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Abstract

Modularity has emerged as a central concept for evolutionary biology, providing the field with a 

theory of organismal structure and variation. This theory has reframed long standing questions and 

serves as a unified conceptual framework for genetics, developmental biology and multivariate 

evolution. Research programs in systems biology and quantitative genetics are bridging the gap 

between these fields. While this synthesis is ongoing, some major themes have emerged and 

empirical evidence for modularity has become abundant. In this review, we look at modularity 

from an historical perspective, highlighting its meaning at different levels of biological 

organization and the different methods that can be used to detect it. We then explore the 

relationship between quantitative genetic approaches to modularity and developmental genetic 

studies. We conclude by investigating the dynamic relationship between modularity and the 

adaptive landscape and how this potentially shapes evolution and can help bridge the gap between 

micro- and macroevolution.
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Introduction

Modularity has become a central concept in evolutionary biology (Wagner et al. 2007). A 

system is modular if it can be divided into multiple sets of strongly interacting parts that are 

relatively autonomous with respect to each other. This concept has been applied in 

developmental biology, where modules are either different parts of the embryo which 

interact with each other, as with induction and morphogenesis, or they are sets of interacting 

molecules that act independently in the patterning of multiple tissues. This concept can be 

extended to adult functional relationships, where modules consist of parts that act together in 

the performance of some physiological function, Here, we will focus on the role of 
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variational modules in evolutionary processes. Variational modules are sets of traits that vary 

together and somewhat independently from other modules.

Modular concepts emerged early in evolutionary thinking with Darwin’s consideration of the 

“Correlations of Growth” where he noted that slight evolutionary variations in one part of an 

organism would result in other parts also being modified. Later, Weldon (1893, p. 329) noted 

that “…before we can properly estimate the changes at present going on in a race or species 
we must know (….) the degree of abnormality of other organs which accompanies a given 
abnormality of one…”. For abnormality read variations. Pearson (1896) then derived the 

parameter for describing the degree of relationship between two characters that we use 

today, the Pearson Product Moment correlation.

Despite this very early interest, a multivariate understanding and consideration of evolving 

characters was not common (Simpson 1958). Certainly before the development of digital 

computers, the amount of computational work involved in even a small multivariate study on 

a small sample required the calculation of enormous numbers of variances, covariances, and 

correlations. These herculean efforts were often not deemed worth the value derived from 

the research (Simpson 1958). Olson & Miller (1958) stood out by considering the variational 

relationships between traits as a central feature of evolution, incorporating a more holistic, 

systems view of the phenotype and evolution. Olson & Miller (1958) hypothesized that the 

degree of interdependence in development and function among morphological characters is 

directly related to their degree of morphological integration as measured by the statistical 

correlation between trait distributions. Hence, they predicted that developmentally and 

functionally related traits will be relatively highly intercorrelated. Further theoretical and 

empirical work on this concept (Cheverud 1982, 1984; Lande 1979) showed that 

developmental and functional integration results in correlational selection that leads to 

genetic integration (genetic correlations). This, in turn leads to evolutionary integration, the 

correlated evolution of traits. The concept of morphological integration maintained some 

currency in evolution and systematics from the 1960s through the 1990s. However, interest 

greatly increased in the new millennium. Much of this increased attention occurred after the 

publication of several papers on the role of modularity in evolution, especially that of 

Wagner & Altenberg (1996) and the 1999 University of Chicago Press reissue of Olson and 

Miller’s book, Morphological Integration. Wagner & Altenberg (1996) argued that 

modularity was important in facilitating the evolution of morphological diversity. If all 

features of an organism are completely integrated, the parts will be prevented from evolving 

independent adaptations. A modular variational structure permits the evolution of 

complexity and diversity as observed in the natural world.

Concurrently, important developments were taking place in evolutionary quantitative 

genetics. In the late 1970s and early 1980s, Lande and colleagues (Lande 1979, Lande & 

Arnold 1983) reintroduced models of multivariate evolution that had been ignored in 

evolutionary biology and systematics since Pearson’s time (Pearson 1896), although they 

were better known in agricultural genetics (e.g., (Hazel 1943)). Lande (1979) also showed 

how quantitative genetic evolutionary models could be used in systematics to investigate the 

evolutionary causes of diversification on a macroevolutionary scale by providing 

expectations for the diversification of species under genetic drift and under directional 
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selection. Here we review the genetics of variational modularity, its relationship with 

development, how it can evolve, and its consequences for evolution and systematics.

Methodological considerations

Representations of morphology

While most of what is said in this review can be applied to any continuous traits, much of 

the work related to modularity is concerned with morphological traits. The traditional way of 

representing morphological structures is to use a suite of linear distances (Olson & Miller 

1958), preferably taken within a single homologous structure such as a bone, to represent a 

given morphological structure in a specimen. This representation captures local 

developmental and functional factors in a single homologous trait. The last 20 years, 

however, saw a shift in methodology in favor of using landmark based methods, especially 

Generalized Procrustes Analysis (GPA, Kendall 1984). GPA takes a set of 2D or 3D 

landmarks measured in a group of specimens, scales all specimens to a common size, and 

then uses an interactive procedure to superimpose the scaled configurations by minimizing 

the squared distance between the landmarks in all specimens and a mean shape. From this 

superimposed set we can calculate the distance between each specimen and the mean shape, 

and this is used to represent them. While this procedure has many desirable mathematical 

properties (Bookstein 1997) and is a powerful way of describing a morphological structure, 

its appropriateness for the study of variation and covariation has never been fully 

established. In particular, since changes in a single landmark will cause changes in the whole 

configuration, locality of variation is not necessarily preserved in the GPA covariance 

matrix. This problem has long been recognized in the morphometrics community (Adams et 

al. 2013), but it’s consequences for the study of modularity and evolution have only recently 

become apparent (Márquez et al. 2012, van der Linde & Houle 2009). Since local variation 

is not preserved, it is hard to detect local associations and covariation in populations using 

GPA, limiting its use for the study of modularity. This is also a problem when relating 

genetic variation to morphological variation, since again variation will be spread out over the 

whole morphological structure, and local genetic factors will appear to have widespread 

effect (Berner et al. 2011). There have been promising efforts to reconcile landmark based 

methods and local variation, such as the local shape variables described in Márquez et al. 

(2012), finite element scaling analysis (FESA, Cheverud & Richtsmeier 1986), and 

euclidean distance matrix analysis (EDMA, Lele & Richtsmeier 1991), but these have not 

yet been widely adopted. With this in mind, we will not discuss approaches that make use of 

GPA to study covariation and modularity. Instead, we will focus on representations of 

morphology that preserve local variation, like linear distances and local shape variables.

Detecting variational modularity

Variational modularity has been used in several different contexts and, therefore, a wide 

range of methods for detecting and quantifying variational modularity in multivariate data 

are available. At their core, most methods are based on some measure of association among 

traits (e.g., covariances or correlations); and modularity has often been inferred through the 

analysis of patterns and magnitudes of association (e.g., Armbruster et al. 2004, Porto et al. 

2009). Given a set of traits in a population and a correlation (or covariance) matrix between 
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them, we might ask which sets of traits are grouped in modules, or if a particular partition of 

traits is supported by the observed statistical inter-trait association. We discuss methods for 

the detection of modules in these two situations: (i) extracting putative groupings of traits 

without a prior hypothesis and (ii) testing if a particular partition established on different 

grounds is supported by the observed correlation matrix.

Detecting putative modules is very common in systems biology (Ayroles et al. 2009, Ihmels 

et al. 2002), where traits are frequently expression data for thousands of genes and a priori 
hypotheses are impractical or impossible. Methods for partitioning traits into modules 

usually derive from network and graph theory, treating the correlation matrix as a fully 

connected weighted graph and using algorithms designed for community detection in graphs 

(Langfelder & Horvath 2008, Reichardt & Bornholdt 2006), or clustering algorithms coming 

from other contexts (like Potts model clustering or neighbor joining). Network based models 

search for partitions where members in the same partition share more connections than 

expected in a random network. Currently, these methods work well in high dimensional 

problems, where misclassification of some individual traits is not a serious problem. While 

these methods have been used in much lower dimensional problems (Magwene 2001), 

results are not always easy to interpret and partitions can group seemingly unrelated traits 

together. This can be partially explained by the origin of the methods: since these methods 

are borrowed from graph theory, most of the methods and definitions relate to properties of 

random graphs, and it is not obvious how to translate these assumptions to correlation 

matrices. For example, few methods consider the possibility of a trait belonging to two 

modules, or that modules might have a nested or hierarchical organization. Recently some 

effort has been made in producing module detection algorithms that are tailored for 

correlation matrices (MacMahon & Garlaschelli 2015), but these have not been applied to 

biological systems, and more work developing tools that can deal with complex modularity 

structures is needed.

In morphological systems with lower dimensionality, and where information on 

development or function of the measured traits is available, we may be interested in testing 

particular modularity hypotheses and assigning some degree of support to each hypothesis 

given the observed correlation matrix, or simply validating a given modularity hypothesis. 

One approach to this problem is to compare the proposed partition to random partitions, 

using some statistic dependent on the partitions and the correlation matrix. The correlation 

test proposed by Cheverud (1989) compares the within module correlations to between 

module correlations. If the observed difference in within and between module correlations is 

higher than the difference for random partitions, the modular structure is considered valid. 

The RV coefficients (Klingenberg 2009) is a generalization of the squared Pearson 

correlation coefficient to multiple dimensions, and can be used to quantify the degree of 

independence between two groups of traits. The RV statistic is calculated for a proposed 

partition and compared to random partitions via permutations. While this statistic was 

proposed in the context of landmark data, it can be used with linear distances or local shape 

variables. Márquez (2008) presents a framework that allows the simultaneous testing of 

many competing modularity hypotheses, including overlapping and hierarchical modules. 

The main idea is to use a modularity hypothesis to generate a modeled covariance matrix, 

where within module covariances are set to the observed values and the between module 
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covariances are set to zero. This modeled matrix is compared to the original covariance 

matrix with a multivariate measure of similarity.

Both module detection and module validation using correlations, are made difficult by the 

presence of global integrating factors that increase between module correlations 

(Mitteroecker & Bookstein 2007, Porto et al. 2013). These will be discussed below.

Genetics of modularity

Genetic associations among traits can be explained by two different phenomena: pleiotropy 

and linkage disequilibrium. Linkage disequilibrium (LD) refers to the non-random 

association of alleles at different loci. In large populations, LD will be eliminated after 

several generations of random mating. For that reason, LD is considered a transient source 

of genetic association (Cheverud 1996), except in species with only a few segregating 

chromosomes. Pleiotropy, in our context, refers to the manifold phenotypic effects of a 

single unit of inheritance (Stearns 2010). The word ‘context’ is used here to emphasize the 

difficulties in finding a universal definition for the term (see Paaby & Rockman 2013). 

Pleiotropy, when defined in this way, is considered an important source of genetic 

association, since it causes traits to be inherited together and, therefore, to vary together 

within populations.

Given the importance of pleiotropy as a source of association among traits, one might be 

interested in the structure of pleiotropic effects of loci underlying modular trait variation 

(Figure 1, Wagner & Altenberg 1996). Two prominent questions are whether pleiotropic 

effects are also modular and whether modular pleiotropy facilitates evolvability. From the 

theoretical standpoint, several models for the structure of the genotype-phenotype (G-P) map 

have been put forward (Hansen 2003, Mitteroecker 2009, Pavlicev & Hansen 2011). The 

general consensus is that, given certain assumptions, multiple different models are equally 

capable of explaining observed genetic associations among traits (Mitteroecker 2009). 

Similarly, while modular G-P maps can maximize evolvability in stochastic environments, 

they do not necessarily maximize it under more stable conditions (e.g., Hansen 2003).

A clearer picture of whether G-P maps are modular and whether they promote the 

evolvability of organisms came with the collection of large empirical datasets in mice, yeast 

and nematodes (see Wang et al. 2010). These large datasets allowed for a systematic 

investigation of the pleiotropic effects of genes on the phenotype, across a variety of 

approaches including quantitative trait loci (QTL) mapping and gene knockout studies. The 

picture emerging from these large datasets is that most mutational effects are modular, with 

genes affecting different sets of functionally and developmentally-related traits (Wang et al. 

2010). In other words, the variational modularity observed in the phenotype can be 

explained by modularity in the G-P map (sensu Wagner and Altenberg, 1996). A minority of 

mutations affect large groups of traits as they are are associated with global genetic factors 

(Figure 1). More importantly, in these same studies, modular pleiotropy was shown to 

maximize the rate of adaptation and promote the evolution of complexity, due to the 

observed pleiotropic scaling of gene effects (Wang et al. 2010).
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Evolution of modularity

Genetic variation in pleiotropy

Modularity can evolve through changes in the pleiotropic effects of alleles on traits 

themselves. Genetic variation in pleiotropy has long been recognized as playing an 

important role in evolutionary processes. Mayr (1963) noted the importance of epistatic 

interactions in ameliorating the deleterious pleiotropic effects of alleles on fitness and 

enhancing their positive fitness effects. Variation in allelic effects at a target locus is 

produced by differential epistasis, where epistatic interactions between the target and 

modifier loci on multiple traits differ in their effects from one trait to the next (Cheverud 

1996, Pavlicev et al. 2008, 2011b). Several examples of differential epistasis have been 

recognized over the last 30 years. The abnormal abdomen (aa) locus in Drosophila 
mercatorum is a classic example of this phenomenon. In laboratory experiments, the aa 
locus was found to have a wide variety of pleiotropic effects on morphological and life 

history traits (Templeton et al. 1985), but these were not manifested in wild populations due 

to modifier loci. Differential epistasis has also been described in several other systems, 

including coronary artery disease (Maxwell et al. 2013) and viral reproductive success 

(Pepin et al. 2006).

While the importance of epistasis has long been appreciated in evolution, only recently has 

the major part that epistatic pleiotropy plays in shaping covariation become apparent. Wolf 

et al. (2005) used QTL mapping in experimental crosses of inbred Large (LG/J) and Small 

(SM/J) mice strains to investigate the genetic architecture in several late and early skull 

traits. Covariation between traits was strongly affected by epistatic variation in pleiotropy, 

and the genetic architecture determining the pattern of association between traits can be 

attributed to a complex pattern of genetic interactions. In these mice, most epistatic effects 

on pleiotropy reduced covariation, leading to a more modular genetic organization. Pavlicev 

et al. (2008) investigated the allometric relation between body weight and long bone length 

in mice, and the authors identified several relationship QTLs (rQTLs). These are QTLs that 

do not necessarily affect the mean value of traits, but the relationships between traits 

(Wagner et al. 2007). This widespread evidence of genetic variation in the covariation 

between traits due to epistatic interactions provides ample scope for natural selection to 

change associations between traits and, hence, modularity patterns.

Modeling changes in covariation

The availability of variation in the associations between traits led Pavlicev et al. (2011a) to 

develop a deterministic model for the evolution of pleiotropic gene effects under directional 

selection. In this model, there is genetic variation in the strength of correlation between two 

continuous traits in the form of a polymorphic rQTL with no effect on the trait mean. Traits 

that are selected in the same direction tend to become more strongly correlated, even if 

selection is fluctuating. Conversely, if the two traits are under corridor selection, where one 

of the traits is selected to either increase or decrease and the other is kept constant, the rQTL 

allele representing low correlation is positively selected and the traits become independent. 

The main conclusion of their model is that the nature of pleiotropic allelic effects is expected 

to evolve to match adaptive patterns of selection.

Melo et al. Page 6

Annu Rev Ecol Evol Syst. Author manuscript; available in PMC 2017 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Using the existence of variation in pleiotropic relations, Melo & Marroig (2015) developed 

an explicit individual based stochastic model for the evolution of continuous traits in finite 

populations, where pleiotropic associations between genetic loci and phenotypic traits are 

free to change under mutation. This model has the advantage of being able to include a 

number of complications, such as a large number of traits, drift, different patterns of 

selection, recombination and mutation. The possibility of simulating several traits is 

especially interesting since it permits the investigation of complex modular patterns. The 

authors evaluated the evolution of modularity under a series of evolutionary scenarios. Drift 

and stabilizing selection were not capable of creating lasting modular patterns of 

covariation, while divergent directional selection (where one group of traits is selected in 

one direction while another group is selected in the opposite direction) creates modularity; 

traits selected in the same direction become more strongly correlated and form clear 

variational modules. Under corridor selection, the group of traits under directional selection 

becomes more correlated, while the group of traits under stabilizing selection maintains 

intermediate levels of correlation, and the correlations between these two groups become 

very low. This suggests corridor selection is a powerful mechanism for creating complex 

modular patterns.

Epistasis has also been implicated in the evolution of the mutation matrix for continuous 

traits. In Jones et al. (2014) the authors develop a model for the evolution of two continuous 

traits under genetic control of several pleiotropic loci, including a stable patterns of epistatic 

interaction between the loci affecting the quantitative traits. The traits were then subjected to 

correlated and independent stabilizing selection. Under uncorrelated selection the traits 

presented correlations near zero, and the mutation matrix also had zero correlations between 

traits. Under correlated stabilizing selection, however, the traits’ genetic correlations 

changed, coming to mirror the pattern of stabilizing selection. The mutation matrix also 

aligned with the selection surface, leading to a situation in which the effects of new 

mutations are biased by previous selective history.

These different models allow us to draw general conclusions regarding the expected 

evolution of covariation between quantitative traits, regardless of the specific model used. 

First, variation in pleiotropic relations is essential to the evolution of modularity, and this 

variation can be attained through epistatic interactions. Second, under directional selection, 

traits that are jointly selected in the same direction tend to become more strongly correlated. 

Third, since selection can change the pleiotropic and developmental relations between traits, 

future evolutionary changes can be biased by previous selective history.

Empirical evidence for changes in covariation

There are several instances where evolution, and presumably selection, has broken down 

patterns of association among traits to produce major adaptive shifts. Hallgrímsson et al. 

(2012) have classified these changes in the patterns of modularity between traits as a form of 

evolutionary novelty, as there is “a breakdown of ancestral developmental constraints such 

that variation is generated in a new direction or dimension”. Indeed, this type of novel 

variation has been documented in several systems. Young & Hallgrímsson (2005) found a 

common pattern of strong covariation between the fore- and hindlimb elements in 
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quadrupedal mammals, constraining the independent evolution of the limbs. However, two 

mammals with highly derived limb morphologies, the brachiating gibbons and flying bats, 

show a reduction in the cross-limb correlation, accompanying their extreme limb 

individuation.

There are also examples of the initial pattern of genetic associations being overcome by 

artificial selection. Beldade et al. (2002) used the eyespots in butterfly wings as a target of 

selection. Initially, the anterior and posterior eyespots are correlated, and selection for 

coordinated change of both eyespots produces a rapid and linear response; while selection in 

the uncoupling direction, for increase in one eyespot and decrease of the other, leads to a 

response that is much less linear and more irregular. This illustrates that there are 

preferential directions for evolution produced by the pattern of modularity, and evolution is 

faster in these directions, but these are not absolute restrictions. Recently, artificial selection 

experiments using Drosophila melanogaster revealed yet another important role for selection 

in influencing patterns of association among traits. By selecting on allometric relationships 

in drosophilid wing shape, Bolstad et al. (2015) produced laboratory lineages presenting 

larger differences in allometric slopes than the ones observed across a large clade of 

drosophilids. This evolutionary response to selection in the allometric slopes was, however, 

quickly lost after selection pressures were suspended, indicating that internal selection might 

be responsible for maintaining conserved allometric slopes on a macroevolutionary 

timescale.

These results illustrate the complexity of the interaction between modularity and selection. 

Evolutionary restrictions imposed by genetic associations are rarely absolute, and selection 

that privileges uncoupling of associated traits can lead to a reorganization of variational 

patterns. At the same time, covariation patterns can also be largely maintained, due to 

internal selective pressures (as in the allometric relations in drosophila) or due to differences 

in the availability of rQTL variation to change pleiotropy.

Development as the link between genes and phenotype

Biology has largely abandoned the notion that genes cause traits, so understanding the 

mechanics and regulation of development is becoming increasingly essential to elucidating 

the relationship between modularity and trait evolution (e.g., Salazar-Ciudad & Jernvall 

2010). Development occurs not only through the molecular interaction among many gene 

products but also through the mechanical interactions between the developing cells and 

tissues, all of which can create significant non-linearities in the G-P map (Alberch 1991, 

Polly 2008, Watson et al. 2014). In this section, we review recent literature that explicitly 

addresses the connection between quantitative approaches to modularity and the underlying 

developmental genetics. We were particularly interested in studies that explicitly incorporate 

the mechanics of development into an evolutionary framework or that identify genes that 

contribute to change in canalization. We also highlight the emergence of the new field of 

systems genetics.
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Causes of a phenotype vs. Causes of phenotypic variation

In a developmental context, it is particularly important to distinguish between the causes of a 
phenotype and causes of phenotypic variation A developmental process might be essential 

for a trait to emerge (cause of a phenotype), but, as long as it is conserved across individuals, 

it will not be a cause of phenotypic variation in a population. Empirical evidence 

overwhelmingly suggests that causes of a phenotype are modular in nature. The whole 

concept of character relies on it (Wagner 2007). Character identity networks imply that we 

can only truly recognize something as a distinct character if it shows some degree of 

modularity at the developmental genetic level.

Modularity in the causes of variation of a phenotype is another matter altogether. The notion 

that causes of phenotypic variation might also be modular stems from the concept of 

morphological integration, as seen above, and from the imitatory epigenotype hypothesis 

(Riedl 1978), which predicts that the pattern of developmental constraints “imitates” the 

pattern of functional constraints, leading to covariation among functionally related traits 

within populations. Empirical evidence suggests that there can be a correspondence between 

variational and developmental modularity, but this correspondence is by no means 

guaranteed, as seen in previous sections.

Incorporating development into evolutionary studies

While variational modularity is often assumed to be a consequence of variation in the 

underlying developmental mechanisms, explicitly modeling developmental systems or even 

inferring developmental processes from variational modules are not simple tasks 

(Hallgrímsson et al. 2009, Pavličev & Cheverud 2015). Interactions among tissues, as well 

as local and global genetic factors acting at different time points, will all be superimposed 

during development and contribute to the final phenotype (Hallgrímsson et al. 2009, 

Mitteroecker & Bookstein 2007). Similarly, a single modular pattern can emerge through 

multiple independent developmental pathways (Mitteroecker 2009), making the prediction 

across levels of the hierarchy difficult. To our knowledge, the most successful empirical case 

of incorporating developmental parameters in evolutionary models is Salazar-Ciudad & 

Jernvall (2002, 2010)’s model of tooth development. Tooth development is a relatively well 

understood process, since several of the genetic interactions and cellular processes that lead 

to tooth formation are known. As a consequence, Salazar-Ciudad & Jernvall (2010) created 

mathematical models describing tooth morphology as a consequence of perturbations in the 

underlying genetic and developmental parameters, such as the rate of cell proliferation or 

cell adhesion. This model was successful at producing accurate predictions of tooth 

morphology for several mammalian groups (Salazar-Ciudad & Jernvall 2010). Other 

successful cases of the use of developmental mechanisms to explain phenotypic variation 

comes from Drosophila wing venation patterns (Matamoro-Vidal et al. 2015) and butterfly 

wing spots (Beldade & Brakefield 2002), both of which involve changes in several key 

developmental processes, such as the distribution of morphogens in the wing disc or the 

establishment of planar cell polarity.

A theoretical approach that has also undertaken a more explicit incorporation of 

developmental information into the evolution of the G-P map was developed by Watson et 
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al. (2014). In their model, multivariate traits are produced by a G-P map with multiple 

independent developmental steps connecting the phenotype to the genotype. This 

conceptualization produces a nonlinear ontogeny and allows the model to capture interesting 

behaviors of these G-P maps, such as the ability to recall multiple phenotypes that were 

selected in the past or the ability to produce new combinations of features from modular 

developmental processes. Traits in this model tend to become more associated throughout 

development when they are selected in the same direction and become independent when 

they are selected in different directions, reinforcing the role of directional selection in 

shaping modularity.

In conclusion, while approaches relating variational modularity to the mechanics of 

development are relatively rare, these different empirical studies and theoretical models 

clearly show that incorporating the more complex developmental interactions into studies of 

morphological variation and evolution greatly increases our ability to understand and even 

predict the evolutionary dynamics of complex systems. The main challenges going forward 

are going to be creating models capable of describing more complex structures, such as the 

skull, and incorporating the possibility of changes in the topology of genetic and 

developmental networks.

System Genetics - A systematic approach

A promising way to integrate modularity with the underlying developmental genetics in a 

systematic way is currently gaining traction under the “system genetics” approach (Ayroles 

et al. 2009, Mackay et al. 2009). The idea behind system genetics is simple. It interrogates 

the relationship between genome and phenome under different contexts (e.g., environments 

or conditions). As a consequence, it attempts to hit at the core of the context dependency of 

gene effects, which is not only fundamental for the evolution of modularity (Pavličev & 

Cheverud 2015), as seen in previous sections, but also emphasizes its developmental basis 

by potentially uncovering important modular signaling cascades.

System genetic approaches have been applied to several different model organisms (Ihmels 

et al. 2002, Juenger et al. 2005, Wang et al. 2010). In Drosophila (Ayroles et al. 2009), it led 

to the identification of several transcriptional modules that are not only connected to 

genomic variation but also underlie variation in ecologically relevant traits, such as fecundity 

and metabolism. Those transcriptional modules are strongly influenced by environmental, 

developmental and genetic background effects, highlighting the fact that context-dependent 

effects are the norm and are, therefore, responsible for most phenotypic variation. System 

genetic approaches have also recently been used to map changes in the amount of variation 

for a given phenotype (Ayroles et al. 2015). Genetic variation in phenotypic variance 

represents genetic variation in developmental canalization, a topic that is especially relevant 

to studies of threshold characters or threshold selection (Ayroles et al. 2015). Among the 

challenges faced by system genetics, two should be highlighted. Due to its ambitious nature 

of scoring multivariate traits and entire transcriptomes/genomes, they are inherently 

expensive studies. Also, multivariate statistics are often dependent on large samples, and are 

often estimated with considerable error, an aspect that needs to be taken into account.
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Modularity and the adaptive landscape

Is modularity and integration relevant for phenotypic evolution? Having discussed and 

characterized modularity and the possibility of its evolution, we will now address its 

evolutionary consequences. There are short- and potentially long-term consequences of 

modularity for evolutionary change. We will start by introducing the quantitative theory 

dealing with the short-term consequences and identifying under which circumstances this 

theory can be extended to the macroevolutionary level. Since modularity in patterns of 

genetic associations between continuous traits is captured by the additive genetic variance/

covariance matrix, the G-matrix (Lande 1979), this section will focus in the relationship 

between the G-matrix and the adaptive landscape.

Why so much interest in the G-matrix?

Evolution, regardless of which evolutionary process is involved, depends on genetic 

variation. The G-matrix summarizes the amount and pattern of additive genetic variation and 

covariation among traits and is, therefore, essential to our understanding of the connection 

between genetics and evolution (Lande 1979). Genetic covariation among traits is 

particularly important because of its potential to affect the course of phenotypic evolution 

(Figure 2). Unlike the univariate view of evolution, in which a single trait’ s value can be 

optimized without constraint from selection on other traits, genetic covariation among traits 

causes correlated responses to selection. In this situation traits will change and evolve 

together, often in a direction that is different from the one favored by selection (Figure 2, 

Grant & Grant 1995, Lande 1979). Thus, the pattern and magnitude of the G-matrix 

elements can deflect the path of evolution from its optimal trajectory. Whether or not this 

short-term effect on the evolutionary responses has enduring consequences depends on the 

degree of stability of the G-matrix and on its relationship with the adaptive landscape 

(Steppan et al. 2002, and see below). Long term stability of the G-matrix is one of the most 

fundamental assumptions of the research program we are describing here, and questions 

related to the long term stability and estimation of G-matrices are still open (Houle & Meyer 

2015, Jones et al. 2012). Many feel uncomfortable with this assumption of stability 

(Björklund et al. 2013). This discomfort stems in part from empirical evidence that suggests 

that no two populations have identical G-matrices, and that G-matrices can fluctuate over 

short time periods (Björklund et al. 2013, Eroukhmanoff & Svensson 2011). Biological 

populations are finite and almost surely differ in their gene frequencies, especially 

considering the potentially large number of genes affecting complex traits and the 

correlations between them (Phillips et al. 2001, Whitlock et al. 2002). We suggest that in 

many instances the assumption that population covariance matrices are identical be rejected 

out of hand. But the mere presence of a statistically significant difference is not the critical 

issue. Instead, the more interesting and relevant questions are: How similar are two 

covariance patterns with respect to their predicted evolutionary responses? Do some 

quantitative traits have more stable G-matrices than others? Fortunately, these are questions 

that can be examined empirically (Calsbeek & Goodnight 2009, Cheverud & Marroig 2007) 

and are a critical first step for the use of the G-matrix in multivariate evolution and 

systematics.
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So, what do empirical studies tell us about the relative stability of the G-matrix over 

macroevolutionary timescales? Empirical evidence varies greatly depending on the study 

system in question. One of the most thoroughly explored cases is the mammalian skull, 

where empirical evidence strongly suggests that G-matrices are stable across mammalian 

taxa (Garcia et al. 2014, Marroig & Cheverud 2001, Porto et al. 2009). By stable we do not 

mean that heritable variation patterns are identical across species, but that they will deflect 

the phenotypic response to selection in a similar way.

While it is possible that extant species variation patterns are fairly similar, it is possible that 

stochastic fluctuations in the G-matrix over generations are large enough to render the 

inferences we might make from extant patterns useless. These fluctuations are possible for 

many reasons, like segregating alleles with large effects or linkage disequilibrium caused by 

periods of strong fluctuating selection (Bulmer 1971, Turelli 1988). While this is certainly a 

theoretical possibility, the critical question is whether or not changes in G-matrix structure 

based on theoretical considerations are of sufficient magnitude to affect evolutionary 

inferences (Arnold et al. 2008). Fortunately, simulations quantifying these problems suggest 

that their effect can be small (Jones et al. 2004, 2012).

The missing link: Adaptive landscapes and the G-matrix

We have discussed genetic associations, the genetic and developmental origins of modularity 

and their influence in evolutionary response. One missing, and arguably the most important 

link, is the relation between covariation and the adaptive landscape. By examining the 

relationship between modularity and adaptive landscapes, we can put micro- and 

macroevolution into a common unifying theory (Arnold 2014, Arnold et al. 2001). This 

theory not only explains the relationship between development, function and inheritance in 

shaping modularity patterns, but also will allow us to explore the evolution of multivariate 

phenotypes in deep-time and suggest future research directions.

While there are many studies at a local scale (within-population), we have precious little 

information about adaptive landscapes between species (Pfaender et al. 2016). One of the 

most important developments in the past 30 years of evolutionary theory was the 

multivariate regression methods for inferring individual selection surfaces from multivariate 

data (Lande & Arnold 1983). Although not without critics (Shaw & Geyer 2010), these 

methods have allowed researchers to directly investigate adaptive landscapes and to 

empirically measure selection on multivariate trait sets. In this approach, the adaptive 

landscape is described by two main terms: a linear term related to directional selection and a 

quadratic term related to stabilizing/disruptive selection (Lande & Arnold 1983). The 

quadratic component affects the variances and covariances among traits and, along with 

directional selection, is thought to be the major evolutionary process shaping modularity 

(Melo & Marroig 2015). The selection gradient (linear term) is the direction of maximum 

increase in fitness and is the vector of partial regression coefficients of fitness on traits. This 

framework can also be used to study directional selection retrospectively, by measuring 

extant species means and covariance matrices we can estimate ancestral states and, by 

solving the Lande equation, the selection gradient that would have resulted in the observed 

diversification (Lande 1979 equation 9, Figure 2).
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Even though this toolkit for explicitly characterizing selection has now been available for 

decades, empirical characterizations of multivariate selection are still rare, despite their 

acknowledged importance. Yet in the past 20 years of reconstructing selection gradients 

from extant diversity has given us two fundamental insights into the nature of multivariate 

evolution. First, estimates of the strength of both stabilizing and directional selection are 

usually weaker than we previously assumed (Kingsolver et al. 2001, 2012). But, more 

importantly, the empirical evidence suggests that the direction of evolutionary divergence 

and the direction of selection are rarely the same and, often times, present little resemblance. 

An important work illustrating this notion comes from studies of D. serrata (Chenoweth et 

al. 2010). In a study of sexual selection, the authors note that even though local processes of 

sexual selection varied considerably across their nine populations, evolutionary divergence 

occurred primarily along a single trait combination. Variation in sexual selection had little 

influence on evolutionary divergence. Instead, genetic covariation among traits caused the 

evolutionary response to be significantly deflected from its optimal path. Studies on 

Dalechampia blossom morphology have also emphasized that only a portion of evolutionary 

divergence patterns can be accounted by models of external selective factors, such as 

community composition and availability of resources. Rather, constraints imposed by 

covariation patterns seem to be essential for our understanding of the evolution of blossom 

traits (Bolstad et al. 2014, Hansen et al. 2003).

We should point out that selection gradients reported in these retrospective works are net 

gradients, that is, an estimate of the cumulative sum of all selection gradients acting over the 

generations of divergence. If the G-matrix is stable, this net selection should be a reasonably 

accurate estimate of the sum of individual gradients (Jones et al. 2004). Another issue with 

reconstructing selection is that G- and P-matrices are often estimated with substantial error, 

with frequent poorly conditioned or negative semi-definite matrices. This means that the 

inversion step in the reconstruction analysis can lead to very large errors (Marroig et al. 

2012). Fortunately, there are matrix estimation or regularization methods that can vastly 

improve the selection gradient estimates, and these should be used whenever we estimate 

them (Marroig et al. 2012, Schäfer & Strimmer 2005).

Evolutionary change in simple landscapes

Most of our knowledge of the relationship between modularity and the adaptive landscape 

comes from simulation studies. In simulations carried out on simple landscapes, patterns and 

magnitudes of association among traits affect the direction, magnitude and rate of 

evolutionary change under selection (e.g., Marroig & Cheverud 2010). The effect of the G-

matrix on evolutionary change depends critically on in its structure in relation to the adaptive 

landscape (Conner 2012, Laughlin & Messier 2015), and can either augment or slow the 

evolutionary response relative to a situation with fully independent traits. If selection is 

along dimensions unaligned with modularity/integration patterns, the response is deflected 

towards the lines of least resistance (Schluter 1996). If selection is aligned with modularity, 

however, the evolutionary response is greatly facilitated (Beldade et al. 2002, Bolstad et al. 

2014). The closer the alignment with the major line of least resistance, the quicker and more 

direct the evolutionary response. However, simulations are highly concordant in showing 

that these effects are restricted to the microevolutionary scale, and, given sufficient time and 
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a simple adaptive landscape, the population will eventually reach the selective peak, unless 

there is no genetic variation at all in that direction (an absolute constraint, Blows & 

Hoffmann 2005). But theoretical work suggests that even if there is an apparent lack of 

genetic variation along some dimension, there is frequently hidden genetic variation in the 

form of epistasis that can fuel evolutionary change in subsequent generations (Hansen 2013, 

Hansen et al. 2006). So, given the possibility of adaptive changes in the G-matrix through 

time, and that the constraints imposed by G-matrices are usually microevolutionary, the 

emerging picture would be one where G-matrices should not have any enduring macro-

evolutionary consequences (“transient constraints model”, from now on). But what happens 

when we consider complex adaptive landscapes?

Evolutionary change in rugged landscapes

While single peaked adaptive landscapes are convenient for model building purposes, 

adaptive landscapes are thought to be very rugged, that is, they have many adaptive peaks 

and valleys (Kauffman & Levin 1987, Martin & Wainwright 2013, Wright 1932). When the 

adaptive landscape is rugged and when genetic associations are stable through time, 

macroevolutionary dynamics will be shaped by the interaction between the G-matrix and the 

adaptive landscape (Figure 3). This implies that, in rugged and multiple peaked adaptive 

landscapes, the G-matrix can have a major influence in determining which peak will be 

reached by a given population, even if in theory the effect of the G-matrix is 

microevolutionary (Steppan et al. 2002). This argument was already present in Lande 

(1979), but in a somewhat obscure formulation: “However, the adaptive topography for each 
population or species generally has multiple peaks (Simpson, 1953, Ch. 7; Lande, 1976a; 

Wright, 1977 and previous papers). Genetic correlations can alter the long term result of 
selection by influencing the direction of evolution at critical periods when a population 
approaches a threshold (or saddlepoint) between adaptive zones, as by random genetic drift 
or by environmental fluctuations which directly affect the phenotype or alter the adaptive 
topography.” This can be easily understood noting that, in evolutionary terms, the distance 

between the population average position and the peak is not a simple linear (Euclidean) 

distance between the start position and end position of the species averages, but it is a 

weighted distance, with the weight being given by the patterns of genetic association. Given 

the influence of genetic correlations, the distance of a population from a peak is measured in 

units of genetic variation. Thus, the closest peak, the peak the population eventually reaches, 

is not necessarily the highest or even the closest in Euclidian distance, but the closest in 

genetic scaled distance. We will refer to this idea as the “peak selection” model.

What would we expect in terms of empirical patterns under each of these scenarios? If G-

matrices only impose microevolutionary constraints and population/species eventually reach 

their single adaptive peak we would expect no particular relationship between the magnitude 

and direction of evolutionary change and its alignment with the G-matrix. We would also not 

expect any significant alignment of the species response to selection with the major axis of 

variation of the G-matrix. Evolution in this scenario would only depend on the position of 

the adaptive peak in relation to the population average. Alternatively, if G-matrices have 

enduring consequences at the macroevolutionary level by influencing the choice of peak, we 

would expect an association between the magnitude and direction of evolutionary change 
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and its alignment with the major axis of the G-matrix (see Porto et al. 2015). Furthermore, 

species diversification should be biased in the directions of highest variation in the G-matrix. 

Evolutionary change would depend not only on the position of the adaptive peaks in regard 

to the current position of the population averages but also on the G-matrix structure, which 

would affect the probability of reaching the various peaks (Figure 3).

Does alignment with lines of least resistance imply constraint?

Comparisons of G-matrix orientation with the observed direction of evolutionary change, as 

described in the previous section, can be a fruitful way of testing these ideas. Several studies 

have compared morphological diversification to available genetic variation, and in several 

instances diversification was aligned with the “lines of least resistance” while others show 

diversification in alternate directions (Berner et al. 2010, Marroig & Cheverud 2010, Renaud 

et al. 2006, Schluter 1996). But this alignment is not necessarily due to constraints, since 

selection and constraint can act in the same direction (Marroig and Cheverud 2010, 

augmentation sensu Conner 2012). This would imply that species lie near the axis of major 

evolvability not due to constraint, but due to a ridge in the fitness surface (Conner 2012) or 

that at least some of the available peaks happened to be aligned with that direction, and thus 

the pattern is adaptive (Arnold et al. 2001, Marroig & Cheverud 2010). Likewise, when 

macroevolutionary diversification is not aligned with variation, it does not negate the 

possibility of the G-matrix imposing microevolutionary restrictions -- it could be that the 

position of adaptive peaks had some other pattern. Perhaps a more complete picture of what 

we are observing is one close to the peak selection model. Species don’t tend to follow the 

line of least resistance because they are constrained in that direction, in the sense of lacking 

variation in other directions of the morphospace (Marroig & Cheverud 2005, 2010). Instead, 

G-matrix and peak distribution interact, making the realized morphospace coverage much 

smaller that the full range of possibilities. We will now turn our attention to whether or not 

we can gain any information on past peak distribution from comparative quantitative genetic 

studies.

Differentiating between constraints, co-selection and drift

If the covariation between species is mirrored by the G-matrix, can we attribute this to 

constraints or to a common pattern of selection and covariation? In other words, can we 

examine the alignment of the orientation of the G-matrix with the distribution of peaks in the 

adaptive landscape? In theory, it should be possible to estimate covariation between 

selection in different clades (Figure 4) based on observed selection gradients, given some 

assumptions (Felsenstein 1988, Zeng 1988). While this only gives us access to the peaks that 

were eventually reached and are currently occupied by living species, this is valuable 

information that can help us to explain whether macroevolution is dominated by constraints 

or by an interaction between constraints and selection, as in the peak selection model 

(Marroig & Cheverud 2010). Under transient constraints, we should not expect any 

alignment between the G-matrix and the selective covariance matrix, since, given enough 

time, the populations should eventually reach their respective adaptive peak. Conversely, 

under peak selection, we would expect an alignment between the G-matrix and selective 

covariance matrix. We are aware of only two such tests reported to date (Hohenlohe & 

Arnold 2008, Marroig & Cheverud 2010).
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Comparative approaches establishing a relationship between lines of least resistance and 

divergence patterns have other important limitations. Most significantly, random genetic 

drift can create an association between the orientation of the G-matrix and the patterns of 

between species divergence, given stable patterns of genetic covariation. This occurs 

because evolutionary divergence under drift is expected to be proportional to the ancestral 

pattern of variation and covariation among traits (Figure 2), and, therefore, an observed 

association between the orientation of the G-matrix and divergence can be a direct product 

of neutral evolution. While most biologists would agree that morphology is usually under 

selection, it is useful to examine the potential consequences of drift and how it relates to 

modularity. Simulation work suggests that if genetic drift is the only evolutionary process 

operating, modularity patterns would not be stable, and patterns of association would vary 

widely across closely related populations or taxa (Jones et al. 2003, Melo & Marroig 2015). 

This is clearly not observed in nature (see above). But what if modularity is maintained by 

stabilizing selection and trait means are free to change by genetic drift? In this situation, 

divergence among populations would be largest along directions where ancestral genetic 

variation is abundant, and smaller in direction of low ancestral variation (Arnold et al. 2001, 

Lande 1976). There are methods for distinguishing drift from selection in quantitative traits 

(Ackermann & Cheverud 2004, Bartoszek et al. 2012, Hohenlohe & Arnold 2008, Karhunen 

et al. 2013) but most of them are not well suited to high dimensional systems, or do not take 

the influence of genetic covariation into account, or require a large number of individuals 

distributed in a large number of species. For example, the approach from Hohenlohe & 

Arnold (2008, MIPoD) explicitly models evolution under drift to predict a probability 

distribution for the divergence of population averages, given a phylogeny, the G-matrix and 

an estimate of effective population size. This is an elegant solution that can test whether 

divergence among groups is compatible with drift and the current G-matrix, but it can only 

be applied in full force with two characters at a time. With few exceptions (Bartoszek et al. 

2012, Hohenlohe & Arnold 2008), most phylogenetic methods fail to take genetic 

covariation into account, limiting our understanding of macroevolution. By modeling 

evolution under a univariate brownian motion model, for example, we assume that no 

selection is operating (but see Butler & King 2004, Hansen 1997) and that traits are evolving 

independently. Some advances have been made in the past decade (Bartoszek et al. 2012, 

Cressler et al. 2015, Hohenlohe & Arnold 2008) but we still lack comparative methods that 

balance the external aspect of selection (niche shifts on OU models, Butler & King 2004, 

Hansen 1997), with the populational consequences of modularity.

Conclusion

Placing micro- and macroevolution into a common framework is essential for our 

understanding of the influence of genetic and developmental constraints on multivariate 

evolution. Quantitative genetic theory has long been interested in the variational properties 

of organisms and recent studies using the conceptual umbrella of modularity have 

extrapolated its breadth to include long-term evolutionary change. While empirical results 

led us to discard the notion that variational patterns are set in stone and act as absolute 

constraints, they have also made us abandon the idea that adaptive landscapes can be 

characterized by simple and stable selective peaks, or that variational properties are largely 
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unimportant considerations for evolutionary change. Embracing the dynamic nature of 

variational patterns, their context dependency, as well as their relationship with genetics, 

development and evolution will allow us to bridge these two levels of the hierarchy in a 

systematic way. One of the challenges going forward is the incorporation of mechanistic 

models of development into models of how variation emerges and how it influences the 

shape of population variation and adaptive landscapes. Another major challenge will be 

discriminating the relative contribution of constraints, selection and neutral processes in 

determining the path of multivariate evolution. We propose that this challenge will only be 

met when we know more about the true shape of adaptive landscapes, including the number, 

height and distribution of peaks (see Laughlin & Messier 2015, Pfaender et al. 2016), as well 

as incorporate modularity into our thinking.
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Figure 1. 
(A) Typical representation of modularity in the genotype-phenotype map. Yellow and 

orange circles represent modular genetic factors, and blue circles represent global ones. The 

circle in green represents a genetic locus capable preventing the global factor from affecting 

module 2 (rQTL). Squares represent phenotypic traits, and the arrows represent the 

relationship between genotype and phenotype (pleiotropy). (B) Trait correlations as a 
function of the underlying genetic variation. In case 1, genetic variation is only present 

for local factors. As a consequence, modular patterns of covariation emerge in the 

phenotype. In the second case, there is genetic variation in both global and local genetic 

factors. As a consequence, covariation patterns are less modular. Finally, in the third case, 

modular covariation patterns emerge again, as a consequence of the rQTL preventing the 

global genetic factor from affecting module 2. (C) The nature of gene effects across the 
different levels of the biological hierarchy. Here we are representing a case in which a 

certain mutation, represented at the level of the genotype, causes changes in the 

developmental parameter space (e.g., rate of cell division), which in turn, leads to changes in 

the selected phenotype.

Melo et al. Page 23

Annu Rev Ecol Evol Syst. Author manuscript; available in PMC 2017 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
To illustrate the interaction of modularity (captured in the G-matrix) and evolutionary 

processes (selection and drift), we display two panels illustrating population averages, G-

matrices, adaptive peak(s) and selection gradients (β). G-matrices are represented by ellipses 

of different colors and with the axes of major genetic variation embedded. The major axis 

corresponds to the line of least resistance (Schluter 1996), that is, the direction which holds 

most of the genetic variation in the trait space. Selection gradients are represented by 

straight arrows and measure the relationship between fitness and individual traits, while 

holding the other traits constant. Responses to selection (Δz) are also shown as arrows and 

indicate changes in the trait averages across time. The multivariate response to selection 

equation (Δz=Gβ) captures the relationship between the response to selection (Δz), 

inheritance (G-matrix) and selection (β). The direction of increase in average fitness is 

indicated by + and decrease in fitness is indicated by -. First panel (upper left) shows 3 

populations (green, yellow and red) under the same adaptive landscape, where an increase in 

trait Y is favored and trait X does not affect fitness. Notice that the response of each 

population to the same selection gradient differs (dark green, orange and red arrows). 

Population Green increases Y but decreases X values, population Red increases Y and X 

values, and population Yellow only increases Y although with a smaller displacement of Y 

than the other 2 populations. These different responses under the same selection gradient are 

due to differences in the G-matrices. Populations Green and Red have their responses 

deflected from the optimal path, due to the covariation between Y and X (negative in Green, 

and positive in Red). Thus, traits that are not under direct selection will contribute to the 

response due to their shared inheritance. If traits are independent (population yellow), each 

can be optimized separately. But note that the displacement in the Y average is smaller than 

in the other populations, because the genetic variation available in that direction is smaller. 

Upper right panel show the consequence of a flat adaptive landscape (random genetic drift) 

on the averages of descendent populations (red ellipses) of an ancestral population (yellow 

ellipse). The arrows in this case point to each population’s trajectory. At the end of the drift 

process, 95% of all evolution (divergence among means) is captured by the larger ellipse 

(light pink). Notice that there is substantial more divergence along the axis holding most of 

the within-population genetic variation.
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Figure 3. 
Top left panel shows selection gradients (β) per generation (green arrows) and average 

responses (Δz) per generation (black arrows) of populations sharing similar G-matrix 

structure, but at different starting points of a single-peaked adaptive landscape. Red arrows 

represent the net selection gradient (the sum of all selection gradients). Thus, the alignment 

between the direction of selection and the orientation of the G-matrix differs for each 

population. Responses to selection will thus vary between populations, in terms of its 

direction and magnitude. Some will evolve rapidly and directly to the peak (population b), 

others will evolve slowly (population a) due to differences in the amount of variation aligned 

with selection (evolvability sensu Hansen and Houle 2008). Population c will approach the 

peak in a non-linear way and its trajectory will be strongly deflected by the G-matrix in the 
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direction of the line of least resistance. The line of least resistance equals the first principal 

component of a G-matrix and acts as an attractor of short-term evolutionary responses. We 

can expand this notion to multivariate systems and think of linear combinations of the first 

principal components as representing hyperplanes of least resistance. This notion is related 

to modularity, as principal components are related to modules but do not carry a one to one 

relation with each module (Berner 2011). Usually principal components are contrasts 

(positive loadings for one module and negative loadings for the other) between modules, and 

linear combinations between these contrasts define directions of independent change for 

each module. Note that the net selection gradients (red arrows) are much larger when 

selection is not aligned with the G-matrix’s main axis. Top right panel shows the same 3 

populations, but in a rugged adaptive landscape. In this scenario, populations won’t always 

evolve to the closest peak (euclidean distance), but instead to those that are closest given the 

covariation among traits. Central panels illustrate the predictions of each model (transient 
constraints – left, and peak selection – right). Each point represents one species, with Y 

being the total magnitude of evolution, and X being the alignment of the evolutionary 

response (z) with the G-matrix. In the transient constraints model, you would not expect any 

particular relationship between the magnitude of evolutionary change and its direction, since 

every species would eventually reach the peak. Conversely, under the peak selection model 

(right side), species’ evolutionary trajectories may or may not be aligned with the G-matrix, 

but the magnitude of evolutionary change will be small when not aligned. Bottom panels 

show the predictions for both models (transient constraints to the left, and peak selection to 

the right) in terms of number of species observed in terms of their(z) and their alignment 

with the G-matrix.
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Figure 4. 
Traits will evolve together either because they are inherited together (G-matrix) or because 

they are selected together (selective covariance). Panel A illustrates the idea of selective 

covariance. Traits X and Y are genetically independent. The black dot indicates the average 

before selection. + and – signs indicate the direction of increase in fitness for each trait. 

Thus, selection is favoring the joint increase of X and Y, and the population will evolve a 

new average phenotype (yellow dot). The term selective covariance was coined by 

Felsenstein (1988, see also Zeng 1988). If we have evidence that the G-matrix is relatively 

stable during macroevolution, equation V=GCG captures the covariance of changes in the 

averages of the species (V-matrix) in terms of its two potential (non-excluding) sources: 

inheritance (G-matrix) and selective covariance (C-matrix). Theoretically, if we have a 

reasonable estimate of the G-matrix and of the phylogenetic relationships, we can compute 

the V-matrix and thus solve the Zeng-Felsenstein equation to compute C=G-1VG-1. C is the 

covariance of slopes of log W viz., the covariance among the selection gradients operating 

upon each species. Panels B and C illustrate this with selection gradients on panel b and the 

selective covariance matrix represented on panel C (pink ellipse).
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