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Abstract

Learning motor skills evolves from the effortful selection of single movement elements to their 

combined fast and accurate production. We review recent trends in the study of skill learning 

which suggest a hierarchical organization of the representations that underlie such expert 

performance, with premotor areas encoding short sequential movement elements (chunks) or 

particular component features (timing/spatial organization). This hierarchical representation allows 

the system to utilize elements of well-learned skills in a flexible manner. One neural correlate of 

skill development is the emergence of specialized neural circuits that can produce the required 

elements in a stable and invariant fashion. We discuss the challenges in detecting these changes 

with fMRI.

What is skill learning?

Motor skill learning generally refers to neuronal changes that allow an organism to 

accomplish a motor task better, faster, or more accurately than before. Beyond this accepted 

understanding of the common use of the word, there is little agreement in the literature about 

a more precise, scientific definition. Most researchers, however, agree on what skill learning 

is not. In other words, skill learning is currently mainly defined by its demarcation from 

other forms of learning.

First, skill learning is generally seen as separate from declarative knowledge [1] – in other 

words, it is not measured in terms that we can verbalize, but instead by what we can do (but 

see [2]), thereby falling under the broad umbrella of procedural knowledge. Furthermore, 

skill learning is usually distinguished from motor adaptation, which is defined as the 

recalibration of well-trained movements (such as locomotion, eye or reaching movements) to 

changes in environment [3]. This form of learning involves a parametric change driven by a 

sensory-prediction error on a trial-by-trial basis, and has been shown to depend on the 

integrity of the cerebellum [4–6].

Within these boundaries, the term skill learning refers to improvements in accuracy or speed 

in a wide variety of tasks, including the serial reaction time [7], fast sequential finger tapping 

[8], sequential force control [9], visual tracing [10], tracking [11], and synergy or hand 
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configuration [12] tasks. In contrast to adaptation, skill learning typically involves the 

generation of a novel movement pattern, and is characterized by shifts in the speed–accuracy 

relationship [9,10,13].

An important characteristic of skill learning is that it involves various levels of the motor 

hierarchy (see Glossary). The main purpose of this paper is therefore to present a 

hierarchical framework of motor skill learning, within which we will review current 

behavioral and neural findings.

Selection versus execution

A first division in skill learning can be made between the levels of action selection and 

action execution [10]. The output of the execution level causes muscle activity – in other 

words, it includes motor cortical neurons that project to the spinal cord. Recent stimulation 

and recording studies in primary motor cortex (M1) suggest that small movement elements, 

so-called motor primitives, are encoded in the dynamics of sub-networks of neurons which 

produce replicable spatio-temporal patterns of coordinated muscle activity (Figure 1A) 

[14,15].

The selection level [16] then activates the appropriate motor primitives in a task-specific 

manner (white broken lines). Motor selection must be sensitive to the expected rewards, the 

motor cost, and task instructions. Selection is a time-consuming process because it needs to 

consider multiple alternatives and then settle on the most appropriate set of motor primitives 

– and, as for all choice-reaction time tasks, the time necessary will depend on the number 

[17] and dissimilarity [18] of the response alternatives.

When learning takes place in a serial reaction time task (SRTT), initial decreases in reaction 

times are likely due to the fact that the selection level becomes more adept in predicting the 

next stimulus, rather than by improvement of the execution of the button press itself. Other 

motor tasks, such as visuomotor tracking or tracing of an arc [10], appear to involve learning 

at the execution level – the person knows exactly which movement to select, but improves 

the speed and accuracy with which this movement can be executed. Many skill-learning 

tasks, however, involve learning both at the selection and the execution level, with learning 

possibly progressing from an abstract to a more motor-oriented representation [19]. For 

example, in the discrete sequence production task (DSP), learning starts as in the SRTT at 

the selection level as the participant remembers the sequence. Because there is no imposed 

temporal gap between responses, the learner will then form an execution-oriented sequence 

representation that allows production of the elements in rapid succession (Figure 1B).

The formation of skill representations reduces the load at the selection level: the next action 

does not have to wait for the time-consuming processes of memory recall or stimulus-

response mapping [20,21]. Instead, the selection level only needs to trigger the 

corresponding network, which binds the execution elements into one dynamical control 

network.

This process predicts that the learner should be able to produce movements using less motor 

planning or preparation time. Indeed, shifts in time–accuracy trade-offs should be 

Diedrichsen and Kornysheva Page 2

Trends Cogn Sci. Author manuscript; available in PMC 2017 September 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



considered as one of the hallmarks of skill learning [9,10]. A recent study [13] demonstrates 

such shifts also occur when learning to reach during mirror-reversed feedback. By contrast, a 

very similar task – adaptation to a visual rotation – does not show a time–accuracy trade-off. 

These results indicate that visual rotations are learned through recalibration of already 

automatized processes (adaptation) while mirror-reversal is initially achieved through a 

time-consuming selection processes, followed by subsequent automatization (skill learning).

Although skill improvements can be achieved through the formation of a new motor 

primitive at the execution level, many studies provide evidence that such representations are 

formed in a hierarchical fashion, with encoding also occurring at an intermediate level 

between selection and execution (purple, Figure 1B). Such hierarchical representations 

would allow generalization and the flexible generation of novel behaviors (Box 1).

Automatization of selection processes may not be limited to sequential tasks, and may also 

extend to the simultaneous activation of specific groups of muscles – the learning of new 

synergies. For example, in a recently developed finger configuration task [12], participants 

had to press down with a selected set of fingers onto a keyboard, while stabilizing the force 

produced by the non-selected set. Initially, participants were unable to produce some of 

these configurations directly, because the required muscle synergy was very unnatural. 

Instead participants sequentially adjusted each finger, slowly approximating the correct 

configuration. After multiple days of training they generated the same hand configuration 

directly in one coordinated movement. Thus, through learning participants moved from 

sequential selection to the development of a new synergy.

Most movement tasks involve both sequence and synergy learning. For example, a tennis 

serve involves the sequence of throwing the ball, taking a back swing, and accelerating the 

arm forward. Each of these phases involves the coordination of multiple body parts. A skill 

representation would bind these disparate elements together into a single skilful sequence of 

multi-joint movements.

Neuronal correlates: recruitment versus efficiency

What are the neural correlates of skill learning? Investigation of this question is complicated 

by the fact that plasticity may involve multiple overlapping processes. Learning leads to 

neuronal recruitment – in other words, neurons not previously activated by the task become 

engaged [22,23]. This process may explain why the activity observed in fMRI studies often 

increases with learning [8,24–26].

Equally commonly, however, studies find that activity decreases with learning, especially 

after prolonged training [27–31]. Often these signal decreases are interpreted as a sign the 

region has stopped to play a role in the production of the movement, and that the skill is now 

represented elsewhere [32].

It is also possible, however, that the region continues to preform the same function, but does 

so using less presynaptic activity – in other words it has increased its efficiency [33]. A 

dramatic example comes from a recent study showing decreased metabolic activity after 

extended sequence training in primates [34] – despite approximately matched activity of 
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output neurons for trained and untrained movements. These findings may be interpretable 

with the emergence of a single dynamical system or motor primitive that is able to generate 

the desired behavior without further input from the selection level.

The overlap of neuronal recruitment and increased efficiency has made inferences from 

fMRI studies problematic. There is evidence for both increases and decreases in motor and 

premotor areas [35], which may also depend on the phase of learning (Box 2). Although a 

recent meta-analysis [36] suggests a consistent picture with activity increases in premotor 

cortex with learning, these results are biased by the fact that the authors only considered 

signal increases; when considering only negative changes in a complimentary analysis, they 

found evidence for decreases in similar areas. Thus, learning may lead to both signal 

increases and decreases – which in the worst case may average each other out, making 

learning-related changes invisible to classical fMRI analysis.

Neuronal correlates: stabilization and specialization

An important alternative idea in the search for neural correlates of skill learning is that 

training leads to the stabilization of the underlying neural network [37]. Reductions in neural 

variability during the production of the skill with learning have been observed in several 

different systems [22,38–40]. Concomitant with these neuronal changes, the skilled behavior 

itself also becomes more invariant [41–43]. As a result, it is often unclear whether the 

reduced neural variability causes the decrease in motor variability or whether it is the 

indirect consequence of reductions in variability in motor execution and subsequent sensory 

feedback. However, recent studies have attempted to control for this confound and still show 

clear decreases in neural variability for matched behavioral output [42].

The reduction of neural variability can be taken as a sign for the emergence of a new, 

specialized skill representation that can stably reproduce the same spatiotemporal output 

(Figure 1B). Could these changes be revealed in the human brain using fMRI? Even though 

different skilled movements will engage overlapping populations of neurons, functionally 

related neurons may cluster closely enough in space [44] to make these differences 

detectable using high-resolution imaging. Differences between activity patterns associated 

with different complex movements have recently been revealed using multi-voxel pattern 

analysis [45,46]. Furthermore, it has been shown that, with learning, the differences between 

these patterns increase relative to noise [43], supporting the notion that skill learning leads to 

increased neuronal specialization. Evidence for increased functional specialization also 

comes from fMRI studies using repetition suppression [31].

These new representational analysis methods are therefore beginning to provide new insight 

into the neural organization of skill. Traditionally, signal decreases in premotor areas have 

been taken to indicate that these regions only play a role early in learning, and later make 

way to more execution-related representations [32,35]. It can be shown that some premotor 

regions actually exhibit a stronger representation of the learned skill despite equal or lower 

overall activity [43]. More importantly, it is now possible to more precisely pinpoint the 

actual structure of such representations (see below and [47]).
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Chunking

Motor chunking is one of the key arguments for a hierarchical representation of motor skill. 

Proposed by Lashley in 1951 [48], the concept of motor chunking has come again to 

prominence over the last years. With learning, in addition to sequence completion becoming 

faster and more accurate, performance starts to show idiosyncratic temporal groupings or 

chunks [49]. Elementary movements that are bound into one chunk (Figure 2A) are retrieved 

faster and more accurately than when the selection level triggers them individually [50]. In 

addition to a more fluent sequence production, this hierarchical organization also has the 

advantage that acquired chunks can be used in the context of novel sequences [49]. For 

example, learning of one sequence (S1) that consists of two chunks (C1, C2) generalizes to 

the execution of another sequence (S2), which contains the same chunks in a different order 

(Figure 2B). Thus, a chunk- or intermediate-level representation of motor skills ensures both 

flexibility and efficiency in motor skill learning.

One challenge is to identify chunk boundaries from behavioral data. Traditionally, chunks 

were defined by especially long temporal gaps or error increases at the beginning of the 

chunk [49,51,52]. One group has suggested [53] that the correlational structures between 

neighboring inter-press-intervals (IPIs) may also be used as a criterion for chunk length. 

They hypothesized that IPIs are correlated more within than between chunks, because within 

each chunk the individual presses are controlled by a common process.

Whereas older approaches require averaging across trials, recent methods are able to detect 

chunks at a trial-by-trial level while still using the consistency of IPI profiles across a series 

of trials [54]. A Bayesian model has been been proposed [55] that combines response times 

and error rates, as well as their correlations across presses, to detect chunk boundaries with 

high sensitivity. The new approach enables automatic detection of dynamic changes in 

chunking structure over the course of learning, and provides evidence not only for the 

segregation of sequences into chunks but also for the increase of chunk length with learning 

(concatenation).

At a neural level, chunk formation is likely distributed across cortical premotor and striatal 

centers. A recent study in mice has shown firing patterns in both the direct and indirect 

pathways that suggest a role of the basal ganglia in chunk selection and execution [56]. 

Some striatal medium spiny neurons showed phasic activity increases at the beginning of a 

series of four lever presses, suggesting a role in the initiation of the chunk. Others exhibited 

tonic increases of decreases in the firing rate during chunk execution, possibly providing 

sustained disinhibition of the selected motor chunk. Importantly, the majority of cells were 

specific to the actions performed, but invariant to the speed of these actions. This suggests 

that the striatum is involved in controlling whole chunks of concatenated movements 

without representing the implementation details of the movement elements.

These findings are paralleled by human neuroimaging experiments identifying that stronger 

concatenation of adjacent motor elements into a chunk correlates with increased blood 

oxygen level-dependent (BOLD) activity in the bilateral putamen [54]. Non-invasive 

stimulation in humans has also demonstrated that the pre-SMA [57] is crucial for chunk 
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initiation – corresponding to electrophysiological findings suggesting that individual units in 

the pre-SMA are tuned to whole three-element series of movements [58]. These results 

indicate that the basal ganglia, SMA, and pre-SMA play an important role in a more abstract 

representation of movement chunks, consistent with the proposed roles of representations at 

the selection and intermediate levels.

Modularity of skill features

The dynamical systems view holds that the spatio-temporal evolution of an action is encoded 

in the intrinsic dynamics of a pattern generator at the execution level [15]. For simple 

movements, such as reaching, the required muscle commands seem to be inseparably 

represented from their timing [59]. Recent computational work further shows that this 

principle could scale up to more complex sequential movements such as writing a full word 

[60]. Thus, in this low-level view of motor skill encoding (see Figure IA in Box 1), complex 

movements are represented as an integrated whole.

By contrast, the motor system may acquire a more flexible representation of movement 

sequences that specifies their organization in space and time separately (Figure 3A). Both 

the spatial (black dots) and the temporal sequence (red dots) could be represented at the 

intermediate level and interact when triggering the corresponding execution-level 

representations of individual movements. Indeed, recent behavioral work advocates such an 

organization [47,61]. Participants were trained on specific spatio-temporal sequence of 

finger presses. Their performance was then assessed when the temporal feature (the rhythm), 

the spatial feature (the sequence of keys), or both were changed (Figure 3B). Consistent with 

an intermediate-level representation, they showed a behavioral advantage in both the spatial 

and temporal transfer conditions as compared to a novel spatio-temporal sequence (Figure 

3C; see also [62]). Using multivariate analysis of fMRI data, a direct correlate of the 

independent representation of spatial and temporal features could be shown in overlapping 

regions in premotor cortex (Figure 3D) [47]. By contrast, M1 represented the two sequence 

features in non-separable fashion. This distribution of sequence encoding provides clear 

evidence for a hierarchical representation of skill.

A similar dissociation in the representation of sequences has been found in song birds [63]. 

Using aversive auditory conditioning, the authors were able to teach animals to selectively 

change temporal and spectral features of their song. The basal ganglia analog was required 

for the modification of the spectral properties (pitch), but not for changes in the temporal 

structure. By contrast, the activity in HVC (an analog to the premotor cortex) reflected the 

temporal but not spectral features of the song. Moreover, recent studies involving timed 

tapping sequences in monkeys suggest that individual units in medial premotor areas can 

encode not only the intervals between movements but also their unique position in the 

sequence of movements [64,65], suggesting a dedicated representation for the temporal 

features of movement sequences. A modular representation of temporal and spatial features 

at an intermediate level allows the learner to flexibly perform a trained sequence of 

movements in space with a new rhythm, for example when dancing to a new song.
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Concluding remarks

The next important challenge is to understand the neuronal underpinnings of hierarchical 

skill encoding (outstanding questions are listed in Box 3). Note that our current model is 

mainly representational and that we have resisted the temptation to provide a direct mapping 

between the different levels and specific neural regions because this relationship is likely to 

be complex. For example, different subregions of both cerebellum and basal ganglia form 

partially parallel loops with multiple cortical regions [66] and may therefore play a role in 

each of the levels. Consistent with this idea, it has been suggested that basal ganglia circuits 

play a role both in the selection of action, as well as in the binding of action elements into 

larger chunks [67].

Hierarchical encoding of motor skills endows the system with the ability to efficiently 

generate new combinations of motor primitives without the necessity of forming execution-

related representations de novo. The behavioral advantage of this architecture may explain 

why evolution has not simply expanded the primary motor cortex with direct access to the 

spinal cord, but instead has resulted in the emergence of several premotor areas with 

predominantly indirect cortico-spinal projections via M1.
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Glossary

Chunking: segregation of long sequences of movements into subparts, and concatenation 

of motor responses into groups of responses, characterized by increased temporal 

intervals and probability of errors at chunk boundaries.

Discrete sequence production task (DSP): a task in which participants execute a known 

sequence as fast as possible, either from memory [8,43] or supported by sequential cues 

[51].

Motor hierarchy: the notion that movements are generated through the interaction of 

different representational levels, ranging from movement goals (selection level) down to 

the specification of the actual muscle commands (execution level).

Motor primitive: spatio-temporal pattern of muscle activity that occurs across a range of 

complex movements. Thought to be encoded in the spinal cord and/or primary motor 

cortex.

Repetition suppression: observation that the second presentation of a stimulus or second 

execution of a movement elicits less activity than the first presentation. By varying the 

dimensions on which two consecutive trials in an fMRI experiment differ, this technique 

is used to infer functional specialization.

Serial reaction time task (SRTT): task in which participants have to respond to visual 

stimuli using a finger press at a prescribed pace (often 1 Hz). Through repeated exposure 

to a constant sequence of stimuli, the motor system (often implicitly) learns to predict the 

next stimulus and/or response. Learning is evidenced by faster reaction times for stimuli 

within a fixed versus a random sequence.

Synergy: the term muscle synergy is sometimes used synonymously to motor primitive. 

In this review we use the term synergy to simply refer to a frequently occurring 

combination of muscle activities [68].
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Box 1

Intermediate-level learning

Automatization of an effortful selection process could take place in two ways. The 

repeated simultaneous or sequential selection of motor primitives could lead to the 

formation of a new execution-level representation that encodes the whole complex 

movement (sequence/synergy) (Figure IA). This predicts that pyramidal tract neurons in 

M1 are activated for a particular complex movement, but not for the constituent 

movement elements when executed in isolation. An execution-level representation 

requires a representation of all implementation details of each skilled movement.

Alternatively, the sequence or synergy could be represented at an intermediate level 

(Figure IB). Structurally, such representations would be formed through similar 

dynamical systems as in Figure IA – this would, however, not specify the implementation 

details of each movement, but instead call upon the simpler motor primitives at the 

execution level. This predicts that pyramidal tract neurons are activated similarly whether 

the movement element is executed in isolation or in the context of a complex movement. 

By contrast, in premotor areas neurons should be sensitive to the context of the action, for 

example, by firing only for particular sequential transitions between movement elements 

[58,69].

An execution-level representation predicts that learning a specific hand movement as part 

of one sequence should not generalize to another sequence. By contrast, an intermediate-

level representation allows transfer because the two sequences would rely on the same 

execution-level representation. A professional pianist who can execute a specific chord 

transition within a new context would therefore rely on such intermediate representation. 

Similarly, transfer between hands must also rely on a representation that can activate 

appropriate movement primitives for either hand [70]. Thus, intermediate-level 

representations provide efficient and flexible encoding for complex movements.

By contrast, encoding at the execution level enables the system to optimize details of the 

movement elements that are specific to the context. Co-articulation - the change of 

kinematics or dynamics dependent on the preceding or following movement- is found in 

many contexts, including sequential arm movements [71]. Intermediate-level 

representations would not allow full co-articulation because the individual movement 

elements must remain operational in other contexts.

Evidence for an intermediate-level presentation is provided by increased skill encoding in 

premotor and supplementary motor areas [43], and by the relatively flexible 

generalization of learned movement skills [12]. Furthermore, an intermediate 

representation allows hierarchical chunking of action sequences and modular 

representations (see main text).
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Figure I. 
Differentiating execution- and intermediate-level skill representations.
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Box 2

Stages of learning

Skill learning is associated with complex, often non-monotonic, changes of neural 

activity across the time-course of learning [31]. Early phases of learning are often 

associated with increases in overall activity, followed by reductions in activity and neural 

variability in later phases [22]. This has led to the idea that skill learning develops in 

discrete stages with different learning rules and plasticity mechanisms [72,73]. While 

stages of learning may be a useful descriptive concept, it is very tempting to use it to 

explain non-linear changes across the time-course of learning, which is a form of circular 

reasoning (using a descriptor of Y to explain Y). The problem is that we currently do not 

have a clear behavioral criterion to distinguish different stages and to determine when one 

transitions into the next. While the rate of learning slows down as learning progresses, the 

same is true for simple exponential decay, which is governed by a single process. An 

absolute temporal criterion also cannot be found – a recent review allows the early stage 

of learning to last between ‘minutes’ to ‘several months’ – depending on the situation 

[72].

For the concept of learning stages to be fruitful, a description of the underlying processes 

is required. What signals the motor system to re-enter the stage of ‘early’ learning? What 

dictates the transition to ‘late’ stages of learning? Until independent criteria are 

established, the notion of learning stages remains descriptive without explanatory value. 

Indeed, it is more likely that the explanation for non-monotonic neuronal changes arise 

from the interplay of multiple plasticity processes that are always active no matter 

whether we are early or late in learning, similarly to current proposed models for 

adaptation [74].
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Box 3

Outstanding questions

• Neural specialization: human imaging work has suggested that, when people 

learn multiple skilled movements, each movement becomes associated with a 

unique activity pattern [43]. There are currently very few animal models for 

this process. Such experiments would have the potential to illuminate how 

different movements are encoded in overlapping population of neurons, and 

shed light on the neural basis of interference.

• Long-term learning: does skill learning always progress from more abstract 

to more execution-oriented representations [19]? Or is skilled performance 

characterized by a strengthening of the hierarchical and modular structure of 

skill representations? How do neocortex, basal ganglia, and cerebellum 

interact to give rise to consolidated motor memories?

• Chunking of action sequences: what determines the formation of chunks 

versus the integrated representation of whole action sequences? Which 

neuronal mechanisms underlie the control of chunks?

• Modularity of skilled movement representations: is the separation into 

movement features a universal property of motor skill representation? How do 

different movement effectors (fingers vs vocal apparatus) or different 

kinematics (continuous vs discrete movements) influence how skilled 

movement sequences are stored?

• Feedforward versus feedback control: although the literature on skill 

learning emphasizes tasks that rely mostly on feedforward control, many 

skills in real life, such as skiing, playing tennis, or juggling, heavily depend 

on feedback. How does the brain learn to react more efficiently to incoming 

sensory information?
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Figure 1. 
Levels of skill learning. The execution level (red) encodes motor primitives, which produce 

stable spatio-temporal patterns of muscle activity. Each primitive is formed by a dynamical 

neural network with a stable state–space trajectory (indicated by the curved black lines). It is 

also sensitive to proprioceptive feedback from the controlled limb. (A) Early in learning, the 

appropriate primitives are activated (white broken lines) from the selection level (blue), and 

this involves explicit processing of task instruction. (B) Skill learning may involve the 

formation of association between the selected elements at an intermediate level (purple), 

which enables easier recall and production of complex sequences or movement 

combinations.
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Figure 2. 
Hierarchical representation enables movement chunking. (A) Sequence units at the selection 

level can trigger chunks (C1, C2) at the intermediate level (purple), which then in turn 

trigger individual movement elements (F1–F5). The chunk representations are efficiently 

shared across sequences S1 and S2. (B) Training on sequence S1 can lead to behavioral 

savings (faster and more accurate production) in novel sequences. Savings occur when the 

acquired chunks (C1 and C2) are preserved (S2), but not when they are broken up (S3).
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Figure 3. 
Modular representation of sequence features. (A) Separate representation of temporal (red 

dots, a longer and a shorter interval) and spatial (black dots) sequence features [75]. The 

temporal representation modulates the signal originating from two different spatial 

representations (black broken arrows) [61]. This allows two different sequences S1 and S2 to 

utilize the same learned temporal structure. (B) Participants were trained on a specific 

spatio-temporal sequence (green) and then tested on a novel sequence (black) or on 

sequences that retaining either the temporal (red) or spatial (blue) structure. (C) Reaction-
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time results indicate independent transfer of spatial and temporal features to test conditions. 

Stars indicate significant differences. Circle indicate outliers in the data. (D) Separate but 

partially overlapping spatial (blue) and temporal (red) representations of finger sequences 

can be revealed bilaterally in premotor cortex (PMC) using multi-voxel pattern analysis. The 

two features are integrated in contralateral primary motor cortex (M1) only (green). Panels 

(B–D) are adapted, with permission, from [47].
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