cellular changes were observed [34].

Astrocyte culture
A mouse brain astrocytic cell line (CRL2535) from
ATCC was used in this study [31]. Cells were cul-
tured in Dulbecco’s modified Eagle’s medium/F-12
(DMEM/F-12) (Corning, New York, USA) with 10%
fetal bovine serum (FBS) (Gibco, Waltham, USA),
penicillin and streptomycin in poly-L-lysine-coated
culture flasks at 37 °C in 5% CO2. Cells were plated
onto 10 cm culture dish, incubated in serum-free
DMEM/F-12 for 24 h, pretreated with the the recom-
binant Shh (r-Shh) (R&D System, Minneapolis, USA),
Shh agonist (SAG) (Enzo, New York, USA), Shh path-
way inhibitor (Cyclopamine) (Sigma-Aldrich) and NF-
Kb inhibitor (JSH-23) (Sigma-Aldrich) for 1 h and
then treated with L5-ESP.

SDS-PAGE electrophoresis and western blotting
The proteins of astrocytes were separated by 12% SDS-
PAGE. The separated proteins were transferred to
nitrocellulose membrane and incubated with antibodies
against Shh (Sigma-Aldrich), Ptch (Sigma-Aldrich), Smo
(Sigma-Aldrich), Gli-1 (Sigma-Aldrich), IL-1β (RayBio-
tech, Norcross, USA), IL-6 (RayBiotech), NF-κB (Sigma-
Aldrich) and β-actin (Sigma-Aldrich). The membrane
was washed with TBS/T three times and then incubated
with a 1:10,000 dilution of anti-rabbit or mouse
horseradish peroxidase antibody (Sigma-Aldrich). The
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Fig. 1 ESP induce IL-1β and IL-6. Astrocytes were treated with 500 μg/ml ESP at different time points. The protein levels of IL-1β (a) and IL-6 (b) were
detected by Western blot analysis. The concentrations of IL-1β (c) and IL-6 (d) were determined in astrocyte culture medium by ELISA. Statistical
significance was determined by Student’s t-test: *P < 0.05, **P < 0.01, ***P < 0.001 (n = 3)

Fig. 2 ESP stimulate the gene expression of Shh signaling pathway. Astrocytes were treated with 500 μg/ml ESP for the indicated time points.
The mRNA levels of Shh, Ptch, and Gli-1 were determined in astrocytes by Quantitative real-time PCR. Statistical significance was determined by
Student’s t-test: *P < 0.05, **P < 0.01, ***P < 0.001 (n = 3)
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reactive bands were detected by ECL reagents (EMD
Millipore, Billerica, USA) and captured by a UVP BioS-
pectrum 600 Imaging System (Analytik Jena US, Upland,
USA). ImageJ software analysis was used to detect the
image densitometry of target proteins.

ELISA
The cultured supernatants were collected from astro-
cytes treated with ESP at 2 h intervals, for up to 8 h.
These samples were used to detect the concentration of
IL-1β or IL-6 by a mouse-specific ELISA kit
(RayBiotech).

Quantitative real-time PCR
Total RNA was extracted from the astrocytes by using GEN-
Ezol TriRNA Pure Kit (Geneaid, Taipei, Taiwan). First -strand
cDNA was synthesized using SuperScript III reverse tran-
scriptase (Invitrogen, Carlsbad, USA) with oligo d(T) primer,
according to the manufacturer’s instructions. Quantitative
real-time PCR was performed using the qPCR Master Mix
(KAPA, Wilmington, USA) on the ABI 700 qPCR System

(Applied Biosystems, Foster City, USA). A β-actin internal
control was used. The expression level was detected with spe-
cific primers, targeting the Shh (forward: 5′-GGC AGA TAT
GAA GGG AAG AT-3′; reverse: 5′-ACT GCT CGA CCC
TCA TAG TG-3′), Ptch (forward: 5′-GAA GGC GCT AAT
GTT CTG AC-3′; reverse: 5′-TAC CTA GGA GGT ATG
CTG TC-3′), Gli-1 (forward: 5′-TGC CAG ATA TGC TTC
AGC CA-3′; reverse: 5′-TGT GGC GAA TAG ACA GAG
GT-3′) and β-actin cDNAs (forward: 5′-CCT GTA TGC
CTC TGG TCG TA-3′; reverse: 5′-CCA TCT CCT GCT
CGA AGT CT-3′).

Transfection of siRNA
The astrocytes were seeded into 6 well plates and grown
to 70–80% confluence for transfection. X-tremeGene
siRNA transfection reagent (Roche Molecular Systems
Inc., Pleasanton, USA) was mixed with 40 pmoles Shh
siRNA (UCUGAAACGCAGGACAAGG and CCUUGUC
CUGCGUUUCAGA) (Sigma-Aldrich) within 5 min. Cells
were incubated with the reagent containing siRNA for 8 h
and then replaced the fetal bovine serum containing

Fig. 3 ESP induce Shh signaling pathway activation. Astrocytes were treated with 500 μg/ml ESP for the indicated time points. The protein levels
of Shh, Ptch, Smo, and Gli-1 were determined in astrocytes by Western blots. Statistical significance was determined by Student’s t-test: *P < 0.05,
**P < 0.01 (n = 3)
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medium without siRNA. After 48 h, cells were collected
to detect protein expression.

Immunofluorescence staining
The frozen mouse brain tissue sections were fixed
and permeabilized with 2% (w/v) paraformaldehyde
(PFA) and 0.5% (v/v) Triton X-100 in PBS before in-
cubation. Sections were washed in PBS/T (pH 7.4)
and blocked for 30 min in PBS containing 2% BSA.
Then, brain sections were incubated with primary
antibody, including chicken anti-Glial fibrillary acidic
protein(GFAP) (1:500, Abcam, Cambridge, UK) and
rabbit anti-NF-κB, (1:50, Sigma-Aldrich), for 24 h at
4 °C. Finally, the sections were incubated with the
secondary antibodies (DyLight™ 488–594-conjugated
IgG, Jackson ImmunoResearch Inc., Newmarket, UK,
1:1000) for 50 min at room temperature. DAPI was
used to detect cell nuclei.

Statistical analysis
Student’s t-tests were used to compare the OD values
and expression levels using GraphPad Prism 5 software.
Data were presented as means ± SD. Differences were

considered statistically significant through the P-value
(*P < 0.05, **P < 0.01, ***P < 0.001).

Results
ESP induces IL-1β and IL-6 levels in mouse astrocytes
To determine the role of A. cantonensis L5 ESP in
cytokine expression, we treated astrocytes with
500 μg/ml ESP for 0–8 h. Western blot analysis
showed that the protein levels of IL-1β and IL-6 in-
creased in a time-dependent manner in astrocytes,
and significant increases (IL-1β: t(4) = 5.368, P < 0.01;
IL-6: t(4) = 147.8, P < 0.001) were detected at 2 h
(Fig. 1a, b). Moreover, to assess whether the ESP in-
duced cytokine secretion in astrocytes, we examined
the protein concentrations of IL-1β and IL-6 in the
culture medium by ELISA. The concentration of IL-
1β in culture medium was increased (t(4) = 3.978,
P < 0.05) at 2 h and significantly increased at 6 h
(t(4) = 8.725, P < 0.01), and IL-6 was significantly in-
creased (t(4) = 4.893, P < 0.01) at 2 h (Fig. 1c, d).
These results demonstrated that A. cantonensis L5
ESP induced IL-1β and IL-6 expression in astrocytes.

Fig. 4 ESP induce the expressions of IL-1β and IL-6 via the Shh pathway. Western blot analysis of IL-1β (a) and IL-6 (b) in astrocytes
co-cultured with ESP alone or pretreated with a recombinant Sonic hedgehog peptide from mouse (Shh) (3 μg), cyclopamine (20 μM) or SAG for
2 h and then with 500 μg/ml ESP for 4 h. β-actin is shown as a control. Data are expressed as the mean ± SD from three independent experiments
(**P < 0.01). (c, d) Changes in the concentrations of IL-1β and IL-6 protein in the culture medium of astrocytes detected by the ELISA. Data are
expressed as the mean ± SD from three independent experiments (*P < 0.05, **P < 0.01, ***P < 0.001)
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ESP activates the Shh signaling pathway in mouse
astrocytes
First, we wanted to determine whether Shh pathway
was activated in standard medium treatment. These
results showed that the protein levels of Shh pathway
related molecules (Shh, Ptch, Smo, and Gli-1) were
not significantly changed for 0–8 h in astrocytes
(Additional file 1: Figure S1). Therefore, cell standard
medium cannot induce the Shh pathway activation in
astrocytes. In our previous studies, A. cantonensis L5
and soluble antigen induced astrocyte activation and
Shh protein expression [33]. To determine whether
the Shh signaling pathway is activated in astrocytes
following treatment with A. cantonensis ESP, we
assessed the mRNA expression level of Shh signaling
cascade (Shh, Ptch, and Gli-1) members by quantita-
tive real-time PCR (Fig. 2). The results showed that
Shh was significantly elevated for 4 h (t(4) = 16.68,
P < 0.001), and Ptch and Gli-1 were significantly ele-
vated for 6 h after ESP treatment (t(4) = 13.24,
P < 0.001). Moreover, the protein expression of Shh
was significantly elevated for 4 h, and Ptch, Smo, and
Gli-1 were significantly elevated for 2 h after ESP
treatment (Shh: t(4) = 6.187, P < 0.01; Ptch:

t(4) = 8.711, P < 0.01; Smo: t(4) = 5.254, P < 0.01;
Gli-1: t(4) = 4.625, P < 0.01) (Fig. 3).

Shh signaling pathway activation in mouse astrocytes
increases IL-1β and IL-6 after ESP treatment
The Shh signaling pathway has been shown to regu-
late the immune response and cytokine release in hu-
man macrophages [35]. Therefore, we wanted to
determine whether Shh signaling could stimulate
cytokine production in ESP-treated astrocytes. In A.
cantonensis ESP treatment experiments, the relation-
ship between Shh signaling and cytokine generation
in astrocytes was examined by Western blotting and
ELISA following pretreatment with the recombinant Shh
(r-Shh), Shh agonist (SAG), and Shh pathway inhibitor
(Cyclopamine). These data showed that r-Shh and SAG
stimulated IL-1β and IL-6 generation (IL-1β(r-Shh treat-
ment): t(4) = 4.884, P < 0.01; IL-1β(SAG treatment):
t(4) = 8.56, P < 0.01; IL-6(r-Shh treatment): t(4) = 123.3,
P < 0.001; IL-6(SAG treatment): t(4) = 66.2, P < 0.001)
(Fig. 4a, b) and secretion (IL-1β(r-Shh treatment):
t(4) = 5.948, P < 0.01; IL-1β(SAG treatment): t(4) = 5.058,
P < 0.01; IL-6(r-Shh treatment): t(4) = 7.679, P < 0.01; IL-
6(SAG treatment): t(4) = 3.975, P < 0.01) (Fig. 4c, d) by

Fig. 5 The expressions of IL-1β and IL-6 were increased through the Shh in ESP treatment. Western blot analysis of IL-1β and IL-6 in astrocytes co-cultured with
ESP alone or pretreated with Shh siRNA for 48 h and then with a recombinant Sonic hedgehog peptide from mouse (Shh) (3 μg) for 2 h and 500 μg/ml ESP
for 4 h. Data are expressed as the mean ± SD from three independent experiments (*P < 0.05, **P < 0.01, ***P < 0.001)
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activating the Shh pathway in ESP-treated astrocytes.
Conversely, IL-1β and IL-6 expression were significantly
decreased following inactivation of the Shh pathway by
cyclopamine (IL-1β: t(4) = 7.447, P < 0.01; IL-6: t(4) = 5.912,
P < 0.01). Alternatively, the results showed that the expres-
sions of IL-1β and IL-6 were significantly decreased in Shh
siRNA treatment (IL-1β: t(4) = 11.71, P < 0.001; IL-6:
t(4) = 5.88, P < 0.01), and the expression levels could be re-
stored after r-Shh treatment (IL-1β: t(4) = 11.83, P < 0.001;
IL-6: t(4) = 7.435, P < 0.01) (Fig. 5). These results confirmed
that the ESP elevated IL-1β and IL-6 through the Shh
signaling pathway in astrocytes.

Angiostrongylus cantonensis induces NF-κB expression in
astrocytes
In viral infection, cytokines are elevated through the
NF-kB-mediated pathway [6]. Moreover, the chemo-
kines CCL2/MCP-1 and CCL7/MCP-7 were activated
through NF-κB-dependent pathways in rat astrocytes
[36]. Therefore, in this study, we detected NF-κB ex-
pression in histological brain sections of A. cantonen-
sis-infected mice. Immunofluorescence staining with
antibodies against GFAP and NF-κB showed that NF-
κB was significantly increased in activated astrocytes
from A. cantonensis-infected mice after 21 days
(Fig. 6a). NF-κB was also significantly expressed in

astrocytes following A. cantonensis L5 ESP treatment
in vitro (t(4) = 5.786, P < 0.01) (Fig. 6b). These data
demonstrated that A. cantonensis L5 activates NF-κB
expression in stimulated astrocytes through secretion
of ESP in mice.

NF-κB induces the expressions of IL-1β and IL-6 in mouse
astrocytes via the Shh signaling pathway following ESP
treatment
To investigate the effect of NF-κB on Shh signaling
activation, we examined the expression of the Shh
signaling-related molecules, including Shh, Ptch,
Smo and Gli-1, in ESP-treated astrocytes with West-
ern blotting. The Shh, Ptch, Smo and Gli-1 levels
were significantly decreased in a concentration-
dependent manner following pretreatment with the
NF-κB inhibitor (JSH-23) (NF-κB: t(4) = 9.855,
P < 0.001; Shh: t(4) = 6.192, P < 0.01; Ptch:
t(4) = 4.454, P < 0.01; Smo: t(4) = 5.853, P < 0.01)
(Fig. 7a). Immunofluorescence staining with anti-
bodies against Shh and NF-κB showed that the ex-
pression of Shh has strongly decreased in NF-κB
inhibitor-treated astrocytes (Fig. 7b). These data
indicated that NF-κB activates the Shh signaling
pathway in ESP treatment. Also, we also confirmed
cytokine expression following inhibition of NF-κB.
IL-1β and IL-6 generation (IL-1β: t(4) = 5.133,

Fig. 6 ESP induce NF-κB expression. a Fluorescence microscopy demonstrated the expression of NF-κB in astrocytes from the hippocampus of
BALB/c mice infected with 25 A. cantonensis third-stage larvae on day 28 post-infection (GFAP: green; NF-κB: red; colocalization of NF-κB and Shh:
yellow). b Western blot analysis of NF-κB in astrocytes treated with ESP for 0–8 h. Data are expressed as the mean ± SD from three independent
experiments (**P < 0.01). Scale-bars: 100 μm
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P < 0.01; IL-6: t(4) = 11.28, P < 0.001) (Fig. 8a, b)
and secretion (IL-1β: t(4) = 4.915, P < 0.01; IL-6:
t(4) = 7.22, P < 0.01) (Fig. 8c, d) were significantly
decreased by inhibition of NF-κB in ESP-treated as-
trocytes. In conclusion, our results demonstrated
cytokine expression in mouse astrocytes via the NF-
κB/Shh signaling pathway following ESP treatment.

Discussion
In A. cantonensis infection, reactive stress and injury
are elevated in the parenchyma, meninges, and
cerebrospinal fluid of the mouse brain [37, 38].
Moreover, this nematode induces blood-brain barrier
dysfunction and immune responses in the host brain
[39]. The ESP of A. cantonensis could induce eosino-
phil recruitment in the brain, but the function and
effects of the ESP molecules are poorly understood
[40]. The ESP are also important for studying the
interaction between host and nematode, and these
products are potential diagnostic markers for

angiostrongyliasis [41]. However, the mechanisms of
ESP-induced cytokine expression in astrocytes are
largely unknown. In this study, we found that activated
astrocytes from the nonpermissive host (mouse) secrete
cytokines IL-1 and IL-6 following ESP treatment.

Astrocytes are important to brain cells that regulate
immunocyte recruitment through the release of cyto-
kines or chemokines, such as IL-1β and IL-6, in
response to injuries or pathogen infections [42]. In
Toxoplasma gondii infection, stimulated murine astro-
cytes can inhibit parasite infection and replication by
the generation of cytokines [43, 44]. Moreover, some
studies have shown that T. gondii tachyzoites or bra-
dyzoites in astrocytes induce inflammatory cytokine
(IL-1, IL-6, and TNF-α) generation in vitro [45].
IL-1β is a proinflammatory cytokine secreted by brain
macrophages, astrocytes, and microglia, and it can
also induce IL-6 production. IL-1β regulates blood-
brain barrier function and permeability by induction
of chemokines (CCL2, CCL20 or CXCL2) [8].

Fig. 7 NF-κB induces Shh signaling pathway activation. a Western blot analysis of NF-κB, Shh, Ptch, and Smo in astrocytes co-cultured with ESP
alone or JSH-23 for 2 h and then with 500 μg/ml ESP for 4 h; β-actin is shown as a control. Data are expressed as the mean ± SD from three
independent experiments (**P < 0.01, ***P < 0.001). b The expression levels of Shh and GFAP in astrocytes. The Shh and GFAP protein expressions
were determined by immunofluorescence staining of astrocytes with ESP alone or JSH-23 for 2 h and then with 500 μg/ml ESP for 4 h. (GFAP:
green; Shh: red; DAPI: blue)
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The Shh signaling pathway plays an important role
in human development; it regulates the morphogen-
esis of tissues and organs [11]. In the CNS, the Shh
pathway can stimulate CNS development, such as
neural tube formation and brain cell proliferation
[46–49]. This pathway is also activated in astrocytes
by brain injury or H2O2 treatment, and Shh expres-
sion in astrocytes is higher than that in fibroblasts
and neurons. Following H2O2 treatment, the astro-
cytes protect cortical neurons by secretion of Shh
protein [2]. Moreover, our previous study showed that
the Shh signaling pathway inhibits cell apoptosis in

astrocytes by activation of GRP78 and Bcl-2 in A.
cantonensis soluble antigen treatment [33]. In this
study, we found that the expression of Shh signaling
pathway proteins, such as SHH, PTCH, SMO, and
GLI-1, were increased in astrocytes after A. cantonen-
sis ESP treatment.
Neuroinflammation plays a major role in parasite

infection, Parkinson’s disease and Alzheimer’s disease
[50–53]. Several proinflammatory mediators in the
brain could induce neuroinflammation, including
cytokines and chemokines. Astrocytes and microglia
are the major glial cells involved in activation of

Fig. 8 NF-κB induces the expressions of IL-1β and IL-6. Western blot analysis of IL-1β (a) and IL-6 (b) in astrocytes co-cultured with ESP alone or
JSH-23 for 2 h and then with 500 μg/ml ESP for 4 h; β-actin is shown as a control. Data are expressed as the mean ± SD from three independent
experiments (**P < 0.01, ***P < 0.001). c, d Changes in the concentrations of IL-1β and IL-6 protein in the culture medium of astrocytes detected
by the ELISA. Data are expressed as the mean ± SD from three independent experiments (*P < 0.05, ** P < 0.01)
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neuroimmunological responses in the CNS [54]. Sev-
eral studies have shown that the expression of the
transcription factor NF-κB is involved in astrocyte
activation [55]. Furthermore, NF-κB has been shown
to regulate the transcription of cytokines and chemo-
kines [56]. NF-κB can induce astrocyte inflammation
via the expressions of cytokines (IL-1β) and chemo-
kines (MCP-1) [57]. In viral infection, cytokine ex-
pression is also elevated through a TNF-α/NF-κB-
related pathway [6].

Conclusions
Here, we investigated the molecular mechanisms of A.
cantonensis ESP-stimulated expression of cytokines,
including IL-1β and IL-6, in cultured mouse astrocytes.
In conclusion, the present work showed that NF-κB
induces the expressions of IL-1β and IL-6 through the
Shh signaling pathway in ESP-treated astrocytes.

Additional file

Additional file 1: Figure S1. The activation of Shh pathway in
astrocytes co-cultured with cell medium. Astrocytes were treated with
DMEM/F-12 at different time points. The protein levels of Shh, Ptch, Smo,
and Gli-1 were determined in astrocytes by Western blots. Statistical
significance was determined by Student’s t test (n = 3). (PDF 166 kb)
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