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Abstract

Tapeworms of the genus Anindobothrium Marques, Brooks & Lasso, 2001 are found in both

marine and Neotropical freshwater stingrays of the family Potamotrygonidae. The patterns

of host association within the genus support the most recent hypothesis about the history of

diversification of potamotrygonids, which suggests that the ancestor of freshwater lineages

of the Potamotrygonidae colonized South American river systems through marine incursion

events. Despite the relevance of the genus Anindobothrium to understand the history of col-

onization and diversification of potamotrygonids, no additional efforts were done to better

investigate the phylogenetic relationship of this taxon with other lineages of cestodes since

its erection. This study is a result of recent collecting efforts to sample members of the

genus in marine and freshwater potamotrygonids that enabled the most extensive docu-

mentation of the fauna of Anindobothrium parasitizing species of Styracura de Carvalho,

Loboda & da Silva, Potamotrygon schroederi Fernández-Yépez, P. orbignyi (Castelnau)

and P. yepezi Castex & Castello from six different countries, representing the eastern

Pacific Ocean, Caribbean Sea, and river basins in South America (Rio Negro, Orinoco, and

Maracaibo). The newly collected material provided additional specimens for morphological

studies and molecular samples for subsequent phylogenetic analyses that allowed us to

address the phylogenetic position of Anindobothrium and provide molecular and morpholog-

ical evidence to recognize two additional species for the genus. The taxonomic actions that

followed our analyses included the proposition of a new family, Anindobothriidae fam. n., to

accommodate the genus Anindobothrium in the order Rhinebothriidea Healy, Caira, Jensen,

Webster & Littlewood, 2009 and the description of two new species—one from the eastern

Pacific Ocean, A. carrioni sp. n., and the other from the Caribbean Sea, A. inexpectatum sp.

n. In addition, we also present a redescription of the type species of the genus, A. anacolum

(Brooks, 1977) Marques, Brooks & Lasso, 2001, and of A. lisae Marques, Brooks & Lasso,

2001. Finally, we discuss the paleogeographical events mostly linked with the diversification

of the genus and the protocols adopted to uncover cryptic diversity in Anindobothrium.
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Introduction

Members of the genus Anindobothrium Marques, Brooks & Lasso, 2001 are found in both

marine and Neotropical freshwater stingrays of the family Potamotrygonidae. This genus was

erected to accommodate the marine species Caulobothrium anacolum Brooks, 1977, a parasite

of Styracura schmardae (Werner) de Carvalho, Loboda & da Silva off the Caribbean coast of

Colombia, and two species found in freshwater potamotrygonids: A. lisae Marques, Brooks &

Lasso, 2001 and A. guariticus Marques, Brooks & Lasso, 2001. Subsequently, Reyda [1] trans-

ferred A. guariticus to his newly erected genus Nandocestus Reyda, 2008. Therefore, Anindobo-
thrium is now comprised of two valid species: its type, A. anacolum (Brooks, 1977) Marques,

Brooks & Lasso, 2001, a parasite of S. schmardae collected off the Caribbean coast of Colombia

and A. lisae, a parasite of freshwater stingray Potamotrygon orbignyi (Castelnau) from the Rio

Negro, near Barcelos-Amazonas (Brazil).

At present, the systematic position of Anindobothrium is considered uncertain [2, 3]. Mar-

ques et al. [4] erected the genus as a member of the Phyllobothriidae Braun, 1900 [5], a family

of the notoriously polyphyletic order Tetraphyllidea Carus, 1863 [6]. In the past decade, the

disassembly of the Tetraphyllidea has led to extensive modifications [2, 3, 7, 8] of the concept

of the family Phyllobothriidae. Throughout the recent rearrangement of former tetraphylli-

dean taxa and redefinition of the Phyllobothriidae, Healy et al. [2] and Ruhnke et al. [9] have

suggested that Anindobothrium is likely to be a member of the Rhinebothriidea Healy, Caira,

Jensen, Webster & Littlewood, 2009, since its members possess stalked bothridia—a putative

morphological synapomorphy for the order, which concept was mainly supported by the phy-

logenetic analysis of molecular data [2, 8, 10]. Since those initial propositions, no effort has

been made to address the phylogenetic position of Anindobothrium and test the hypothesis

that the genus is a member of the Rhinebothriidea.

The observation that Anindobothrium is comprised of one member from Neotropical fresh-

water potamotrygonids and another found in S. schmardae from the Caribbean Sea supports

the most recent hypothesis about the origin of freshwater stingrays [11–16]. There is evidence

to suggest that a freshwater potamotrygonid ancestor colonized South America through

marine incursion events during the Paleogene Period, between the early Miocene and mid-

Eocene (i.e., 22.5–46 Mya) [12, 14, 15, 17]. According to this hypothesis the current tropical

eastern Pacific Ocean and the Caribbean Sea are the areas of derivation of freshwater potamo-

trygonids. This biogeographic scenario is corroborated by recent phylogenetic hypotheses for

batoids based on morphological and molecular data, suggesting that species of Styracura de

Carvalho, Loboda & da Silva—S. schmardae and S. pacifica (Beebe & Tee-Van) de Carvalho,

Loboda & da Silva—form a clade sister to Neotropical freshwater stingrays [11, 13, 16, 18].

In historical associations between hosts and parasites, if events of co-divergence prevail, we

would expect to find congruence between patterns of diversification for host and parasite phy-

logenies [19]. The same would apply for historical associations between areas and organisms

in which vicariance events would render sister taxa inhabiting sister areas. This theoretical

framework generates two expectations: (1) that freshwater lineages of Anindobothrium inhab-

iting freshwater potamotrygonids would be closely related to those found in species of Styra-
cura and (2) that S. pacifica should house at least one lineage of Anindobothrium.

Here, we address the phylogenetic position of Anindobothrium and the diversity of the

genus in species of potamotrygonid hosts. The phylogenetic position of the genus is discussed

in light of a phylogenetic analysis of molecular data. The taxon sampling includes members of

Anindobothrium from both marine and freshwater systems in addition to species from other

cestode genera representing all major lineages of the Rhinebothriidea as well as other orders of

cestodes. The diversity of Anindobothrium reported here is the result of the analyses of
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molecular and morphological data from an unprecedented number of specimens obtained

after examining over 152 freshwater and 33 marine potamotrigonid hosts. Finally, we provide

the description of two new species and a redescription of Anindobothrium anacolum, the type

species of the genus, and A. lisae, to include new data on morphological variation and charac-

terization of tegumentary structures (i.e., microtriches).

Materials and methods

Biological material

A total of 92 specimens of Potamotrygon orbignyi and 39 specimens of P. schroederi Fernán-

dez-Yépez from the Rio Negro and Rio Orinoco, respectively, 21 specimens of P. yepezi Castex

& Castello from the Maracaibo basin, and 33 specimens of Styracura spp. from the eastern

Pacific Ocean and the Caribbean Sea were examined in this study. Freshwater specimens were

collected using long-lines or hand nets, whereas marine ones were collected by spears. Collect-

ing activities took place in six different countries and followed the guidelines of collecting per-

mits issued to F.P.L. Marques by IBAMA no. 006/96-DIFAS of January, 1996; no. 015/04 of

January, 2004; 083/05-DIFAS of July, 2005; and 24451-1 of July, 2010 in Brazil; by the Instituto

Socialista de la Pesca y Agricultura—INSOPESCA AMAZONAS no. 038 in Venezuela; by the

Ministery of Food Production—Fisheries Division (issued in September, 2014) in Trinidad &

Tobago; by the Autoridad Nacional del Ambiente—ANAM (SE/A-101-14, issued in Decem-

ber, 2014) in Panama; and to J.N. Caira by INDERENA Institute de Pesca y Fauna Terrestre

from Bogotá in Colombia; and by the Ministry of Forest, Fisheries and Sustainable Develop-

ment (Belize Fisheries Department—Proc. No 000016-12, issued in 2012) in Belize. Details on

the hosts examined in the present study are in the supporting information (S1 Text).

The spiral intestines of hosts were removed and opened with a longitudinal incision.

Marine hosts were fixed individually in 10% formalin buffered in seawater (1:9) or 95% etha-

nol and shaken for approximately two minutes. Freshwater hosts were fixed likewise with the

exception of the use of 10% formalin diluted in saline solution. Samples fixed in ethanol were

stored at -20˚C; those fixed in formalin were transferred to 70% ethanol after approximately

one week for long-term storage. Parasite specimens included in this study were selected from

the spiral intestines using a stereomicroscope.

Morphological data

Cestode specimens prepared as whole mounts for light microscopy were hydrated, stained

with Delafield’s hematoxylin (9:1 solution), destained in a 1% acid (HCl) ethanol solution, fol-

lowed by a 1% basic (NaOH) ethanol solution, dehydrated in ethanol series to 100%, cleared in

methyl salicylate and mounted in Canada balsam on glass slides under coverslips. Selected

specimens were dehydrated in ethanol series to 95%, stained with acetocarmine, dehydrated in

100% ethanol, and cleared and mounted as described above.

Histological sections were prepared from terminal proglottids of at least one specimen per

population (i.e., from each host and locality). Anterior parts of the worms were removed and

prepared as whole mounts as described above to serve as vouchers. Posterior parts of the stro-

bila were embedded in paraffin according to conventional techniques. Sections were prepared

at 7 μm intervals, using a Leica RM 2025 retracting rotary microtome, placed on glass slides,

allowed to dry on a slide warmer for 5 min and then in an oven for 30 min, stained in Mayer’s

hematoxylin, counterstained in eosin, dehydrated in ethanol series to 100%, cleared in xylene,

and mounted in Canada balsam on glass slides under coverslips.

Scoleces selected for scanning electron microscopy (SEM) were carefully cleaned with

brushes to remove the host tissue and mucus, hydrated, transferred to 1% osmium tetroxide
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overnight, dehydrated in ethanol series until 100%, placed in hexamethyldisilizane (HMDS),

allowed to air-dry overnight and mounted on carbon tape on an aluminum stub. The stubs

were sputter-coated with gold/palladium and examined with a Zeiss DCM 940 and FEI Quanta

600 FEG scanning electron microscope. The strobilae of the worms used for SEM were pre-

pared as whole mounts as described above to serve as vouchers.

Line drawings were prepared with the aid of a drawing tube attached to a Zeiss Axioscope

2. Whole mounts were photographed using either a Zeiss Axioscope 2 equipped with a SPOT

digital camera or an Olympus BX51 equipped with an Olympus SC30 camera. Fiji/ImageJ [20]

was used to process the images. Morphometric data were compiled with WormBox [21] and

further summarized using a script in R [22]. Only complete specimens with mature (i.e., with

open genital pores) or further developed proglottids (e.g., with atrophied testes or filled vas def-

erens) were examined and measured. All measurements for reproductive structures were

taken from terminal proglottids, unless in cases terminal proglottids presented atrophied tes-

tes, in which measurements were taken from subterminal mature proglottids. All measure-

ments are in micrometers unless otherwise stated, and are presented as ranges followed by the

number of specimens from which each measure was taken in parentheses. Repeated measure-

ments for the number and dimensions of testes and for the dimensions of vitelline follicles

were averaged for individuals. Terminology for the shape of the bothridia follows Clopton

[23]. Microtriches terminology follows Chervy [24].

Museum abbreviations are as follows: CHIOC, Coleção Helmintológica do Instituto

Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil; HWML, Harold W. Manter Laboratory

of Parasitology Collection, University of Nebrasca, Lincoln, Nebrasca, U.S.A.; INPA, Instituto

Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil; LRP, Lawrence R. Penner

Parasitology Collection, Department of Ecology and Evolutionary Biology, University of Con-

necticut, Storrs, Connecticut, U.S.A.; MIUP, Museo de Invertebrados G. B. Fairchild, Estafeta

Universitaria, Universidad de Panamá, Panama; MZUSP, Museu de Zoologia da Universidade

de São Paulo, São Paulo, Brazil; USNM, National Museum of Natural History, Smithsonian

Institution, Washington, D.C., U.S.A.; and USNPC, United States National Parasite Collec-

tion, Beltsville, Maryland, U.S.A. (now available at the USNM).

Molecular data acquisition

Scolices and posterior portions of strobila from specimens used in molecular analyses were

prepared as whole mounts as described above. Hologenophores (sensu Pleijel et al. [25]) were

deposited at the MZUSP. The middle portion of the strobila of each specimen was removed

and allowed to air dry for about 5 minutes at room temperature. Total genomic DNA was

extracted using Agencourt DNAdvance—Nucleic Acid Isolation Kit (Beckman Coulter) fol-

lowing manufacturer’s instructions. Genomic DNA was quantified using a micro-volume

spectrophotometer, NanoDrop 2000 (Thermo Scientific). Polymerase Chain Reaction (PCR)

was used to amplify partial sequences of nuclear regions: 18S rDNA, 28S rDNA (D1–D3), Cal-

modulin (Cal), and Internal Transcribed Spacer 1 (ITS-1), and the mitochondrial region of

Cytochrome Oxidase I (COI). Amplifications were performed in a 25 μl volume containing 1

μl of DNA, 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 200 uM dNTPs, 1.0–3.0 mM MgCl2,

0.4 uM of each primer, and 1 U of Taq DNA polymerase recombinant (Fermentas, Thermo

Scientific). General PCR conditions included initial denaturation for 5 min at 95˚C, 35 cycles

of denaturation for 30 sec at 95˚C, annealing for 30 sec at specific temperatures (see below),

extension for 1 min to 1 min and 10 sec at 72˚C, and a final extension for 7 min at 72˚C.

Amplifications and sequencing were performed with following primer sets: 18S rDNA with

300F 5’—AGG GTT CGA TTC CGG AG—3’ and WormB 5’—CTT GTT ACG ACT TTT
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ACT TCC—3’ at 55˚C; 28S rDNA (D1–D3) with LSU-5F 5’—TAG GTC GAC CCG CTG

AAY TTA AGC A—3’ and LSU-1500R 5’—GCT ATC CTG AGG GAA ACT TCG—3’ at

58˚C; Cal with Cal F 5’—GAR CAR ATT GCI GAR TTY AAR GAR GC—3’ and Cal R 5’—

TTC TTC RTA RTT IAC YTG ICC RTC—3’ with 5 cycles at 55˚C followed by 5 cycles at

50˚C; ITS-1 with CAS-18S F1 5’—TAC ACA CCG CCC GTC GCT ACT A—3’ and CAS-5,8S

B1d 5’—TTC TTT TCC TCC SCT TAY TRA TAT GCT TAA CAS—3’ at 58˚C; and COI with

sean1 5’—TTT ACT TTG GAT CAT AAG CG—3’ and HCO 2198 5’—TAA ACT TCA GGG

TGA CCA AAA AAT CA—3’ at 45˚C. PCR products were purified using an Agencourt

AMPure XP DNA Purification and Cleanup kit (Beckman Coulter Inc.). Products were subse-

quently cycle-sequenced directly from both forward and reverse directions using ABI Big-Dye

Sequence Terminator (v. 3.1), cleaned with ethanol precipitation, and sequenced on an ABI

Prism Genetic Analyzer (3131XL) automated sequencer (Applied Biosystems/ThermoFisher).

Contiguous sequences were assembled using the package Consed/PhredPhrap [26–29].

Sequences were aligned using MAFFT [30] and visualized and edited in BioEdit (v. 7.1.3.0;

[31]) to remove leading and trailing regions that varied in length. Kimura’s two-parameter

(K2P) distances among sequences were calculated in PAUP� [32]. Haplotype networks [33]

were calculated based on uncorrelated distances from implied alignments (see below) using

Pegas (version 0.9; Paradis [34]).

Phylogenetic analyses

Two major analytical protocols were applied according to the main goals of this study. The

first set of analyses addressed the phylogenetic position of Anindobothrium within major line-

ages of cestodes closely related. The second analysis used molecular data as a tool for species

discovery and delineation within Anindobothrium.

Phylogenetic position of Anindobothrium. Nucleotide sequences of 18S rDNA and 28S

rDNA (D1–D3 regions) were first submitted to phylogenetic analysis by direct optimization

(DO; [35]) using POY (version 5.1.1; [36]) under parsimony as optimality criteria. Initial tree

searches included 10 iterations of two independent searches for 1 h 30 min using the com-

mand search [i.e., search(max_time:0:01:30]) assuming equal weights for all character transfor-

mations. This search was conducted in a 10 X 2.83 GHz Intel1 Core™2 Quad Processor Q9550

computer cluster. A DO sensitivity search [37] was performed using nine alignment parameter

sets in which gap extension costs varied from one to eight and transformation costs (transver-

sions and transitions) from one to four with an opening gap cost twice that of gap extension

cost rendering the following alignment cost ratios for opening gaps, extension gaps, transver-

sions, and transitions, respectively: 0:1:1:1, 2:1:1:1, 2:1:1:2, 2:1:2:1, 2:2:1:1, 2:2:1:2, 2:2:2:1,

2:4:1:1, 2:4:1:2, and 2:4:2:1. For each parameter set, tree space was explored by two indepen-

dent searches for 2 h [i.e., search(max_time:0:02:00]) in the same computer cluster environ-

ment as the previous analysis but using five nodes. After compiling candidate trees by DO, we

submitted unique topologies to tree refinement by tree-fusing algorithm [38] and re-diagnosis

by iterative pass alignment (DO/IP+Fuse; [39]). Our final analytical step under this optimality

criterion was to verify the results obtained with DO/IP+Fuse by performing a phylogenetic

analysis of the implied alignment (sensu Wheeler [40]) generated by the previous step in TNT

[41] using its New Technology searches [41, 42] with the following parameters: rep 100, ratchet

50, fuse 20, hold 10. We evaluated nodal support by using Goodman-Bremer values (GBS,

[43–45]; see [46]). To obtain this metric, we considered the shortest tree found by TNT based

on the implied alignment above and executed a modified version of the script BREMER.RUN

distributed with TNT. This script considered 1,000 replicates with 10 repetitions of ratchet and

drift [41, 42] in constrained searches and the remaining default parameters. Finally, putative
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transformations for selected branches were compiled using the consensus tree obtained by

TNT with YBYRÁ [47].

We also analyzed the previous datasets using maximum likelihood (ML) to identify nodes

sensitive to a different optimality criterion. We started by submitting the implied alignment

generated by DO/IP+Fuse to model selection in jModeltest (version 2.1.6; [48, 49]) consider-

ing 88 candidate models ranked by AICc scores. Following, tree searches were performed

using the parallel implementation of GARLI (version 2.0; [50]) applying 1,000 independent

search replicates and remaining default parameters of GARLI configuration file. This search

was conducted by implementing 20 searches replicates in 50 X 2.83 GHz Intel1 Core™2 Quad

Processor Q9550 computer cluster. Log-likelihood difference support (LLD; sensu Lee et al.
[51]; see [52, 53]) was calculated for selected nodes using constrained negative searches in

GARLI under the same configuration settings as the initial tree search.

Species discovery within Anindobothrium. Our first approach was to perform a simulta-

neous phylogenetic analyses of nuclear regions 18S rDNA, 28S rDNA (D1–D3), Cal, and ITS-

1, and the mitochondrial region of COI for all representatives of Anindobothrium from three

major bodies of water: eastern Pacific Ocean, Caribbean Sea, and Neotropical freshwater sys-

tems. We submitted the nucleotide sequences to phylogenetic inference by direct optimization

(DO, [35]) using POY (version 5.1.1; [36]) under parsimony as the optimality criterion. Tree

search was performed by three independent searches for 30 min using the command search

(i.e., search(max_time:0:00:30)) assuming equal weights for character transformations in the

same computer cluster environment mentioned above using 10 nodes. All trees compiled by

DO were re-diagnosed by iterative pass algorithm (IP, [39]) and the implied alignment (sensu

Wheeler, [40]) was submitted to TNT (Golloboff et al. [41]) to verify the results using xmu

algorithm with 1,000 replicates and holding at the most 10 trees per replicate. A similar analy-

sis was conducted partitioning the dataset into nuclear and mitochondrial regions. The first

partition was analyzed in POY as described above and COI was only analyzed in TNT with the

same settings as before. Selected clades were diagnosed using YBYRÁ [47] within each

partition.

We also performed a phylogenetic analysis using ML as optimality criterion based on the

implied alignments resulted from previous analyses. Model selection for the concatenated

dataset and for each nuclear region was performed in jModeltest considering 88 candidate

models ranked by AICc scores. Under this optimality criterion, phylogenetic analyses were

performed for each gene region separately, as well as for two concatenated datasets: one con-

sidering only nuclear genes and the other including all regions. We analyzed each

concatenated dataset using two different partition models. One considered a single substitu-

tion model for all regions and the other considered individual substitution models. Indepen-

dently of dataset or partition model, tree searches were performed using parallel

implementation of GARLI applying a total of 1,000 independent search replicates in 10 X

2.83 GHz Intel1 Core™2 Quad Processor Q9550 computer cluster. The best partition model

was selected based on AICc information criterion.

Congruence between phylogenetic patterns and morphological data was observed by com-

piling morphometric and meristic data for 137 marine specimens of Anindobothrium. The

dataset included the newly collected material as well as the type series of A. anacolum. A total

of 29 measurements were selected, most of which are traditionally used in the taxonomy of the

group and missing entries were filled with the mean within clade recovered by phylogenetic

inference. All statistical analyses were performed in R as follows. The first step was to identify

and exclude all highly correlated measurements (i.e., r> 0.70). Then, a Principal Component

Analysis (PCA) was performed to identify whether or not there were any morphological pat-

terns in our data congruent with phylogenetic patterns. Putative groups suggested by
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phylogenetic analyses and PCA were tested by Linear Discriminant Analysis (LDA; [54, 55]).

The error rate of the discriminant function was evaluated by 1,000 iterations of 10-fold cross

validation procedure. This dataset and R scripts are available in the repository Dryad under

doi:10.5061/dryad.gr0sb.

Results

Phylogenetic analyses

Phylogenetic position of Anindobothrium. To address the phylogenetic position of Anin-
dobothrium within the selected lineages of cestodes, 18S and 28S nucleotide data were gener-

ated for 27 terminals (Table 1). These terminals included two haplotypes of Caulobothrium sp.

found in Potamotrygon sp. from the Delta of Orinoco, two members of Rhinebothroides sp. col-

lected from Potamotrygon wallacei de Carvalho, Rosa & de Araujo from the Rio Negro, three

specimens of A. lisae found in freshwater potamotrygonids from the Rio Negro and Orinoco

river basins, and 20 other haplotypes of Anindobothrium, most of which collected from species

of Styracura. In addition to these haplotypes, the dataset included one individual of Anthoce-
phalum hobergi (Zamparo, Brooks & Barriga, 1999) Marques & Caira, 2016 from Urobatis
tumbesensis (Chirichigno & Mc Eachran) off the coast of Ecuador, which was used as out-

group taxa. To this dataset, we added 67 selected terminals from Healy et al. [2], Caira et al.
[7], Ruhnke et al. [8], and Marques and Caira [10] (Table 2). These additional sequence data

included 16 out-group terminals representing members of the Litobothriidea (three), Catheto-

cephalidea (two), Lecanicephalidea (four), Onchoproteocephalidea (one), Phyllobothriidea

(one), and “Tetraphyllidea” (five); and 51 rhinebothriideans, which included members of all

families according to Ruhnke et al. [8] and Marques and Caira [10]. The complete dataset con-

sidered 93 terminals. Sequences of 18S ranged from 1,350 to 1,412 unaligned base pairs (bp)—

MAFFT alignment (MAFFTaln) resulted in sequences of 1,464 bp—, and sequences of 28S

ranged from 803 to 873 unaligned base pairs—MAFFTaln of 1,025 bp.

Tree search using direct optimization under equal weights for all transformations was

based on 1,279 builds followed by TBR (Tree-bisectioning and redraft, [56]), 22,032 cycles of

tree fusing [38], and 622 iterations of ratchet [42]. Sensitivity search included 186 builds fol-

lowed by TRB, 2,437 cycles of tree fusing, and 88 iterations of ratchet. Combined, the tree

search under direct optimization found 72 unique topologies ranging from 6,407 to 6,663

steps in length. The re-diagnosis of these 72 unique topologies under iterative pass algorithm

followed by tree fusing rendered a single topology with 6,350 transformations. The implied

alignment submitted to TNT, with 1,698 bp for 18S and 1,299 bp for 28S, resulted in two topol-

ogies with 6,346 steps in length. These two trees differed on internal arrangements of apical

terminals with near-zero branch lengths. Fig 1A displays the summary results of this analysis,

including GBS support for selected nodes. A topology with all terminals is provided in supple-

mentary results (S1 Fig).

Implied alignment resulted from the analyses above was submitted to ML phylogenetic

inference assuming GTR+Γ+I as the substitution model. This analysis resulted in a topology

with -lnL 28523.9385, which summary is presented in Fig 1B along with values of Likelihood

Length Difference as a measure of support for selected clades. The detailed sister-group rela-

tionships hypothesized by ML analysis is presented in supplementary results (S2 Fig).

Both optimality criteria supported the monophyly of families but suggested different sets of

sister-group relationships (Fig 1A and 1B). These differences involve clades with relatively

lower support. According to the parsimony analysis, Anindobothrium is sister to the Anthoce-

phaliidae, whereas ML topology suggested it is sister to the clade Anthocephaliidae

+Escherbothriidae.

Systematics and diversification of Anindobothrium

PLOS ONE | https://doi.org/10.1371/journal.pone.0184632 September 27, 2017 7 / 54

https://doi.org/10.5061/dryad.gr0sb
https://doi.org/10.1371/journal.pone.0184632


Table 1. Nucleotide sequences generated in the present study and NCBI/Genbank accession numbers.

Locality species host 18S 28S Calm ITS-1 COI

Caribbean/Belize [10] Anindobothrium inexpectatum sp. n.

[MZUSP 7767]

Styracura schmardae (BE-

002)

MF920380 MF920353 MF947556 MF920330 MF947579

Anindobothrium inexpectatum sp. n.

[MZUSP 7768]

Styracura schmardae (BE-

002)

MF920381 MF920354 MF947557 MF920331 MF947580

Anindobothrium inexpectatum sp. n.

[MZUSP 7769]

Styracura schmardae (BE-

002)

MF920382 MF920355 MF947558 MF920332 MF947581

Anindobothrium inexpectatum sp. n.

[MZUSP 7770]

Styracura schmardae (BE-

003)

MF920383 MF920356 MF947559 MF920333 MF947582

Anindobothrium inexpectatum sp. n.

[MZUSP 7771]

Styracura schmardae (BE-

005)

MF920384 MF920357 MF947560 MF920334 MF947583

Anindobothrium inexpectatum sp. n.

[MZUSP 7772]

Styracura schmardae (BE-

005)

MF920385 MF920358 MF947561 MF920335 MF947584

Anindobothrium inexpectatum sp. n.

[MZUSP 7773]

Styracura schmardae (BE-

011)

MF920386 MF920359 MF947562 MF920336 MF947585

Anindobothrium inexpectatum sp. n.

[MZUSP 7774]

Styracura schmardae (BE-

009)

MF920387 MF920360 MF947563 MF920337 MF947586

Anindobothrium inexpectatum sp. n.

[MZUSP 7775]

Styracura schmardae (BE-

003)

MF920378 MF920351 MF947554 MF920328 MF947577

Anindobothrium inexpectatum sp. n.

[MZUSP 7776]

Styracura schmardae (BE-

005)

MF920379 MF920352 MF947555 MF920329 MF947578

Caribbean/Panama [1] Anindobothrium inexpectatum sp. n.

[MZUSP 7777]

Styracura schmardae

(PN15-54)

MF920377 MF920350 MF947553 MF920327 MF947576

Caribbean/Trinidad & Tobago

[4]

Anindobothrium anacolum [MZUSP

7778]

Styracura schmardae

(TT14-06)

MF920372 MF920345 MF947548 MF920322 MF947571

Anindobothrium anacolum [MZUSP

7779]

Styracura schmardae

(TT14-06)

MF920373 MF920346 MF947549 MF920323 MF947572

Anindobothrium anacolum [MZUSP

7780]

Styracura schmardae

(TT14-06)

MF920374 MF920347 MF947550 MF920324 MF947573

Anindobothrium anacolum [MZUSP

7789]

Styracura schmardae

(TT14-06)

MF920371 MF920344 MF947547 MF920321 MF947570

Eastern Pacific/Panama [4] Anindobothrium carrioni sp. n.

[MZUSP 7785]

Styracura pacifica (PN15-

14)

MF920369 MF920342 MF947545 MF920319 MF947568

Anindobothrium carrioni sp. n.

[MZUSP 7786]

Styracura pacifica (PN15-

14)

MF920370 MF920343 MF947546 MF920320 MF947569

Anindobothrium carrioni sp. n.

[MZUSP 7787]

Styracura pacifica (PN15-

14)

MF920375 MF920348 MF947551 MF920325 MF947574

Anindobothrium carrioni sp. n.

[MZUSP 7788]

Styracura pacifica (PN15-

25)

MF920376 MF920349 MF947552 MF920326 MF947575

Eastern Pacific/Ecuador [1] Anthocephalum hobergi [MZUSP

7755]

Urobatis tumbesensis (EC-

56)

KU295562 KU295566 MF947592 MF939899 MF947591

Neotropical Freshwater/Delta

of Orinoco [2]

Caulobothrium sp. [MZUSP 7790] Potamotrygon sp. (VZ13-

48)

MF920394 MF920367 – – –

Caulobothrium sp. [MZUSP 7791] Potamotrygon sp. (VZ13-

48)

MF920395 MF920368 – – –

Neotropical Freshwater/

Maracaibo [1]

Anindobothrium anacolum [MZUSP

7781]

Potamotrygon yepezi

(VZ11-001)

MF920388 MF920361 MF947564 MF920338 MF947587

Neotropical Freshwater/Rio

Negro [3]

Anindobothrium lisae [MZUSP 7782] Potamotrygon orbignyi

(RN11-028)

MF920389 MF920362 MF947565 MF920339 MF947588

Anindobothrium lisae [MZUSP 7783] Potamotrygon schroederi

(RN11-058)

MF920390 MF920363 MF947566 MF920340 MF947589

Anindobothrium lisae [MZUSP 7784] Potamotrygon orbignyi

(VZ11-029)

MF920391 MF920364 MF947567 MF920341 MF947590

Neotropical Freshwater/Rio

Negro [2]

Rhinebothroides sp. [MZUSP 7792] Potamotrygon wallacei

(RN11-009)

MF920392 MF920365 – – –

Rhinebothroides sp. [MZUSP 7793] Potamotrygon wallacei

(RN11-030)

MF920393 MF920366 – – –

https://doi.org/10.1371/journal.pone.0184632.t001
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Table 2. Nucleotide sequences for members of the Rhinebothriidea and related cestodes taxa included in the analysis.

Suprageneric taxon species host NCBI 18S NCBI 28S source

Litobothriidea/Litobothriidae [3]* Litobothrium amplifica [TE-26/LRP 8279] Alopias pelagicus (BJ-713) KF685843 KF685906 Caira et al. [7]

Litobothrium janovyi [BMNH 2000.3.7.3-5] Alopias superciliosus (BJ-716) AF124468 AF286930 Caira et al. [7]

Litobothrium nickoli [TE-113/LRP 8321] Alopias pelagicus (BJ-713) KF685844 KF685907 Caira et al. [7]

Cathetocephalidea/Cathetocephalidae

[2]*
Cathetocephalus thatcheri [TE-28/LRP 8281] Carcharhinus leucas KF685838 KF685884 Caira et al. [7]

Cathetocephalidea/Disculicipitidae Disculiceps sp. 1 [TE-130/LRP 8328 Carcharhinus limbatus (MS05-24) KF685839 KF685761 Caira et al. [7]

Lecanicephalidea/Cephalobothriidae

[4]*
Adelobothrium aetobatidis [TE-16B/LRP 8272] Aetobatus ocellatus (AU-57) EF095249 EF095257 Caira et al. [7]

Lecanicephalidea/Paraberrapecidae Paraberrapex manifestus [TE-142] Squatina californica (BJ-298) KF685781 KF685868 Caira et al. [7]

Lecanicephalidea/Polypocephalidae Anteropora patulobothridium [TE-90/LRP 8307] Taeniura lymma 1 (BO-86) KF685788 KF685863 Caira et al. [7]

Polypocephalus helmuti [TE-17A/LRP 8273] Rhinoptera neglecta (AU-85) KF685786 KF685869 Caira et al. [7]

Onchoproteocephalidea [1]* Acanthobothrium santarosaliense [TE-136/LRP

8300]

Heterodontus mexicanus (BJ-

300)

KF685834 KF685751 Caira et al. [7]

Phyllobothriidea/Phyllobothriidae [1]* Anthobothrium sp. 1 [TE-119/LRP 8325] Carcharhinus tilstoni (NT-55) KF685806 KF685752 Caira et al. [7]

“Tetraphyllidea” [5]* Caulobothrium sp. 5 [CH-25/LRP 3914] Pastinachus ater (NT-105) FJ177065 FJ177105 Caira et al. [7]

Caulobothrium opisthorchis [CH-21/LRP 3910] Myliobatis californica (BJ-626) FJ177066 FJ177106 Caira et al. [7]

Duplicibothrium minutum [TE-135/LRP 8332] Rhinoptera cf.steindachneri

(MS05-49)

KF685809 KF685885 Caira et al. [7]

New genus 7 sp. 1 [TE-166/LRP 8344] Parascyllium collare (KJG-17) KF685851 KF685749 Caira et al. [7]

Pentaloculum sp. 1 [TE-171/LRP 8347] Typhlonarke tarakea (CR-136) KF685852 KF685877 Caira et al. [7]

Rhinebothriidea/Anthocephalidae [24] Anthocephalum alicae [PEET-319/LRP 8508] Dasyatis americana (TM-19) KM658190 KM658205 Ruhnke et al. [8]

Anthocephalum cairae [PEET-320/LRP 8509] Dasyatis americana (TM-19) KM658187 KM658202 Ruhnke et al. [8]

Anthocephalum currani [PEET-403/LRP 8510] Dasyatis dipterura (BJ-119) KM658188 KM658203 Ruhnke et al. [8]

Anthocephalum decristanisorum [PEET-427/LRP

8511]

Himantura uarnacoides (BO-91) KM658179 KM658194 Ruhnke et al. [8]

Anthocephalum healyae [PEET-258/LRP 8512] Neotrygon australiae (CM03-42) KM658185 KM658200 Ruhnke et al. [8]

Anthocephalum hobergi [EC-14.1/MZUSP 7754] Urobatis tumbesensis (EC-14) KU295561 KU295565 Marques & Caira

[10]

Anthocephalum hobergi [EC-56.1/MZUSP 7756] Urobatis tumbesensis (EC-56) KU295562 KU295566 Marques & Caira

[10]

Anthocephalum hobergi [EC-56.2/MZUSP 7757] Urobatis tumbesensis (EC-56) KU295563 KU295567 Marques & Caira

[10]

Anthocephalum hobergi [EC-56.3/MZUSP 7755] Urobatis tumbesensis (EC-56) KU295564 KU295568 Marques & Caira

[10]

Anthocephalum jensenae [PEET-300/LRP 8513] Himantura jenkensii (NT-118) KM658178 KM658193 Ruhnke et al. [8]

Anthocephalum mattisi [TE-141/LRP 4219] Dasyatis sp. (SE-222) FJ177059 FJ177099 Caira et al. [7]

Anthocephalum meadowsi [PEET-297/LRP 8514] Himantura leoparda (NT-32) KM658180 KM658195 Ruhnke et al. [8]

Anthocephalum michaeli [PEET-267/LRP 8515] Dasyatis longa (BJ-423) KM658189 KM658204 Ruhnke et al. [8]

Anthocephalum sp. 1 [PEET-256/LRP 8505] Himantura leoparda (NT-32) KM658191 KM658206 Ruhnke et al. [8]

Anthocephalum sp. 2 [PEET-413/LRP 8506] Taeniurops grabata (SE-121) KM658183 KM658198 Ruhnke et al. [8]

Anthocephalum sp. 3 [PEET-409/LRP 8507] Urogymnus asperrimus 1 (CM03-

53)

KM658177 KM658192 Ruhnke et al. [8]

Anthocephalum odonellae [PEET-299/LRP 8516] Neotrygon kuhlii1 (BO-336) KM658186 KM658201 Ruhnke et al. [8]

Anthocephalum papefayi [PEET-259/LRP 8517] Dasyatis margaritella (SE-225) KM658184 KM658199 Ruhnke et al. [8]

Anthocephalum philruschi [PEET-425/LRP 8518] Himantura uarnak 2 (CM03-24) KM658181 KM658196 Ruhnke et al. [8]

Barbeaucestus ralickiae [CH-35/LRP 3922] Taeniura lymma 1 (BO-86) FJ177068 FJ177108 Caira et al. [7]

Barbeaucestus shipleyi [CH-3/LRP 3894] Neotrygon orientale (BO-336) FJ177069 FJ177109 Caira et al. [7]

Divaricobothrium tribelum [CH-11/LRP 3902] Himantura gerrardi (BO-466) FJ177067 FJ177107 Caira et al. [7]

Sanguilevator yearsleyi [TE-114/LRP 4218] Lamiopsis tephrodes (BO-488) FJ177057 KF685762 Caira et al. [7]

Sungaicestus kinabatanganensis [CH-9/LRP

3900]

Urogymnus polylepis (BO-108) FJ177078 FJ177118 Caira et al. [7]

Rhinebothriidea/Echeneibothriidae [3] Echeneibothrium sp. 1 [TE-94/LRP 4217] New genus B velezi (BJ-243) FJ177058 FJ177098 Caira et al. [7]

Echeneibothrium sp. 2 [TE-95/LRP 8312] Raja cf.miraletus (SE-188) KF685842 KF685876 Caira et al. [7]

Pseudanthobothrium sp. 1 [TE-117/LRP 8324] Leucoraja erinacea (HM-7) KF685841 KF685750 Caira et al. [7]

(Continued)
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Although the internal branches supporting sister-group relationships among families and

genera, such as Anindobothrium and the “New genus 11” (Rhinebothriinae n. sp.1 of Healy

et al. [2]), have relatively lower support, all families have a relative high support (Fig 1A and

1B). Also, branches leading to clades for recognized families, representatives of Anindobo-
thrium nested, and for the “New genus 11” possess sets of molecular synapomorphies that

could be used as putative diagnostic nucleotides for each of them (Fig 2). For instance, Anindo-
bothrium is supported by 30 transformations from the 18S region, three of which are observ-

able (non-gap), unique, unambiguous synapomorphies, and 44 from 28S region, four of which

are observable (non-gap), unique, unambiguous synapomorphies. The amount of transforma-

tions inferred for Anindobothrium (74) is smaller than what was recovered for the Echeneibo-

thriidae de Beauchamp, 1905 (86) but larger when compared to all other families (Fig 2).

Implied alignment data files and consensus tree used to provide diagnosis for each clade of the

Rhinebothriidea are available in the repository Dryad under doi:10.5061/dryad.gr0sb.

Species discovery within Anindobothrium. Molecular data: Our phylogenetic analyses

utilized 24 terminals, 23 haplotypes of Anindobothrium and one specimen of Anthocephalum
hobergi used to root the tree (Table 1). For this dataset, unaligned sequences of 18S ranged

Table 2. (Continued)

Suprageneric taxon species host NCBI 18S NCBI 28S source

Rhinebothriidea/Escherbothriidae [9] Escherbothrium sp. [PEET-424/LRP 8519] Urotrygon sp. 1 (CRP-50) KM658182 KM658197 Ruhnke et al. [8]

Rhinebothriinae New genus 3 sp. 1 [CH-7/LRP

3898]

Fontitrygon margaritella (SE-125) FJ177071 FJ177111 Healy et al. [2]

Rhinebothriinae New genus 3 sp. 2 [CH-8/LRP

3899]

Fontitrygon margaritella (SE-125) FJ177072 FJ177112 Healy et al. [2]

Rhinebothriinae New genus 3 sp. 4 [CH-15/LRP

3906]

Himantura astra (NT-26) FJ177074 FJ177114 Healy et al. [2]

Stillabothrium amuletum [CH-30/LRP 3917] Glaucostegus typus (AU-56) FJ177077 FJ177117 Caira et al. [7]

Stillabothrium cadenati [CH-37/LRP 3924] Zanobatus schoenleinii (SE-201) FJ177070 FJ177110 Caira et al. [7]

Stillabothrium davicynthiae [CH-45/LRP 3926] Himantura heterura (BO-237) FJ177076 FJ177116 Caira et al. [7]

Stillabothrium sp. 3 [CH-14/LRP 3905] Himantura astra (NT-26) FJ177073 FJ177113 Healy et al. [2]

Stillabothrium sp. 5 [CH-20/LRP 3909] Himantura leoparda (NT-117) FJ177075 FJ177115 Healy et al. [2]

Rhinebothriidea/Rhinebothriidae [14] Rhabdotobothrium anterophallum [BMNH

2001.1.31.3-4]

Mobula hypostoma (M-99-2442) AF287000 AF286961 Caira et al. [7]

Rhinebothrium cf. maccallumi [LRP 2108] Dasyatis americana AF124476 AF286962 Caira et al. [7]

Rhinebothrium megacanthophallus [CH-10/LRP

3901]

Urogymnus polylepis (BO-108) FJ177080 FJ177120 Caira et al. [7]

Rhinebothrium sp. 1 [CH-12/LRP 3903] Himantura cf.pastinacoides (BO-

76)

FJ177081 FJ177121 Caira et al. [7]

Rhinebothrium sp. 4 [CH-1/LRP 3892] Dasyatis akajei (JN-1) FJ177086 FJ177126 Healy et al. [2]

Rhinebothrium sp. 5 [CH-2/LRP 3893] Dasyatis dipterura (BJ-51) FJ177087 FJ177127 Healy et al. [2]

Rhinebothrium sp. 7 [CH-6/LRP 3897] Fontitrygon margarita (SE-123) FJ177089 FJ177129 Caira et al. [7]

Rhinebothrium sp. 8 [CH-55/LRP 3930] Paratrygon aiereba (PU-10) FJ177090 FJ177130 Caira et al. [7]

Rhinebothrium sp. 9 [CH-34/LRP 3921] Taenirua lymma 1 (BO-86) FJ177091 FJ177131 Caira et al. [7]

Rhinebothroides cf.freitasi [CH-54/LRP 3929] Potamotrygon castexi (PU-25b) FJ177092 FJ177132 Caira et al. [7]

Rhodobothrium paucitesticulare [TE-61/LRP

4216]

Rhinoptera bonasus (BNC-22) FJ177060 FJ177100 Caira et al. [7]

Scalithrium sp. [CH-4/LRP 3895] Dasyatis longa (BJ-423) FJ177093 FJ177133 Caira et al. [7]

Scalithrium sp. 1 [TE-140/LRP 8333] Dasyatis longa (BJ-423) KF685840 KF685878 Caira et al. [7]

Spongiobothrium sp. [CH-32/LRP 3919] Rhynchobatus palpebratus (NT-

66)

FJ177094 FJ177134 Caira et al. [7]

Rhinebothriidea [1] New genus 11 sp. 1 [CH-26/LRP 4220] Pristis clavata (AU-36) FJ177079 FJ177119 Healy et al. [2]

* Out-group taxa.

https://doi.org/10.1371/journal.pone.0184632.t002

Systematics and diversification of Anindobothrium

PLOS ONE | https://doi.org/10.1371/journal.pone.0184632 September 27, 2017 10 / 54

https://doi.org/10.5061/dryad.gr0sb
https://doi.org/10.1371/journal.pone.0184632.t002
https://doi.org/10.1371/journal.pone.0184632


Fig 1. Summary of sister-group relationships within the Rhinebothriidea based on the simultaneous

analysis of 18S and 28S rDNA regions. A. Topology inferred under parsimony as the optimality criterion

with 6,346 steps in length and Goodman-Bremer support values for selected clades. B. Topology inferred

under Maximum Likelihood as the optimality criteria (-lnL 28523.9385) and Likelihood Length Difference

support values for selected clades. “New genus 11” refers to Rhinebothriinae n. sp.1 of Healy et al. [2].

https://doi.org/10.1371/journal.pone.0184632.g001
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from 1,365 to 1,384 bp (MAFFTaln resulted in sequences of 1,384 bp), 28S (D1–D3) ranged

from 1,112 to 1,133 bp (MAFFTaln = 1,143 bp), Calmodulin ranged from 386 to 388 bp

(MAFFTaln = 388 bp), COI ranged from 477 to 549 bp (MAFFTaln = 549 bp), and ITS ranged

from 678 to 713 bp (MAFFTaln = 806 bp).

The biogeographical representation of this dataset included three individuals identified as

A. lisae (one) ex Potamotrygon schroederi from the Rio Negro and (two) ex P. orbignyi from the

Rio Negro and Mid-Orinoco river basins, three terminals identified as A. anacolum from Trin-

idad & Tobago parasitizing Styracura schmardae and one from Lake Maracaibo infecting P.
yepezi. We also included 15 members of Anindobothrium, among which 10 individuals were

from Belize and one from the Caribbean coast of Panama recovered from S. schmardae, and

four worms parasitizing S. pacifica from the eastern Pacific coast of Panama (Table 1).

Tree search using direct optimization under equal weights for all transformations was

based on 126 builds followed by TRB, 13,465 cycles of tree fusing, and 79 iterations of ratchet,

found 144 trees, 1,249 steps long. The re-diagnosis of all trees using iterative pass, utilizing

1,386 bp for 18S, 1,148 bp for 28S, 393 bp for Calmodulin, 549 bp for COI, and 803 bp for ITS,

found all of them to have 1,245 steps. The phylogenetic analysis of the implied alignment

resulted in 11 trees equally parsimonious with 1,245 steps. The consensus tree of these 11

topologies (Fig 3A) suggested the monophyly of A. lisae, the haplotypes of Anindobothrium
from eastern Pacific, and a clade comprised by members of the genus from Belize and Panama

(Caribbean). However, A. anacolum resulted as paraphyletic. The same phylogenetic pattern

was observed when the partition for COI was analyzed separately in TNT. This analysis found

Fig 2. Summary of sister-group relationships based on the simultaneous analysis of 18S and 28S rDNA regions using parsimony as the

optimality criteria for rhinebothriideans. Division between sets of synapomorphies indicates transformations from 18S and 28S rDNA, respectively. For

each base pair, black cells represent unambiguous unique synapomorphies, red cells represent unique homoplastic synapomorphies, and blue cells

represent non-unique homoplastic synapomorphies (see 45). Numbers below each cell represent alignment position for respective gene regions.

https://doi.org/10.1371/journal.pone.0184632.g002
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12 topologies at a cost of 371 steps, for which the consensus tree is presented in Fig 3B. Our

analysis based on direct optimization of nuclear genes included 184 builds, 22,826 cycles with

tree fusing, and 156 iterations of ratchet and found 215 trees with 868 steps. The re-diagnosis

of these trees by iterative pass found all of them to have 863 steps and the implied alignment

analyzed in TNT rendered two topologies with same cost. Contrary to COI, the nuclear genes

recognized four monophyletic groups within Anindobothrium. Among those not recognized

by COI, A. anacolum resulted as a monophyletic group (Fig 3C). Implied alignment data files

and consensus tree used to provide diagnosis for each clade of Anindobothrium are available in

the repository Dryad under doi:10.5061/dryad.gr0sb.

The ML analysis rendered similar results. Model selection suggested that the best fitting

model for the concatenated dataset was TVM+Γ+I, whereas for 18S, 28S, Cal, COI, and ITS-1

it was TPM3uf+Γ, TIM2+Γ, TIM1+Γ, TPM1uf+I, and TPM1uf+Γ, respectively. For the simul-

taneous analysis of all data we utilized two partition models. One analysis utilized the model

TVM+Γ+I for all concatenated partitions and the other assumed distinct substitution models

Fig 3. Phylogenetic relationships among haplotypes of Anindobothrium based on parsimony analysis of nucleotide sequences. A. Phylogeny

based on the simultaneous analysis of 18S, 28S, COI, and ITS-1 for members of Anindobothrium by direct optimization of nucleotide data (tree

length = 1,245). B. Phylogeny based on the parsimony analysis of COI (tree length = 371). C. Phylogeny based on the simultaneous analysis of nuclear

regions (18S, 28S and ITS-1) by direct optimization of nucleotide data (tree length = 863). Base pairs on branches represent unambiguous unique

synapomorphies for respective clades. Squares under branches represent presence (black) or absence (gray) of selected clades in the ML analysis.

https://doi.org/10.1371/journal.pone.0184632.g003
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for each gene regions separately. The AICc favored the partition model in which different sub-

stitution models were assigned to each region (Table 3). This analysis recovered the same phy-

logenetic pattern as obtained by parsimony analysis (Fig 3A). The phylogenetic analysis of

COI using ML corresponded to most of the nodes recovered by parsimony analysis (see

Fig 3B). For nuclear genes, the partition model also favored different substitution models for

each partition (Table 3). The ML analysis of nuclear regions displayed the same topology as

obtained for the parsimony analysis (see Fig 3B). However, ML analysis of individual parti-

tions did not recover some nodes.

A comparison of KP2 distances among representatives of the marine clades showed that

COI was the most divergent region used in this study (Table 4). On average, sequences of COI

from haplotypes of Anindobothrium collected in the eastern Pacific Ocean differed in 13.8%

from representatives of the genus collected in the Caribbean Sea. Between the clades in the

Caribbean, A. anacolum differed from A. inexpectatum sp. n. in 10.5% (see Table 4). Calmodu-

lin and ITS were together the second most divergent regions. In general, for both regions,

specimens from the eastern Pacific differed in 2.7% from those collected in the Caribbean and

the differences between A. anacolum and A. inexpectatum sp. n. were 1.0% and 1.3%, respec-

tively. Finally, 18S and 28S regions showed little variation within marine haplotypes of Anindo-
bothrium (Table 4).

Haplotype networks of the mitochondrial region COI and the nuclear markers 18S, 28S,

Calmodulin, and ITS revealed some interesting patterns (Fig 4). The most obvious is the obser-

vation that there is no shared haplotypes among the biogeographical areas sampled (i.e., fresh-

water rivers of South America, eastern Pacific Ocean, and the Caribbean coasts of Central and

South America). As expected, the haplotypes of A. lisae are the most divergent among Anindo-
bothrium. For genes with low substitution rates, such as 18S and 28S, putative new species

were segregated from others by few mutational steps. For instance, A. carrioni sp. n. and A.
inexpectatum sp. n. were segregated from A. anacolum by 3 and 2 mutational steps, respec-

tively, according to 18S sequences (Fig 4). A similar pattern is observed for 28S in which A.
anacolum is separated from these two new species by a single mutational step. However, these

newly recognized lineages are well segregate from others by faster evolving genes (i.e., Calmod-

ulin, COI, and ITS; see Fig 4).

Morphological data: The morphological dataset utilized 29 morphometric variables for

137 specimens. We focused on the marine representatives of Anindobothrium considering the

following representation: 29 specimens of A. anacolum from the type locality—including five

individuals from the type series (USNPC 73969, holotype and HMWL 20265a–d, paratypes),

24 individuals attributed to A. anacolum from Trinidad & Tobago, 41 worms from the Carib-

bean representing the clade formed by specimens collected in Styracura schmardae from Belize

Table 3. Partition model tests for ML phylogenetic analyses including haplotypes of Anindobothrium.

Model # Taxa # Branches # EPSM K Char. lnL AIC AICc

All genes single 24 45 9 79 356 -11012.38731 22182.77463 22227.42680

All genes partition 24 45 32 102 483 -10598.46585 21400.93171 21455.15276

Nuclear single 24 45 7 77 220 -8222.02870 16598.05741 16680.47994

Nuclear partition 24 45 25 95 320 -8065.99067 16321.98134 16401.71348

# Taxa, number of taxons analyzed; # Branches, number of branches; # EPSM, number of free (estimated) parameters in substitution models; K, total

number of free parameter, which includes topology, branch lengths, and free parameters in the substitution model(s); # Char, number of characters utilized

in ML analyses (unique patterns); lnL, negative Log-Likelihood scores; AIC, Akaike Information Criterion score of partition models; AICc, Corrected Akaike

Information Criterion score of partition models.

https://doi.org/10.1371/journal.pone.0184632.t003
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(31) and Panama (10), and 32 specimens of Anindobothrium collected from S. pacifica from

the eastern Pacific coast of Panama. Eight of the initial 29 morphometric variables were found

to be highly correlated (r > 0.70, see supplementary S1 Table) and were excluded from further

analyses.

The PCA utilizing 21 morphometric variables suggested that PCA1 explains 23% whereas

PCA2 explains 15% of total variance (Fig 5A). The centroid around the means (95% confi-

dence) suggested that individuals assigned to A. anacolum clustered together with most of the

specimens from its type series and worms collected in the type locality as well as from Trinidad

& Tobago. The results of this analysis revealed a great overlap between members of this genus

collected in the eastern Pacific Ocean and from the Caribbean coast of Panama/Belize. These

two populations overlapped at the edge of the centroid of A. anacolum. The loadings of PCA1

indicate that total length, bothridial length and scolex width have greater influence in that

component, whereas for PCA2, most of the variance is due to the length of poral testes and cir-

rus sac dimensions (S2 Table).

The LDA was performed to evaluate whether the recognized marine lineages based on

molecular data could be discriminated by morphological data. Our analysis was able to dis-

criminate representatives of marine clades (Fig 5B). The proportion of traces (i.e., the percent-

age separation achieved by each discriminant function) was 59% for LDA1 and 41% for LDA2.

Loadings for each discriminant function suggested that terminal mature proglottid ratio and

number of testes are the most important measurements for LDA1, whereas the number of

Table 4. Kimura’s two-parameter (K2P) distances among marine lineages of Anindobothrium. Dis-

tances are presented as average distance and ranges between brackets.

18S

A. carrioni sp. n. vs. A. anacolum 0.003 (0.002-0.007)

A. carrioni sp. n. vs. A. inexpectatum sp. n. 0.003 (0.003-0.004)

A. carrioni sp. n. vs. A. anacolum + A. inexpectatum sp. n. 0.003 (0.002-0.007)

A. anacolum vs. A. inexpectatum sp. n. 0.003 (0.002-0.008)

28S

A. carrioni sp. n. vs. A. anacolum 0.004 (0.002-0.006)

A. carrioni sp. n. vs. A. inexpectatum sp. n. 0.003 (0.003-0.005)

A. carrioni sp. n. vs. A. anacolum + A. inexpectatum sp. n. 0.003 (0.002-0.006)

A. anacolum vs. A. inexpectatum sp. n. 0.002 (0.001-0.003)

Cal

A. carrioni sp. n. vs. A. anacolum 0.032 (0.026-0.037)

A. carrioni sp. n. vs. A. inexpectatum sp. n. 0.024 (0.021-0.032)

A. carrioni sp. n. vs. A. anacolum + A. inexpectatum sp. n. 0.027 (0.021-0.037)

A. anacolum vs. A. inexpectatum sp. n. 0.010 (0.005-0.016)

COI

A. carrioni sp. n. vs. A. anacolum 0.097 (0.049-0.150)

A. carrioni sp. n. vs. A. inexpectatum sp. n. 0.157 (0.144-0.162)

A. carrioni sp. n. vs. A. anacolum + A. inexpectatum sp. n. 0.138 (0.049-0.162)

A. anacolum vs. A. inexpectatum sp. n. 0.105 (0.065-0.136)

ITS

A. carrioni sp. n. vs. A. anacolum 0.030 (0.025-0.036)

A. carrioni sp. n. vs. A. inexpectatum sp. n. 0.025 (0.022-0.030)

A. carrioni sp. n. vs. A. anacolum + A. inexpectatum sp. n. 0.027 (0.022-0.036)

A. anacolum vs. A. inexpectatum sp. n. 0.013 (0.010-0.016)

https://doi.org/10.1371/journal.pone.0184632.t004
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Fig 4. Haplotype networks based on uncorrelated distances of 23 nucleotide sequences from COI mtDNA and

nuclear regions 18S, 28S, Calmodulin, and ITS for putative species of Anindobothrium. Sizes of the circles are

proportional to haplotype frequency—number of divisions indicate numbers of individuals sharing the same haplotype, and the

lengths of the connecting lines are proportional to the number of mutational steps (dots on the lines) between haplotypes—

dashed lines represent alternative links. Number of haplotypes found: 18S = 7, 28S = 10, Calmodulin = 15, COI = 13, and

ITS = 15.

https://doi.org/10.1371/journal.pone.0184632.g004
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Fig 5. Multivariate statistical analysis of morphological data from marine lineages of

Anindobothrium. A. Principal Component Analysis (PCA). B. Linear Discriminant Analysis (LDA).

https://doi.org/10.1371/journal.pone.0184632.g005
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mature proglottids and vitelline follicles length were most important measurements for LDA2

(S3 Table). The cross validation procedure indicated a discriminant function error rate of 3%.

In summary, our results indicated that the phylogenetic position of Anindobothrium was

sensitive to optimality criteria, especially in nodes that displayed relative lower support. How-

ever, we found that the amount of molecular divergence in the branch supporting the mono-

phyly of Anindobothrium was as great as, if not greater than, those found in branches of

presently recognized families within the Rhinebothriidea. For Anindobothrium, we were able

to recognize four independent lineages, two of them already described, A. anacolum and A.
lisae, whereas the other two require formal description. The recognition of these lineages was

not only based on molecular data but also supported by the LDA analysis. Based on these

results the proposed taxonomic actions are as follows.

Nomenclatural acts

The electronic edition of this article conforms to the requirements of the amended Interna-

tional Code of Zoological Nomenclature, and hence the new names contained herein are avail-

able under that Code. This published work and the nomenclatural acts it contains have been

registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life

Science Identifiers) can be resolved and the associated information viewed through any stan-

dard web browser by appending the LSID to the prefix “http://zoobank.org/”. The LSID for

this publication is: urn:lsid:zoobank.org:pub:0CC9ACE3-9691-4043-8695-B70B6C4A2342.

The electronic edition of this work was published in a journal with an ISSN, and has been

archived and is available from the following digital repositories: PubMed Central and

LOCKSS.

Anindobothriidae fam. n. urn:lsid:zoobank.org:act:1D6F5223-DB13-42D8-A70F-

514D56FD133F

Diagnosis: Scolex with four stalked bothridia; bothridia with marginal loculi, 2 columns of

regular facial loculi present or absent; bothridial apical sucker present; anterior to posterior

orientation of bothridia conspicuous; myzorhynchus lacking in adult stage. Genital pore ante-

rior. Postvaginal testes present. Vitelline follicles with partial or total interruption by ovary.

Parasites of marine and freshwater stingrays of the family Potamotrygonidae.

Type and only genus: Anindobothrium Marques, Brooks & Lasso, 2001.

Remarks: The phylogenetic analysis of molecular data provided unequivocal evidence that

Anindobothrium is a member of the Rhinebothriidea. This results corroborate Ruhnke’s [3]

observation that the presence of stalked bothridia found in members of Anindobothrium
would support the assignment of this genus to this order (see also Healy et al. [2] and Ruhnke

et al. [9]).

The sub-ordinal classification of the Rhinebothriidea, as we know to date, was proposed

by Ruhnke et al. [8] which recognized four families: Anthocephaliidae Ruhnke, Caira &

Cox, 2015, Echeneibothriidae, Escherbothriidae Ruhnke, Caira & Cox, 2015, and Rhinebo-

thriidae Euzet, 1953. Despite the great taxonomic representation of their dataset, no specimens

of Anindobothrium were included in their analysis. Our results revealed that the position of

Anindobothrium is sensitive to optimality criterion since the MP topology suggested that

this genus is sister to Anthocephaliidae, whereas the ML topology suggested that Anindobo-
thrium is sister to the clade Anthocephaliidae+Escherbothriidae. Therefore, based on the phy-

logenetic patterns recovered, we would not be able to assign Anindobothrium to any family of

the Rhinebothriidea. In addition, the amount of molecular divergence of the branch leading to

haplotypes of Anindobothrium is comparable to those supporting families and the morphology

of the genus that does not conform with the diagnoses of the families provided by Ruhnke
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et al. [8]. Hence these observations justify the erection of a new family to accommodate

Anindobothrium.

The family Anindobothriidae fam. n. can be distinguished from the Echeneibothriidae by

the absence of a myzorhynchus in the adult stage and by the position of genital pore (anterior

vs. mid-posterior). It differs from the Rhinebothriidae by possessing a clear anteroposterior

orientation of the bothridia characterized by a conspicuous apical sucker and by the partial or

total interruption of the vitelline follicles by the ovary. It closely resembles the Anthocephalii-

dae and the Escherbothriidae but can be easily distinguished by the possession of post-vaginal

testes. Below we provide a revised key of the Rhinebothriidea to accommodate the Anindobo-

thriidae fam. n.

Key to families of the Rhinebothriidea (modified from Ruhnke et al. [8]):

1 Myzorhynchus present in the adult stage Echeneibothriidae

- Myzorhynchus absent in the adult stage 2

2 Bothridia lacking apical suckers and anterior/posterior orientation; vitelline follicles

usually not interrupted by ovary Rhinebothriidae

- Bothridia with, or occasionally without, apical suckers and conspicuous anterior/posterior

orientation; vitelline follicles with partial or total interruption by the ovary 3

3 Presence of post-vaginal testes Anindobothriidae

- Absence of post-vaginal testes 4

4 Facial loculi arranged in anterior columns and posterior rows Escherbothriidae

- Facial loculi lacking or arranged in multiple rows only Anthocephaliidae

Anindobothrium Marques, Brooks & Lasso, 2001.

Amended Diagnosis: Rhinebothriidea, Anindobothriidae fam. n. Worms acraspedote, apoly-

tic. Scolex with four stalked bothridia; myzorhynchus absent. Bothridia typically longer than

wide, with or without longitudinal septa, with apical sucker and marginal loculi, with or with-

out two rows of facial loculi. Mature proglottids longer than wide. Testes numerous, arranged

in two irregular columns; post-poral field present. Vas deferens extending anteriorly from

mid-proglottid to enter to cirrus sac at anterior margin, more porally than anti-porally; exter-

nal seminal vesicle absent. Genital pores marginal, irregularly alternating from 15 to 44% from

anterior end of proglottid; genital atrium shallow. Cirrus sac in anterior 1

4
of proglottid, thin-

walled, tilted posteriorly, containing eversible coiled cirrus armed with spinitriches. Vagina

extending from ootype along midline of proglottid to anterior margin of cirrus sac and lat-

erally, becoming sinuous, to open into genital atrium anterior to cirrus sac; vaginal sphincter

present; seminal receptacle absent. Ovary H-shaped in frontal view, tetralobed in cross section;

ovarian margins lobulate. Vitellarium follicular, in two lateral bands; bands extending length

of proglottid, interrupted by terminal genitalia, partial or total interruption by ovary. Uterus

median, ventral, sacciform, with poorly differentiated lateral diverticula or lacking diverticula,

extending from ovarian isthmus to anterior margin of proglottid. Excretory vessels four in

number, arranged in dorsal and ventral pairs at lateral margins of proglottid. Parasites of the

Potamotrygonidae (Myliobatiformes).

Remarks: The amended diagnosis made several contributions to that provided by Marques

et. al. [4] and included modifications to accommodate the new findings on the morphology of

this taxon. For instance, Marques et al. [4] described Anindobothrium as possessing bilobed
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bothridia, while in fact its members have elongated ones. Moreover, the absence of longitudi-

nal septa became contradictory with the examination of additional specimens of A. anacolum
(see below) and the presence of marginal loculi is found in all species we now recognize within

the genus. Also, the vitelline follicles may be partial interrupted by the ovary. Since Anindobo-
thrium is the only member of the Anindobothriidae fam. n., the genus can be differentiated

from all other genera within the Rhinebothriidea by the same characters that differentiate the

families of this order (see the key to the families above).

Anindobothrium anacolum (Brooks, 1977) Marques, Brooks & Lasso, 2001. (Figs 6A

and 7–9A and 9B)

Type host: Styracura schmardae (Werner) de Carvalho, Loboda & da Silva (Myliobati-

formes: Potamotrygonidae).

Additional host: Potamotrygon yepezi Castex & Castello (Myliobatiformes:

Potamotrygonidae).

Type locality: Caribbean Sea, 15 km west of La Cienaga, Magdalena, Colombia (11˚01’ N,

74˚15’ W).

Additional localities: Caribbean Sea, Tasajeras, Magdalena, Colombia (10˚58’ N, 74˚19’ W

and 11˚00’ N, 74˚16’ W); San Rafael de El Mojan, Lake Maracaibo, Maracaibo, Zulia, Venezu-

ela (10˚56’ N, 71˚42’ W) and Maracas Bay, Maracas, San Juan-Laventille, Trinidad & Tobago

(10˚45’ N, 61˚26’ W).

Site of infection: Spiral intestine.

Type material: holotype (USNPC 73969) and 4 paratypes (HWML 20265).

Additional specimens deposited: MZUSP 7778–7781, 7789 [molecular vouchers] and

7937a–7937g, 7938a–7938i [whole mounts]; LRP 9291–9305 [whole mounts], and HWML

139156–139173 [whole mounts].

Redescription. [Based on the type series comprised of holotype (USNPC 73969) and four

paratypes (HWML 20265), and 66 additional mature specimens, which included 59 whole

mounts, five worms observed with SEM, and two serially-sectioned]. Worms acraspedote, apo-

lytic, 3.1–15.1 mm (63) long, composed of 8–33 (61) proglottids (Fig 6A). Scolex with greatest

width 366–1,041 (45), composed of four stalked bothridia (Figs 6A, 7A and 8A). Bothridia

elliptoid-shaped, 356–889 (62) long by 128–707 (62) wide, divided by 19–27 (50) transverse

septa and one medial, longitudinal septum into 39–55 (50) facial loculi. Medial longitudinal

septum extending from posterior margin of apical sucker to posterior margin of bothridium.

Apical sucker 27–70 (51) long by 25–74 (49) wide (Fig 8B). Short cephalic peduncle. Proximal

surface of apical sucker covered by acicular filitriches (Fig 8D) and medial portion of proximal

bothridial surface covered by gladiate spinitriches (Fig 8E). Distal surfaces of bothridia covered

by gladiate spinitriches and acicular filitriches (Fig 8C, 8F and 8G). Cephalic peduncle covered

by capilliform filitriches (Fig 8H).

Immature proglottids wider than long. Mature proglottids 686–2,484 (63) long by 176–425

(63) wide, 1–7 (61) in number. Some terminal proglottids with sperm-filled vas deferens

(Fig 7B). Gravid proglottids not observed. Testes round to oval, 32–96 (59) long by 23–79 (59)

wide; 24–50 (59) in number; 2–8 pre-poral, 7–20 post-poral, 13–26 (59) anti-poral (Figs 6A

and 9A). Cirrus sac in anterior 1

4
of proglottid, round, 36–163 (63) long by 61–180 (63) wide,

containing eversible coiled cirrus armed with spinitriches (Fig 7B and 7C). Genital atrium

present. Genital pores 15–32% (63) of proglottid length from anterior end, irregularly alternat-

ing. The vagina runs anterior to the cirrus sac and then turns posteriorly towards the ootype.

Ovary near posterior end of proglottid, bilobed in dorso-ventral view, tetra-lobed in cross-sec-

tion (Figs 6A and 9B), symmetrical, 85–613 (63) long by 67–267 (63) wide at isthmus; antero-

ventral lobes converging anteriorly to midline of proglottid, but not fusing; ovarian margins
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Fig 6. Light micrographs of the whole worms of Anindobothrium spp. A. Anindobothrium anacolum (Brooks, 1977) Marques,

Brooks & Lasso, 2001 collected from the type locality (MZUSP 7937e, Voucher) ex Styracura schmardae. B. A. lisae (Brooks,

1977) Marques, Brooks & Lasso, 2001 (CHIOC 34375, holotype) ex Potamotrygon orbignyi. C. A. inexpectatum sp. n. (HWML

139137, paratype) ex S. schmardae. D. A. carrioni sp. n. (MIUP C-TET-PHY-A2, holotype) ex S. pacifica. Scale bar = 1 mm.

https://doi.org/10.1371/journal.pone.0184632.g006
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Fig 7. Line drawings of Anindobothrium anacolum ex Styracura schmardae. A. Scolex (MZUSP 7937f,

Voucher). B. Terminal proglottid (HWML 139156, Voucher). C. Cirrus sac (LRP 9298, Voucher).

https://doi.org/10.1371/journal.pone.0184632.g007
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lobulate. Vitelline follicles extending length of proglottid, 12–49 (53) long by 8–35 (53) wide;

partial or total interruption by the ovary. Eggs not observed.

Molecular diagnosis: Anindobothrium anacolum may be differentiated from other mem-

bers of the genus by the following set of 7 character states (base/position): 18S—T/513; Cal-

modulin—A/242 and C/281; and ITS—A/226, T/340, G/341, and T/369. All character states

are unique unambiguous synapomophies (see Fig 3C; Tables 5–7).

Remarks. The acquisition of additional specimens from the type locality and other localities

in the Caribbean Sea and adjacent waters (i.e., Lake Maracaibo) allowed us to better under-

stand the distribution, host association, and morphological variability of Anindobothrium ana-
colum. In addition, we provided for the first time the description of the microtriches

morphology and a molecular diagnosis for this species.

Anindobothrium anacolum seems to have a restricted distribution in the Southern Carib-

bean Sea. Among all localities sampled in the Caribbean Sea, which included the coasts of

Belize, Panama, Colombia and Trinidad & Tobago, we were only able to collect this species off

the coasts of the last two countries. Furthermore, we also collected few specimens from Lake

Maracaibo in Maracaibo infecting Potamotrygon yepezi, a freshwater potamotrygonid.

The presence of A. anacolum in Potamotrygon yepezi was unexpected. This species was only

known to parasitize S. schmardae and most members of the Rhinebothriidea seems to exhibit

Fig 8. Scanning electron micrographs of Anindobothrium anacolum ex Styracura schmardae. A. scolex. B. distal surface of

apical sucker. C. distal surface of medial loculi. D. proximal surface of apical sucker. E. proximal bothridial surface near centre of

bothridium. F. distal anterior surface of longitunal septum. G. posterior portion of longitudinal septum on distal bothridial surface. H.

cephalic peduncle.

https://doi.org/10.1371/journal.pone.0184632.g008
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Fig 9. Micrographs of transversal histological sections of Anindobothrium spp. A,C,E,G. section at level of testes; B,D,F,H.

section at level of ovary. Anindobothrium anacolum (A,B); A. lisae (C,D); A. inexpectatum sp. n. (E,F); e A. carrioni sp. n. (G,H).

Abbreviations: Cs. cirrus sac; Ed. excretory duct; Mg. Mehlis’ gland; O. ovary; Ov. oviduct; T. testes; U. uterus; V. vagina; Vd. deferens

vas; Vit. vitelline follicles.

https://doi.org/10.1371/journal.pone.0184632.g009
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oioxenous specificity for their hosts (sensu Euzet & Combes [57]; Ruhnke et al. [8]). Be that as

it may, this could represent an accidental infection that needs further investigation.

The examination of the type series and additional material revealed that the original

description provided by Brooks [58] as well as the diagnosis of this species amended by Mar-

ques et al. [4] did not provide a fair account on the bothridial morphology of this taxon. Both

previous studies provided a description of the bothridia based on the holotype (USNPC

73969), which was poorly prepared and did not permit the verification of the presence of a lon-

gitudinal septum and the marginal loculi on the bothridia. Moreover, Marques et al. [4] illus-

trated a poorly defined anterior marginal loculus (figure 1 in [4]), which we considered as an

apical sucker. Therefore, in the present redescription, bothridial structures were observed and

described in newly collected specimens.

The additional material provided a better understanding of the morphological variability of

this species. Their examination allowed us to increase the range of some structures, which

revealed to be more variable than previously reported. Both previous studies found that the

total length was 6.8–15.4 but we found it to be 3.1–15.1. Brooks [58] observed 23–24 loculi,

while Marques et al. [4] found between 42 and 44. The present study revealed a number of loc-

uli of 39–55, which closely corresponds to the range reported by Marques et al. [4]. This differ-

ence could be attributed to the presence of longitudinal septa, not seen by Brooks in 1977. For

genital pore position, both studies reported it to be 19–29% from anterior end, whereas, we

found 15–32%.

Table 5. Diagnostic sites of 18S, color shaded by species, based on unique and unambiguous synamoporphies for species of Anindobothrium.

Site positions refer to alignment available in the repository Dryad under doi:10.5061/dryad.gr0sb.

Species\Site 163 251 259 510 513 981 985 1,008 1032 1,036 1,042 1,052 1,059 1,065 1,066

A. inexpectatum sp. n. [MZUSP 7767] T T - T C A C A G T G G C T G

A. inexpectatum sp. n. [MZUSP 7768] T T - T C A C A G T G G C T G

A. inexpectatum sp. n. [MZUSP 7769] T T - T C A C A G T G G C T G

A. inexpectatum sp. n. [MZUSP 7770] T T - T C A C A G T G G C T G

A. inexpectatum sp. n. [MZUSP 7771] T T - T C A C A G T G G C T G

A. inexpectatum sp. n. [MZUSP 7772] T T - T C A C A G T G G C T G

A. inexpectatum sp. n. [MZUSP 7773] T T - T C A C A G T G G C T G

A. inexpectatum sp. n. [MZUSP 7774] T T - T C A C A G T G G C T G

A. inexpectatum sp. n. [MZUSP 7777] T T - T C A C A G T G G C T G

A. inexpectatum sp. n. [MZUSP 7775] T T - T C A C A G T G G C T G

A. inexpectatum sp. n. [MZUSP 7776] T T - T C A C A G T G G C T G

A. anacolum [MZUSP 7789] T T - T T A C A A T G G C T G

A. anacolum [MZUSP 7778] T T - T T A C A A T G G C T G

A. anacolum [MZUSP 7779] T T - T T A C A A T G G C T G

A. anacolum [MZUSP 7780] T T - T T A C A A T G G C T G

A. anacolum [MZUSP 7781] T T - T T A C A A T G G C T G

A. carrioni sp. n. [MZUSP 7787] T T - T C A C A A T A G C T G

A. carrioni sp. n. [MZUSP 7788] T T - T C A C A A T A G C T G

A. carrioni sp. n. [MZUSP 7785] T T - T C A C A A T A G C T G

A. carrioni sp. n. [MZUSP 7786] T T - T C A C A A T A G C T G

A. lisae [MZUSP 7783] C C G C G G A G - C G T T C A

A. lisae [MZUSP 7782] C C G C G G A G - C G T T C A

A. lisae [MZUSP 7784] C C G C G G A G - C G T T C A

Anth. hobergi [MZUSP 7756] T T - T C A C A A T G G C T G

https://doi.org/10.1371/journal.pone.0184632.t005
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Anindobothrium anacolum can be easily differentiated from the only species previously

assigned to the genus, A. lisae, by the morphology of the bothridia. Anindobothrium anacolum
possesses marginal and facial loculi due to the presence of a longitudinal septum and transver-

sal septa on bothridia, whereas A. lisae has only marginal loculi. As will be shown below, all

marine species recognized for Anindobothrium possess bothridial architecture similar to A.
anacolum, hence can be likewise differentiated from A. lisae. Despite the differences in the

bothridial morphology, the proglottids of both species are similar by possessing numerous tes-

tes arranged in two irregular columns with post-poral field present, cirrus sac at the anterior 1

4

of proglottid, ovary H-shaped in frontal view, follicular vitelaria arranged in two lateral bands

extending the length of proglottid, which is interrupted by terminal genitalia and partial or

total interruption by the ovary. Finally, A. anacolum can be distinguished from all species of

the genus by a set of 7 molecular synapomorphies (Fig 3C; Tables 5–7).

Anindobothrium lisae Marques, Brooks & Lasso, 2001. (Figs 6B, 9C and 9D and 10)

Type host: Potamotrygon orbignyi (Castelnau) (Myliobatiformes: Potamotrygonidae).

Additional host: Potamotrygon schroederi Fernández-Yépez (Myliobatiformes:

Potamotrygonidae).

Type locality: Rio Negro, near Barcelos, Amazonas, Brazil (00˚59’S, 62˚58’W).

Additional locality: Rio Negro, near Barcelos, Amazonas, Brazil (00˚54’ S, 62˚58’ W and

00˚98’ S, 62˚92’ W); Rio Apure, Muñoz, Apure, Venezuela (7˚53’ N, 68˚52’ W).

Site of infection: Spiral valve.

Table 6. Diagnostic sites of Calmodulin, color shaded by species, based on unique and unambiguous synamoporphies for species of Anindobo-

thrium. Site positions (bold) refer to alignment available in the repository Dryad under doi:10.5061/dryad.gr0sb.

Species\Site 74 122 242 281 307 314

A. inexpectatum sp. n. [MZUSP 7767] G G G T - -

A. inexpectatum sp. n. [MZUSP 7768] G G G T - -

A. inexpectatum sp. n. [MZUSP 7769] G G G T - -

A. inexpectatum sp. n. [MZUSP 7770] G G G T - -

A. inexpectatum sp. n. [MZUSP 7771] G G G T - -

A. inexpectatum sp. n. [MZUSP 7772] G G G T - -

A. inexpectatum sp. n. [MZUSP 7773] G G G T - -

A. inexpectatum sp. n. [MZUSP 7774] G G G T - -

A. inexpectatum sp. n. [MZUSP 7777] G G G T - -

A. inexpectatum sp. n. [MZUSP 7775] G G G A - A

A. inexpectatum sp. n. [MZUSP 7776] G G G T - -

A. anacolum [MZUSP 7789] G G A C - -

A. anacolum [MZUSP 7778] G G A C - -

A. anacolum [MZUSP 7779] G G A C - -

A. anacolum [MZUSP 7780] G G A C - -

A. anacolum [MZUSP 7781] G G A C - -

A. carrioni sp. n. [MZUSP 7787] G A G T T -

A. carrioni sp. n. [MZUSP 7788] G A G T T -

A. carrioni sp. n. [MZUSP 7785] G A G T T -

A. carrioni sp. n. [MZUSP 7786] G A G T T -

A. lisae [MZUSP 7783] A G G G - C

A. lisae [MZUSP 7782] A G G G - C

A. lisae [MZUSP 7784] A G G G - C

Anth. hobergi [MZUSP 7756] G C G A - -

https://doi.org/10.1371/journal.pone.0184632.t006
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Table 7. Diagnostic sites of ITS, color shaded by species, based on unique and unambiguous synamoporphies for species of Anindobothrium.

Site positions (bold) refer to alignment available in the repository Dryad under doi:10.5061/dryad.gr0sb.

Species\Site 82 83 137 146 157 203 204 213 218 223 226 229 244 254 277 281 282 309 339 340 341 355

A. inexpectatum sp. n.

[MZUSP 7767]

T A T T - A A A C - - C - - A G - A C - - G

A. inexpectatum sp. n.

[MZUSP 7768]

T A T T - A A A C - - C - - A G - A C - - G

A. inexpectatum sp. n.

[MZUSP 7769]

T A T T - A A A C - - C - - A G - A C - - G

A. inexpectatum sp. n.

[MZUSP 7770]

T A T T - A A A C - - C - - A G - A C - - G

A. inexpectatum sp. n.

[MZUSP 7771]

T A T T - A A A C - - C - - A G - A C - - G

A. inexpectatum sp. n.

[MZUSP 7772]

T A T T - A A A C - - C - - A G - A C - - G

A. inexpectatum sp. n.

[MZUSP 7773]

T A T T - A A A C - - C - - A G - A C - - G

A. inexpectatum sp. n.

[MZUSP 7774]

T A T T - A A A C - - C - - A G - A C - - G

A. inexpectatum sp. n.

[MZUSP 7777]

T A T T - A A A C - - C - - A G - A C - - G

A. inexpectatum sp. n.

[MZUSP 7775]

T A T T - A A A C - - C - - A G - A C - - G

A. inexpectatum sp. n.

[MZUSP 7776]

T A T T - A A A C - - C - - A G - A C - - G

A. anacolum [MZUSP 7789] - - T T - - - A C - A G - - A G - A C T G C

A. anacolum [MZUSP 7778] - - T T - - - A C - A G - - A G - A C T G C

A. anacolum [MZUSP 7779] - - T T - - - A C - A G - - A G - A C T G C

A. anacolum [MZUSP 7780] - - T T - - - A C - A G - - A G - A C T G C

A. anacolum [MZUSP 7781] - - T T - - - A C - A G - - A G - A C T G C

A. carrioni sp. n. [MZUSP

7787]

- - T T - - - T C - - G - - G A - A T - - T

A. carrioni sp. n. [MZUSP

7788]

- - T T - - - T C - - G - - G A - A T - - T

A. carrioni sp. n. [MZUSP

7785]

- - T T - - - T C - - G - - G A - A T - - T

A. carrioni sp. n. [MZUSP

7786]

- - T T - - - T C - - G - - G A - A T - - T

A. lisae [MZUSP 7783] - - C C T - - A G C - - A T - G T T C - - C

A. lisae [MZUSP 7782] - - C C T - - A G C - - A T - G T T C - - C

A. lisae [MZUSP 7784] - - C C T - - A G C - - A T - G T T C - - C

Anth. hobergi [MZUSP 7756] - - T T - - - A C - - G G - A G - A C - - -

Species\Site 369 370 372 417 418 435 461 463 464 468 469 484 495 515 548 552 639 653 722 746 774

A. inexpectatum sp. n.

[MZUSP 7767]

G T C T A - G T G - - C T - A T G T C A -

A. inexpectatum sp. n.

[MZUSP 7768]

G T C T A - G T G - - C T - A T G T C A -

A. inexpectatum sp. n.

[MZUSP 7769]

G T C T A - G T G - - C T - A T G T C A -

A. inexpectatum sp. n.

[MZUSP 7770]

G T C T A - G T G - - C T - A T G T C A -

A. inexpectatum sp. n.

[MZUSP 7771]

G T C T A - G T G - - C T - A T G T C A -

(Continued )
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Type material: holotype (CHIOC 34375) and 3 paratypes (HWML 16379a and INPA 400a,

b).

Additional specimens deposited: MZUSP 7782–7784 [molecular vouchers], 7939a–7939d

[whole mounts]; LRP 9306–9310 [whole mounts]; and HWML 139174–139185 [whole

mounts].

Resdescription. [Based on the type series comprised of holotype (CHIOC 34375) and three

paratypes (HWML 16379a and INPA 400a,b), and 34 additional mature specimens, which

included 29 whole mounts, three worms observed with SEM, and two serially-sectioned]:

Worms acraspedote, apolytic, 2.5–11.7 mm (25) long, composed of 7–24 (26) proglottids

(Fig 6B). Scolex with greatest width 386–1,197 (32), composed of four, stalked bothridia

(Figs 6B and 10A). Bothridia orbicular-elliptoid shaped, 225–643 (17) long by 297–838 (12)

wide, with 40–58 (10) marginal loculi and an apical sucker, 20–79 (8) long by 30–79 (9) wide

(Fig 10B and 10C). Transverse and longitudinal septa absent. Short cephalic peduncle. Proxi-

mal surface of apical sucker covered by acicular filitriches (Fig 10D); medial portion of proxi-

mal bothridial surface covered by gladiate spinitriches (Fig 10E). Distal surfaces of bothridia

covered by acicular filitriches (Fig 10C, 10F and 10G), by papilliform (Fig 10C) and capilliform

filitriches (Fig 10F). Cephalic peduncle covered by capilliform filitriches (Fig 10H).

Immature proglottids wider than long. Mature proglottids 772–2,395 (28) long by 257–643

(28) wide, 1–4 (26) in number. Vas deferens not sperm-filled in terminal proglottids. Gravid

Table 7. (Continued)

A. inexpectatum sp. n.

[MZUSP 7772]

G T C T A - G T G - - C T - A T G T C A -

A. inexpectatum sp. n.

[MZUSP 7773]

G T C T A - G T G - - C T - A T G T C A -

A. inexpectatum sp. n.

[MZUSP 7774]

G T C T A - G T G - - C T - A T G T C A -

A. inexpectatum sp. n.

[MZUSP 7777]

G T C T A - G T G - - C T - A T G T C A -

A. inexpectatum sp. n.

[MZUSP 7775]

G T C T A - G T G - - C T - A T G T C A -

A. inexpectatum sp. n.

[MZUSP 7776]

G T C T A - G T G - - C T - A T G T C A -

A. anacolum [MZUSP 7789] T T - - - - G T G - - C T - G T G T C A -

A. anacolum [MZUSP 7778] T T - - - - G T G - - C T - G T G T C A -

A. anacolum [MZUSP 7779] T T - - - - G T G - - C T - G T G T C A -

A. anacolum [MZUSP 7780] T T - - - - G T G - - C T - G T G T C A -

A. anacolum [MZUSP 7781] T T - - - - G T G - - C T - G T G T C A -

A. carrioni sp. n. [MZUSP

7787]

G T - - - - T T C - - C T - G C G C T A A

A. carrioni sp. n. [MZUSP

7788]

G T - - - - T T C - - C T - G C G C T A A

A. carrioni sp. n. [MZUSP

7785]

G T - - - - T T C - - C T - G C G C T A A

A. carrioni sp. n. [MZUSP

7786]

G T - - - - T T C - - C T - G C G C T A A

A. lisae [MZUSP 7783] G G - - - G G C G T A T C T G T A T C G -

A. lisae [MZUSP 7782] G G - - - G G C G T A T C T G T A T C G -

A. lisae [MZUSP 7784] G G - - - G G C G T A T C T G T A T C G -

Anth. hobergi [MZUSP 7756] G T - - - - G T - - - C T - G - G G C A -

https://doi.org/10.1371/journal.pone.0184632.t007
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proglottids not observed. Testes round to oval, 44–101 (27) long by 19–61 (27) wide; 30–72

(27) in number; 3–15 pre-poral, 10–21 post-poral and 15–43 (27) anti-poral (Figs 6B and 9C).

Cirrus sac pyriform shaped in anterior 1

4
of proglottid, 45–130 (27) long by 65–212 (27) wide,

containing eversible coiled cirrus armed with spinitriches (Figs 6B and 9C). Genital atrium

present. Genital pores 18–44% (27) of proglottid length from anterior end, irregularly alternat-

ing. The vagina runs anterior to the cirrus sac and then turns posteriorly towards the ootype.

Ovary near posterior end of proglottid, billobed in dorso-ventral view, tetra-lobed in cross-

section (Figs 6B and 9D), symmetrical, 55–159 (26) long by 138–385 (26) wide at isthmus;

anteroventral lobes converging anteriorly to midline of proglottid, but not fused; ovarian mar-

gins lobulate. Vitelline follicles extending length of proglottid, 10–49 (27) long by 7–27 (27)

wide; which could be partially interrupted by the ovary. Eggs not observed.

Molecular diagnosis: Anindobothrium lisae may be differentiated from other members of

the genus by the following set of 67 character states (base/position): COI—A/57, G/61, C/117,

T/123, G/153, C/184, T/195, T/219, T/229, T/242, A/243, G/255, T/339, A/382, A/431, T/472,

T/495, T/504, and A/528; 18S—C/163, C/251, G/259, C/510, G/513, G/981, A/985, G/1,008, C/

1,036, T/1,052, T/1,059, C/1,065, A/1,066; 28S—G/371, G/647, G/661, T/768, insertion of 3

base pairs between positions 1041 and 1045 with 2 synapomorphies—G/1,043 and A/1,044,

Fig 10. Scanning electron micrographs of Anindobothrium lisae ex Potamotrygon orbignyi. A. scolex. B. distal surface of apical

sucker. C. distal surface of medial loculi. D. proximal surface of apical sucker. E. proximal bothridial surface near centre of bothridium.

F. distal anterior bothridia surface. G. distal bothridia posterior surface. H. cephalic peduncle.

https://doi.org/10.1371/journal.pone.0184632.g010
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insertion of 113 base pairs between positions 1,094 and 1,106 with 7 synapomorphies—C/

1,095, G/1,097, G/1,100, A/1,102, G/1,103, A/1,104, and G/1,105 (see Table 8); Calmodulin—

A/74, C/314; and ITS—C/137, C/146, T/157, G/218, C/223, A/244, T/254, T/282, T/309, G/

370, G/435, C/463, T/468, A/469, C/476, T/484, C/495, T/515, A/639, G/746. All character

states are unique unambiguous synapomophies (see Fig 3B and 3C; Tables 5–9).

Remarks. The redescription of Anindobothrium lisae added information on the morphol-

ogy and patterns of distribution of microtriches and cross sections of the ovary for this taxon.

Also, we have a better understanding of the distribution, host association and morphological

variability of this species. Finally, we provided a molecular diagnosis for A. lisae for the first

time.

Anindobothrium lisae was only known parasitizing Potamotrygon orbignyi from the Rio

Negro [4]. However, the examination of newly collected material from Venezuela revealed that

this species also infects P. schroederi from mid-Orinoco. Rio Negro and Orinoco are known to

share freshwater fauna [59], including these two species of hosts. Interestingly, A. lisae has

never been found in P. schroederi from the Rio Negro, despite the examination of 31 specimens

from there, as well as one from Ilha do Catalão, in the confluence of the Rio Negro and the Rio

Solimões. In addition, this cestode has not been observed in P. orbignyi after examining 12

specimens from mid-Orinoco (Marques, unpubl. data). We found no molecular evidence that

can be used to distinguish those two populations of A. lisae since the only haplotype from Ori-

noco included in our study nested between two haplotypes from the Rio Negro (Fig 3A–3C).

The redescription of A. lisae provided additional information on morphological variability

as compared to what was reported by Marques et al. [4]. Comparing the ranges provided in

the original description with those reported here revealed a larger spectrum of variation for

structures such as bothridial width (322–775 vs. 297–838, respectively), number of poral ante-

rior (5–13 vs. 3–15, respectively), and anti-poral testes (21–38 vs. 15–43 respectively). Also, the

redescription provided a better understanding of the bothridial morphology of this species, for

which the original account was based on the interpretation and illustration of an immature

specimen (see figure 2B in [4]). Furthermore, the examination of additional material showed

that this species can have the vitelline follicles partially interrupted by the ovary, which was not

observed in the original description.

The early divergence of this lineage of Anindobothrium is evident in its morphology and

nucleotide sequences. As pointed out above (see Remarks for A.anacolum), the morphology of

the bothridia in A. lisae, which lacks facial loculi and longitudinal septa, is different from all

marine species of the genus. As a species, A. lisae can be diagnosed by the largest sets of molec-

ular synapomorphies, which comprise a total of 67 sites, and which include two unique inser-

tions in 28S sequences (see Tables 5–9). For diagnostic purposes, however, this is the most

conservative approach since there are other positions that could be used in addition to the

molecular synapomorphies listed above. For instance, positions 300/T and 357/T for COI

(Table 9), 1,032/deletion for 18S (Table 5), 1,042/C and 1,101/C for 28S (Table 8), and 229/

deletion and 277/deletion for ITS (Table 7) also may differentiate A. lisae from all marine spe-

cies of the genus.

Anindobothrium inexpectatum sp. n.. urn:lsid:zoobank.org:act:BEDC1D7D-1A11-

4DDC-B8BF-2A3D00C837EB

(Figs 6C, 9E and 9F and 11 and 12)

Type host: Styracura schmardae (Werner) de Carvalho, Loboda & da Silva (Myliobati-

formes: Potamotrygonidae).

Type locality: Caribbean Sea, Tobacco Caye, Dangriga, Stann Creek, Belize (16˚54’ N, 88˚

03’ W).
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Table 8. Diagnostic sites of 28S, color shaded by species, based on unique and unambiguous synamoporphies for species of Anindobothrium.

Site positions (bold) refer to alignment available in the repository Dryad under doi:10.5061/dryad.gr0sb. Sites in gray indicate place holding positions for

INDELs.

Species\Site 371 591 647 661 768 1,040 1,041 1,042 1,043 1,044 1,045 1,046 1,093

A. inexpectatum sp. n. [MZUSP 7767] A G - A C G A - - - C T T

A. inexpectatum sp. n. [MZUSP 7768] A G - A C G A - - - C T T

A. inexpectatum sp. n. [MZUSP 7769] A G - A C G A - - - C T T

A. inexpectatum sp. n. [MZUSP 7770] A G - A C G A - - - C T T

A. inexpectatum sp. n. [MZUSP 7771] A G - A C G A - - - C T T

A. inexpectatum sp. n. [MZUSP 7772] A G - A C G A - - - C T T

A. inexpectatum sp. n. [MZUSP 7773] A G - A C G A - - - C T T

A. inexpectatum sp. n. [MZUSP 7774] A G - A C G A - - - C T T

A. inexpectatum sp. n. [MZUSP 7777] A G - A C G A - - - C T T

A. inexpectatum sp. n. [MZUSP 7775] A G - A C G A - - - C T T

A. inexpectatum sp. n. [MZUSP 7776] A G - A C G A - - - C T T

A. anacolum [MZUSP 7789] A G - A C G A - - - C T T

A. anacolum [MZUSP 7778] A G - A C G A - - - C T T

A. anacolum [MZUSP 7779] A G - A C G A - - - C T T

A. anacolum [MZUSP 7780] A G - A C G A - - - C T T

A. anacolum [MZUSP 7781] A G - A C G A - - - C T T

A. carrioni sp. n. [MZUSP 7787] A A - A C G A - - - C T T

A. carrioni sp. n. [MZUSP 7788] A A - A C G A - - - C T T

A. carrioni sp. n. [MZUSP 7785] A A - A C G A - - - C T T

A. carrioni sp. n. [MZUSP 7786] A A - A C G A - - - C T T

A. lisae [MZUSP 7783] G G G G T G A C G A C T T

A. lisae [MZUSP 7782] G G G G T G A C G A C T T

A. lisae [MZUSP 7784] G G G G T G A C G A C T T

Anth. hobergi [MZUSP 7756] A G - A C G C C - - C T T

Species\Site 1,094 1095 1,096 1097 1,098 1,099 1100 1,101 1,102 1,103 1,104 1,105 1,106

A. inexpectatum sp. n. [MZUSP 7767] T - - - - - - - - - - - C

A. inexpectatum sp. n. [MZUSP 7768] T - - - - - - - - - - - C

A. inexpectatum sp. n. [MZUSP 7769] T - - - - - - - - - - - C

A. inexpectatum sp. n. [MZUSP 7770] T - - - - - - - - - - - C

A. inexpectatum sp. n. [MZUSP 7771] T - - - - - - - - - - - C

A. inexpectatum sp. n. [MZUSP 7772] T - - - - - - - - - - - C

A. inexpectatum sp. n. [MZUSP 7773] T - - - - - - - - - - - C

A. inexpectatum sp. n. [MZUSP 7774] T - - - - - - - - - - - C

A. inexpectatum sp. n. [MZUSP 7777] T - - - - - - - - - - - C

A. inexpectatum sp. n. [MZUSP 7775] T - - - - - - - - - - - C

A. inexpectatum sp. n. [MZUSP 7776] T - - - - - - - - - - - C

A. anacolum [MZUSP 7789] T - - - - - - - - - - - C

A. anacolum [MZUSP 7778] T - - - - - - - - - - - C

A. anacolum [MZUSP 7779] T - - - - - - - - - - - C

A. anacolum [MZUSP 7780] T - - - - - - - - - - - C

A. anacolum [MZUSP 7781] T - - - - - - - - - - - C

A. carrioni sp. n. [MZUSP 7787] T - - - - - - - - - - - C

A. carrioni sp. n. [MZUSP 7788] T - - - - - - - - - - - C

A. carrioni sp. n. [MZUSP 7785] T - - - - - - - - - - - C

A. carrioni sp. n. [MZUSP 7786] T - - - - - - - - - - - C

A. lisae [MZUSP 7783] T C A G C A G C A G A G C
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Additional localities: Caribbean Sea, Head Caye, Punta Gorda, Toledo (16˚13’ N, 88˚35’

W), north of Southwater Caye, Dangriga, Stann Creek, Belize (16˚49’ N, 88˚04’ W); Caribbean

Sea, Almirante, Bocas del Toro Province, Panama (9˚17’ N, 82˚20’ W and 9˚17’ N, 82˚21’ W).

Site of infection: Spiral intestine.

Type material: MIUP C-TET-PHY-A1 [holotype]; MIUP C-TET-PHY-A1-P1–P6 [para-

types], MZUSP 7767–7776 [molecular vouchers], 7934a–7934j, 7935 [paratypes]; LRP 9278–

9285 [paratypes]; and HWML 139137–139147 [paratypes].

Etymology: From the Latin “inexpectatus” meaning unexpected, referring to the surprise of

finding another species of the genus in the same host in the Caribbean Sea.

Description. [Based on 46 mature specimens: 41 whole mounts, three worms observed

with SEM, and two serially-sectioned]: Worms acraspedote, apolytic, 4.3–14.1 mm long, com-

posed of 15–39 (39) proglottids (Fig 6C). Scolex with greatest width 458–1,015 (39), composed

by four stalked bothridia (Figs 6C, 11A and 12A). Bothridia elliptoid-shaped, 596–1273 (41)

long by 222–642 (41) wide, divided by 23–30 (39) transverse septa and one medial longitudinal

septum into 47–61 (39) loculi. Medial longitudinal septum extending from posterior margin

of apical sucker to posterior margin of bothridium. Apical sucker 40–86 (37) long by 42–83

(36) wide (Fig 12B). Short cephalic peduncle. Proximal surface of apical sucker covered by

acicular filitriches (Fig 12D) and medial portion of proximal bothridial surface covered by

gladiate spinitriches (Fig 12E). Distal surfaces of bothridia covered by gladiate spinitriches and

acicular filitriches (Fig 12C, 12F and 12G). Cephalic peduncle covered by capilliform filitriches

(Fig 12H).

Immature proglottids wider than long. Mature proglottids 765–2,058 (39) long by 201–391

(39) wide, 2–6 (39) in number. Some terminal proglottids with sperm-filled vas deferens

(Fig 11B). Gravid proglottids not observed. Testes round to oval, 22–57 (38) long by 19–44

(38) wide; 23–44 (37) in number; 3–8 (37) pre-poral, 7–16 (38) post-poral, 12–26 (37) anti-

poral (Figs 6C and 9E). Cirrus sac in anterior 1

4
of proglottid, round, 78–145 (39) long by 84–

183 (39) wide, containing eversible coiled cirrus armed with spinitriches (Fig 11B and 11C).

Genital atrium present. Genital pores 17–27% (39) of proglottid length from anterior end,

irregularly alternating. The vagina runs anterior to the cirrus sac and then turns posteriorly

towards the ootype. Ovary near posterior end of proglottid, bilobed in dorso-ventral view,

tetra-lobed in cross-section (Figs 11B and 9F), symmetrical, 228–651 (39) long by 97–235 (39)

wide at isthmus; antero-ventral lobes converging anteriorly to midline of proglottid, but not

fusing; ovarian margins lobulate. Vitelline follicles extending throughout length of proglottid,

11–44 (39) long by 11–26 (39) wide; partial or total interruption by the ovary. Eggs not

observed.

Molecular diagnosis: Anindobothrium inexpectatum sp. n. may be differentiated from

other members of the genus by the following set of 17 character states (base/position): COI—

C/105, G/300, C/330, A/357, C/385, and C/408; 18S—G/1,032; and ITS—T/82, A/83, A/203,

A/204, C/229, G/355, C/372, T/417, A/418, and A/548. All character states are unique unam-

biguous synapomophies (see Fig 3B and 3C; Tables 5, 7 and 9).

Remarks. Anindobothrium inexpectatum sp. n. was found in specimens of S. schmardae col-

lected off the coast of Belize and northeastern coast of Panama in the Caribbean Sea. This

Table 8. (Continued)

A. lisae [MZUSP 7782] T C - G - - G C A G A G C

A. lisae [MZUSP 7784] T C - G - - G C A G A G C

Anth. hobergi [MZUSP 7756] G - - - - - - C - - - - C

https://doi.org/10.1371/journal.pone.0184632.t008
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Table 9. Diagnostic sites of COI based on unique and unambiguous synamoporphies for species of Anindobothrium. Site positions refer to align-

ment available in the repository Dryad under doi:10.5061/dryad.gr0sb.

Species\Site 57 61 105 117 123 141 153 168 184 195 219 229 242 243 250

A. inexpectatum sp. n. [MZUSP 7767] T A C T C A T T T A G C C T T

A. inexpectatum sp. n. [MZUSP 7768] T A C T C A T T T A G C C T T

A. inexpectatum sp. n. [MZUSP 7769] T A C T C A T T T A G C C T T

A. inexpectatum sp. n. [MZUSP 7770] T A C T C A T T T A G C C T T

A. inexpectatum sp. n. [MZUSP 7771] T A C T C A T T T A G C C T T

A. inexpectatum sp. n. [MZUSP 7772] T A C T C A T T T A G C C T T

A. inexpectatum sp. n. [MZUSP 7773] T A C T C A T T T A G C C T T

A. inexpectatum sp. n. [MZUSP 7774] T A C T C A T T T A G C C T T

A. inexpectatum sp. n. [MZUSP 7777] T T C T C A T C T A G C C T T

A. inexpectatum sp. n. [MZUSP 7775] T A C T C A T T T A G C C T T

A. inexpectatum sp. n. [MZUSP 7776] T A C T C A T T T A G C C T T

A. anacolum [MZUSP 7789] T A A T C A A T T A G C C T T

A. anacolum [MZUSP 7778] T A T T C A A T T A G C C T T

A. anacolum [MZUSP 7779] T A A T C A A T T A G C C T T

A. anacolum [MZUSP 7780] T A T T C A T T T A G C C T T

A. anacolum [MZUSP 7781] T A T T C A T T T A G C C T T

A. carrioni sp. n. [MZUSP 7787] T A A T C T A A T A C C C T C

A. carrioni sp. n. [MZUSP 7788] T A A T C T A A T A C C C T C

A. carrioni sp. n. [MZUSP 7785] T A A T C T A A T A C C C T C

A. carrioni sp. n. [MZUSP 7786] T A A T C T A A T A C C C T C

A. lisae [MZUSP 7783] A G T C T A G T C T T T T A T

A. lisae [MZUSP 7782] A G T C T A G T C T T T T A T

A. lisae [MZUSP 7784] A G T C T A G T C T T T T A T

Anth. hobergi [MZUSP 7756] T A A T C A A T T A G C C T T

Species\Site 255 279 300 330 339 348 357 382 385 408 431 472 495 504 528

A. inexpectatum sp. n. [MZUSP 7767] A G G C G A A G C C G C A A T

A. inexpectatum sp. n. [MZUSP 7768] A G G C G A A G C C G C A A T

A. inexpectatum sp. n. [MZUSP 7769] A G G C G A A G C C G C A A T

A. inexpectatum sp. n. [MZUSP 7770] A G G C G A A G C C G C A A T

A. inexpectatum sp. n. [MZUSP 7771] A G G C G A A G C C G C A A T

A. inexpectatum sp. n. [MZUSP 7772] A G G C G A A G C C G C A A T

A. inexpectatum sp. n. [MZUSP 7773] A G G C G A A G C C G C A A T

A. inexpectatum sp. n. [MZUSP 7774] A G G C G A A G C C G C A A T

A. inexpectatum sp. n. [MZUSP 7777] A G G C G A A G C C G C A A T

A. inexpectatum sp. n. [MZUSP 7775] A G G C G A A G C C G C N N N

A. inexpectatum sp. n. [MZUSP 7776] A G G C G A A G C C G C A A T

A. anacolum [MZUSP 7789] A G C A A A G G T T G C A A T

A. anacolum [MZUSP 7778] A G C A A A G G T T G C A A T

A. anacolum [MZUSP 7779] A G C A G A G G T T G C A A T

A. anacolum [MZUSP 7780] A G A T G A G G T T G C A A T

A. anacolum [MZUSP 7781] A G A T G A G G T T G C A A T

A. carrioni sp. n. [MZUSP 7787] T C C A A G G G T T G C G G T

A. carrioni sp. n. [MZUSP 7788] T C C A A G G G T T G C G G T

A. carrioni sp. n. [MZUSP 7785] T C C A A G G G T T G C G G T

A. carrioni sp. n. [MZUSP 7786] T C C A A G G G T T G C G G T

A. lisae [MZUSP 7783] G A T G T A T A T T A T T T A

(Continued )

Systematics and diversification of Anindobothrium

PLOS ONE | https://doi.org/10.1371/journal.pone.0184632 September 27, 2017 33 / 54

https://doi.org/10.5061/dryad.gr0sb
https://doi.org/10.1371/journal.pone.0184632


species appears to have a disjunctive distribution with respect to A. anacolum, despite sharing

the same host and close distributional ranges. This somewhat odd host association and distri-

butional pattern would suggest the hypothesis that this new species should be considered a

population of A. anacolum. We think we have enough evidence to support an alternative inter-

pretation by considering those specimens recovered off the coast of Belize and northeastern

coast of Panama in the Caribbean Sea as a new taxon: Anindobothrium inexpectatum sp. n.

This alternative hypothesis is supported by molecular, morphological data and patterns of

endemism in the Caribbean Sea, which will be addressed in the Discussion.

We found 6 unique unambiguous synapomorphies for COI and 11 for the nuclear genes

18S and ITS that can be used to characterize A. inexpectatum sp. n. (Fig 3B and 3C; Tables 5, 7

and 9). Anindobothrium anacolum, on the other hand, can be diagnosed based on 7 unique

unambiguous synapomorphies (see above). Therefore, in total, there are 23 sites that can be

used to distinguish the two species (Tables 5–7 and 9). In addition to the sets of molecular syn-

apomorphies that diagnose this species, we also found that specimens of A. inexpectatum sp. n.

display non negligible amounts of molecular divergence—as inferred by K2P-distances

(Table 4)—when compared to haplotypes of A. anacolum (e.g., 10.5% for COI, 1.3% for ITS,

and 1.0% for Calmodulin). COI divergence is of particular interest, since empirical data for

more than 13,000 congeneric pairs among 11 phyla of Metazoa revealed that most pairs (98%)

have over 2% sequence divergence in this mitochondrial region [60]. Therefore, given the

amount of sequence divergence and that A. inexpectatum sp. n. and A. anacolum can be diag-

nosed unambiguously by sets of character states from nucleotide data, we considered A. inex-
pectatum sp. n. as a new species of the genus.

Our hypothesis is also supported by morphological data. As the case for other marine spe-

cies of the genus, A. inexpectatum sp. n. can be differentiated from the freshwater species A.
lisae by the morphology of the bothridia (see Remarks for A. anacolum above). Among marine

species, we were unable to find any discrete morphological attribute or morphometric discon-

tinuity that could be used to distinguish A. inexpectatum sp. n. from A. anacolum. The multi-

variate statistics analyses of morphometric data showed, however, that A. inexpectatum sp. n.

not only differs from the marine lineages of the genus but also it is most similar to a lineage of

the genus found in the eastern Pacific coast of Panama (Fig 5A and 5B). The PCA analysis

(Fig 5A), for instance, showed that the cluster of specimens of A. inexpectatum sp. n. overlap

more with those from the eastern Pacific congener than to those of A. anacolum. The linear

discriminant analysis (LDA; Fig 5B) is congruent with the phylogenetic pattern observed in

the sense that this analytical tool was able to discriminate A. inexpectatum sp. n. from other

marine lineages of the genus with an error rate of 3%. Therefore, the absence of a discrete mor-

phological attribute or any morphometric discontinuity should not pose any problem to iden-

tify A. inexpectatum sp. n. on the bases of morphological data, since discriminant function

analysis would serve this purpose.

Anindobothrium carrioni sp. n. urn:lsid:zoobank.org:act:0A955A70-E88D-4EFC-98AB-

13851FB6EB4B

(Figs 6D, 9G and 9H and 13 and 14)

Table 9. (Continued)

A. lisae [MZUSP 7782] G G T A T A T A T T A T T T A

A. lisae [MZUSP 7784] G G T A T A T A T T A T T T A

Anth. hobergi [MZUSP 7756] T G T A A T T G T T G C A A T

https://doi.org/10.1371/journal.pone.0184632.t009
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Fig 11. Line drawings of Anindobothrium inexpectatum sp. n. ex Styracura schmardae. A. scolex

(MIUP C-TET-PHY-A1, holotype). B. terminal proglottid (HWML 139137, paratype). C. cirrus sac (MIUP

C-TET-PHY-A1, holotype).

https://doi.org/10.1371/journal.pone.0184632.g011
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Type host: Styracura pacifica (Beebe & Tee-Van) de Carvalho, Loboda & da Silva (Mylioba-

tiformes: Potamotrygonidae).

Type locality: Pacific Ocean, Playa Caleta, Montijo, Veraguas, Panama (7˚29’ N, 81˚13’ W).

Site of infection: Spiral intestine.

Type material: MIUP C-TET-PHY-A2 [holotype], MIUP C-TET-PHY-A2-P1–P4 [para-

types]; MZUSP 7785–7788 [molecular vouchers], 7936a–7936d [paratypes]; LRP 9286–9290

[paratypes], and HWML 139148–139155 [paratypes].

Etymology: This species is named in honor of Señor Agustı́n Carrión, a gifted and witty

fisherman who guided us to find Styracura pacifica in the Gulf of Montijo during our collect-

ing trip to the eastern Pacific coast of Panama.

Description. (Based on 36 mature specimens: 32 whole mounts, two worms observed with

SEM, and two serially-sectioned): Worms acraspedote, apolytic, 4.8–13.9 mm (32) long, com-

posed of 20–33 (32) proglottids (Fig 6D). Scolex with greatest width 368–763 (32) composed

by four stalked bothridia (Figs 6D, 13A and 14A). Bothridia elliptoid-shaped, 531–1,000 (32)

long by 162–375 (32) wide, divided by 21–26 (28) transverse septa and one medial longitudinal

septum into 43–53 (28) loculi. Medial longitudinal septum extending from posterior margin

Fig 12. Scanning electron micrographs of Anindobothrium inexpectatum sp. n. ex Styracura schmardae. A. scolex. B.

distal surface of apical sucker. C. distal surface of medial loculi. D. proximal surface of apical sucker. E. proximal bothridial surface

near centre of bothridium. F. distal anterior surface of longitunal septum. G. posterior portion of longitudinal septum on distal

bothridial surface. H. cephalic peduncle.

https://doi.org/10.1371/journal.pone.0184632.g012
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Fig 13. Line drawings of Anindobothrium carrioni sp. n. ex Styracura pacifica. A. scolex (MIUP

C-TET-PHY-A2, holotype). B. terminal proglottid (LRP 9286, paratype). C. cirrus sac (LRP 9286, paratype).

https://doi.org/10.1371/journal.pone.0184632.g013
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of apical sucker to posterior margin of bothridium. Apical sucker 38–64 (23) long by 52–86

(23) wide (Fig 14B). Short cephalic peduncle. Proximal surface of apical sucker covered by

acicular filitriches (Fig 14D) and medial portion of proximal bothridial surface covered by

gladiate spinitriches (Fig 14E). Distal surfaces of bothridia covered by gladiate spinitriches and

acicular filitriches (Fig 14C, 14F and 14G). Cephalic peduncle covered by capilliform filitriches

(Fig 14H).

Immature proglottids wider than long. Mature proglottids 648–1,752 (30) long by 164–353

(30) wide, 3–6 (32) in number. Some terminal proglottids with sperm-filled vas deferens

(Fig 13B). Gravid proglottids not observed. Testes round to oval, 32–65 (27) long by 26–45

(27) wide; 21–31 (29) in number; 2–5 pre-poral, 6–11 post-poral, 11–19 (29) anti-poral (Figs

6D and 9G). Cirrus sac in anterior 1

4
of proglottid, round, 58–135 (26) long by 72–134 (26)

wide, containing eversible coiled cirrus armed with spinitriches (Fig 13B and 13C). Genital

atrium present. Genital pores 15–29% (29) of proglottid length from anterior end, irregularly

alternating. The vagina runs anterior to the cirrus sac and then turns posteriorly towards the

ootype. Ovary near posterior end of proglottid, bilobed in dorso-ventral view, tetra-lobed in

cross-section (Figs 13B and 9H), symmetrical, 230–570 (28) long by 112–199 (27) wide at

Fig 14. Scanning electron micrographs of Anindobothrium carrioni sp. n. ex Styracura pacifica. A. scolex. B. distal surface of

apical sucker. C. distal surface of medial loculi. D. proximal surface of apical sucker. E. proximal bothridial surface near centre of

bothridium. F. distal anterior surface of longitunal septum. G. posterior portion of longitudinal septum on distal bothridial surface. H.

cephalic peduncle.

https://doi.org/10.1371/journal.pone.0184632.g014
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isthmus; anteroventral lobes converging anteriorly to midline of proglottid, but not fusing;

ovarian margins lobulate. Vitelline follicles extending length of proglottid, 15–56 (27) long by

12–29 (27) wide; partial or total interruption by the ovary. Eggs not observed.

Molecular diagnosis: Anindobothrium carrioni sp. n. may be differentiated from other

members of the genus by the following set of 25 character states (base/position): COI—T/141,

A/168, C/219, C/250, C/279, G/348, C/483, G/495, and G/504; 18S—A/1,042; 28S—A/591;

Calmodulin—A/122, T/307, and T/312; and ITS—T/213, G/277, A/281, T/339, T/355, T/461,

C/464, C/552, C/653, T/722, and A/774. All character states are unique unambiguous synapo-

mophies (see Fig 3B and 3C; Tables 5–9).
Remarks. Anindobothrium carrioni sp. n. is the only species of the genus known from the

eastern Pacific Ocean. This species is sister to the clade comprised by the remaining marine
species of the genus reported from the Caribbean Sea, A. anacolum and A. inexpectatum sp. n.
This phylogenetic pattern mirrors many examples in the literature in which the uplift of the
Isthmus of Panama is credited to have generated sister clades in many groups of Metazoa (see
references in [61, 62]).

The molecular evidence for the recognition of Anindobothrium carrioni sp. n. as a segre-

gated lineage within the genus is overwhelming. Members of this species have a set of 25

unique unambiguous synapomorphies—9 from COI and 16 from nuclear regions (Fig 3B and

3C; Tables 5, 6, 7 and 9). Sequences of Anindobothrium carrioni sp. n. are the most divergent

ones among marine species of the genus. In average, sequences of COI, Calmodulin and ITS—

the most variable regions included in this study—differed from A. anacolum and A. inexpecta-
tum from Caribbean in 13.8%, 2.7% and 2.7%, respectively (Table 4). This constitutes strong

molecular support to recognize Anindobothrium carrioni sp. n. as a new species.

Despite the molecular divergence and sets of diagnostic character states, all marine species

of the genus have a very similar morphology, especially with regards to the bothridial architec-

ture that share the presence of longitudinal septa and facial loculi. The bothridial morphology

can be used to distinguish the marine lineages from the only species known to be restricted to

potamotrygonids in freshwater systems of South America, A. lisae, as discussed earlier. How-

ever, there is no discrete morphological character or discontinuous morphometric variable

that could be used to distinguish A. carrioni sp. n. from A. anacolum and A. inexpectatum sp.

n. But, based on the PCA analysis A. carrioni sp. n. seems to be phenetically closer to A. inex-
pectatum sp. n., since the area circumscribed by the 95% confidence interval around the cen-

troids for each species overlap to a great extent (Fig 5A). Despite the overlap observed in the

PCA plot, all marine species are discriminated in the LDA (Fig 5B). Therefore, as for A. inex-
pectatum sp. n., A. carrioni sp. n. could only be recognized morphologically by discriminant

function analysis.

Discussion

Phylogeny of the Rhinebothriidea and the position of Anindobothrium

The order Rhinebothriidea was erected by Healy et al. [2] as the result of a phylogenetic analy-

sis based on molecular data for a selected group of the polyphyletic Phyllobothriidae, then an

family of Tetraphyllidea. Healy et al. [2] circumscribed the taxonomic representation of their

study upon Euzet’s [63, 64] concept of the Rhinebothriinae Euzet, 1953, which was proposed

to accommodate phyllobothriids that lacked a myzorhynchus in adult forms and which had

subdivided and unarmed bothridia. Healy et al. [2] found molecular support for a number of

phyllobothiids—especially members of Echeneibothriinae and Rhinebothriinae—that were

also characterized by possessing stalked bothridia. Accordingly, the original concept of the

order Rhinebothriidea included members of Anthocephalum Linton, 1890, Echeneibothrium
van Beneden, 1850, Rhabdotobothrium Euzet, 1953, Rhinebothroides Mayes, Brooks &
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Thorson, 1981, Rhinebothrium Linton, 1890, Rhodobothrium Linton, 1889, Scalithrium Ball,

Neifar & Euzet, 2003, Spongiobothrium Linton, 1889, and the undescribed “New genera 1–4”

(sensu Healy et al. [2]). In addition, based on the putative morphological synapomorphy of the

order, Healy et al. (2009) suggested that some of the genera in the subfamily Phyllobothriinae

such as Anthobothrium van Beneden, 1850 and Carpobothrium Shipley & Hornell, 1906 could

ultimately be found to be members of the order. They also included as potential members of

the new order Anindobothrium and Pararhinebothroides Zamparo, Brooks & Barriga, 1999 as

they were also described as possessing stalked bothridia.

The internal relationships and composition of the Rhinebothriidea was revisited recently in

two studies. Ruhnke et al. [8] expanded the taxon sampling of Healy et al. [2] by adding puta-

tive members of the order, in addition to most species of Anthocephalum recognized to date.

Based on their phylogenetic hypothesis, they recognized four families within the Rhinebothrii-

dea: Rhinebothriidae, Echeneibothriidae, Anthocephaliidae and Escherbothriidae, from which

the latter two families were newly erected. Marques and Caira [10] corroborated Ruhnke

et al.’s [8] suspicion that Pararhinebothroides not only was a member of the Anthocephaliidae,

but in fact a member of Anthocephalum. In both studies, however, no members of Anindobo-
thrium were included.

Our phylogenetic analysis provided unambiguous evidence that Anindobothrium is a mem-

ber of the Rhinebothriidea (Fig 1A and 1B). However, the phylogenetic position of this genus

seems to be unstable, as are most internal nodes within the order. A comparison between the

phylogenetic hypotheses proposed by Ruhnke et al. [8] and Marques and Caira [10] is an

example of this instability (Fig 15A and 15B). Although both studies suggested that the Antho-

cephaliidae and the Escherbothriidae are sister taxa, they proposed different phylogenetic

arrangements for the remaining taxa. Comparing the present results to previous studies, we

observed that each study provided different sets of sister-group relationships for the families

(see Figs 1 and 15). All studies had different taxon sampling schemes and some phylogenies

were based on different optimality criteria. However, we believe that most of the discrepancies

Fig 15. Previous phylogenetic hypotheses for members of the Rhinebothriidea based on LSU and SSU nucleotide data. A. Modified from Ruhnke

et al. [8]. B. Modified from Marques and Caira [10].

https://doi.org/10.1371/journal.pone.0184632.g015
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among these studies are related to nodes that have relatively low support due to the apparent

limited resolution power of 18S and 28S rDNA. Hence, the inclusion of additional markers in

future studies could provide a more stable resolution for the inter-relationships among families

of the Rhinebothriidea.

Although sister-group relationships within the Rhinebothriidea are unstable, all families—

including the Anindobothriidae—are well supported by the data regardless of optimality crite-

ria (Fig 1A and 1B). This support stems from the large sets of molecular synapomorphies for

each clade, albeit not all of them are unique and unambiguous (Fig 2). In addition, all members

of this monotypic family possess genital pores at the anterior 1

4
of the proglottids and have tes-

tes anterior and posterior to the cirrus sac. Therefore, Anindobothriidae can be circumscribed

by both molecular and morphological characters.

Species diversity within Anindobothrium

The diversification of Anindobothrium can be correlated to all major paleogeographic and bio-

geographical events that shaped the biotas of the Netropical freshwater systems, the tropical

eastern Pacific and the tropical western Atlantic Oceans. These events comprise the coloniza-

tion of the fluvial systems of South America by marine lineages, including an ancestor potamo-

trygonid lineage, during the Paleogene Period—between the early Miocene and mid-Eocene

(i.e., 22.5–46 Mya) [11, 12, 14, 15]—and the isolation of the transisthmian marine fauna during

the Late Pliocene—3.2–2.7 Mya [61, 62, 65].

The phylogeny of Anindobothrium is congruent with the history of colonization of freshwa-

ter stingrays. The current hypothesis of the origin of these freshwater stingrays suggests that

the ancestor of this lineage colonized the rivers of South America after the marine incursions

in the northern region of that continent during the Miocene [11, 14, 15, 17]. As postulated ini-

tially, freshwater potamotrygonids formed a clade sister to amphi-American species of Himan-
tura Müller & Henle, which were recently transferred to a new genus, Styracura, within the

Potamotrygonidae by de Carvalho et al. [18]. According to the phylogeny of the host and its

biogeographical implications, the divergence of the freshwater lineage took place prior to the

diversification of Styracura spp., possibly as a result of the closure of the Isthmus of Panama

(see below). The phylogeny of Anindobothrium mirrors the phylogeny of the host, suggesting

an event of codivergence (sensu Page & Charleston [19]) at the split between marine and fresh-

water lineages of Anindobothrium (Fig 16).

It is puzzling, however, that so far, no other freshwater species of Anindobothrium have

been found and A. lisae is the only representative of the genus in freshwater potamotrygonids.

Other lineages of cestodes, which had the same historical fate as Anindobothrium, diversified

after the colonization of the river systems of South America. There are 35 species of freshwater

stingrays distributed throughout all major river basins of South America [67, 68]. These hosts

house at least 6 valid species of Acanthobothrium, 8 of Potamotrygonocestus Brooks & Thorson,

1976, 5 of Rhinebothroides, 7 of Rhinebothrium, and 2 of Paroncomegas Campbell, Marques &

Ivanov, 1999. In addition, for all of these genera there are many species waiting formal descrip-

tion (Marques, unpub. data) as a result of an extensive collecting effort in the past years that

led to the examination of *1,300 host specimens of freshwater potamotrygonids. Yet, A. lisae
is the only species in the genus, which compared to many other cestodes found in freshwater

potamotrygonids has a very restricted distributional range: upper-middle Orinoco and Rio

Negro—two river basins that are known to share freshwater lineages since they are connected

by the Casiquiare river [59]. The reasons behind the lack of diversification of Anindobothrium
in freshwater systems, as compared to other lineages of cestodes in the same habitat or its

marine congeners, still need to be elucidated. One possibility might be the life cycle
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requirements for members of this genus, which could differ from that of other genera found in

freshwater potamotrygonids. However, very little is known about the life cycles of these

cestodes.

The paleogeographic history of the tropical eastern Pacific and tropical western Atlantic

Oceans seems to have imposed the pattern of diversification we observed in marine lineages of

Anindobothrium and their hosts. After the marine incursions into South America in the Mio-

cene—credited to have allowed the colonization of South American rivers by many marine lin-

eages (see Lovejoy et al. [17] and references therein)—the region that now comprises the

tropical eastern Pacific and tropical western Atlantic Oceans underwent drastic changes due to

the uptlift of the Isthmus of Panama that now separates these bodies of water. The seaway that

connected these two regions started narrowing and shallowing by the middle Miocene (13-12

Mya [65, 69, 70]) causing the interruption of gene flow between shallow marine animal popu-

lations in the Late Pliocene *3.2 Mya [62]. This major paleogeographic event is known to

have driven global oceanic reorganization and major biotic change on land and at sea [62], as

it not only allowed the exchange of fauna between North and South America (see review by

Leigh et al. [65]) but also imposed independent evolutionary trajectories of marine organisms

Fig 16. Diversification of Anindobothrium. Colored coast lines of the Great Caribbean represent three major provinces based on patterns

of endemism as suggested by Robertson & Cramer [66]: Northern Province—the Gulf of Mexico and southeastern USA [pink]; Central

Province—the West Indies, Bermuda and Central America [blue]; and Southern Province—Northern South America (red). [Map raster

source by Natural Earth in QGIS Geographic Information System/Open Source Geospatial Foundation].

https://doi.org/10.1371/journal.pone.0184632.g016
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now segregated to two oceans affected by changes in current patterns, salinity, temperature,

and primary productivity [61]. As a result, the uplift of the Isthmus of Panama affected the tax-

onomic composition of its adjacent waters [65].

The pattern of diversification of marine lineages of Anindobothrium and their hosts is con-

gruent with this paleogeographical event. Species of Styracura have transisthmian distribution

in which S. pacifica is known for the tropical eastern Pacific Ocean and S. schmardae is found

along the Caribbean coast of Central America and northern coast of South America. The dis-

tribution of Styracura spp. resembles the pattern documented for many other species pairs of

marine lineages with transisthmian distribution (see [61, 62] and references therein) for which

as early as 1908 Jordan [71] coined the term “geminate species”. The split between Anindobo-
thrium carrioni and the clade formed by the Caribbean species of this genus mirrors the diver-

gence between their host (S. pacifica and S. schmardae) suggesting codivergence between host

and parasite lineages (Fig 16). In addition, the molecular divergence between transisthmian

lineages of Anindobothrium is within the range of what is documented for many other groups

of Metazoa for which species pairs are believed to have originated by the uplift of the Isthmus

of Panama [61].

Lessios [61] compared the K2P nucleotide sequence distances for 38 genomic regions

involving 115 pairs of geminate clades of echinoids (9), crustaceans (38), fishes (42), and mol-

luscs (26). He concluded, among other things, that 34 clades had diverged at the time of the

Isthmus of Panama completion, when gene flow was interrupted between the isolated areas

(i.e., 3.2–2.7 Mya [61, 62, 65]). For the most prevalent genomic region used in his study, Les-

sios [61] suggested that ranges of K2P distances for COI of 8.7–13.5% for echinoids, 4.1–8.7%

for crustaceans, 3.2–5.5% for fishes, and 7.4–9.2% for molluscs were an indication that those

clades diverged at the time of the Isthmus completion. Although we acknowledge that genetic

divergence is not produced exclusively by vicariant events, since other factors can affect it as

well (e.g., different effective population sizes, differential mutation rates, or distinct modes and

intensities of selection), it is interesting to notice that the sister clade of marine lineages of

Anindobothrium (i.e., A. carrioni + A. anacolum/A. inexpectatum) presented a K2P distance of

4.9–16.2%, averaging 13.8% for COI. These values may suggest that these lineages were segre-

gated prior to the final stages of the Isthmus completion, as thought to be the case for most of

the geminate pairs included in Lessios’s [61] study.

The final event of diversification in marine lineages of Anindobothrium involved the split

between A. anacolum and A. inexpectatum hosted by S. schmardae from the Caribbean Sea.

This putative event of associate-lineage duplication (sensu Page & Charleston [19]) was sur-

prising, albeit it is congruent with the patterns of endemism reported for the Caribbean

[66, 72].

Although the tropical eastern Pacific Ocean and the Caribbean Sea are sister areas with a

common faunal heritage, the uplift of the Isthmus of Panama had great ecological impact on

both now separated bodies of water. This is most evident in the Caribbean, which, compared

to the ancestral area, became a mainly oligotrophic and rich in coral reefs albeit in some parts

it retained eutrophic environments prevalent before the closure of the Isthmus of Panama [61,

65, 66]. The heterogeneity of the Caribbean has driven areas of endemism that have been rec-

ognized as early as 1950’s [73] (see also Robertson & Cramer [66] and references therein). Rob-

ertson & Cramer [66] is the most recent and comprehensive study on patterns of distribution

of shorefishes of the Caribbean. They analyzed *800,000 species site records which included

1,559 species of elasmobranchs and bony fishes from the Caribbean reported for the upper 100

m of the water column of continental and insular shelves. They found evidence to recognize

three biogeographical provinces: the Northern Province—the Gulf of Mexico and southeastern

USA; the Central Province—the West Indies, Bermuda and Central America; and the
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Southern Province—Northern South America (see Fig 16). Two of these provinces are occu-

pied by different species of Anindobothrium.

The distribution of the sister species A. anacolum and A. inexpectatum are congruent with

the biogeographical provinces recognized by Robertson & Cramer [66] (Fig 16). Anindobo-
thrium anacolum seems to be restricted to the Southern Province, which included the entire

continental shelf of northern South America from Colombia to northern Guyana [66]. This

biogeographical province is quite different from the Central Province from which A. inexpecta-
tum is reported. The continental shelf of northern South America is characterized by having a

tropical and eutrophic environment due to high nutrient inputs from coastal wind-driven

upwelling systems and outflows from large rivers that drain from South America. This is quite

different from the Central Province characterized by eutrophic environments in which pri-

mary production occurs on the sea floor [65]. To date, only a single species of Styracura is

known from the Caribbean Sea and, as some species included in Robertson & Cramer’s study,

S. schmardae seems to be distributed throughout the Central and Southern Provinces. How-

ever, the pattern of host association for the Caribbean species of Anindobothrium calls for a

close examination of the population structure of S. schmardae, since there is a possibility that

this host group is, in fact, a species complex.

The apparent recent diversification of marine lineages of Anindobothrium may respond to

the cohesive morphological attributes of these species. To the best of our knowledge there is

no discrete morphological attribute that could be used to identify any of the three species.

The same applies for the recognition of morphometric discontinuities, which have been the

prevailing criterion for species recognition in related groups of cestodes found in elasmo-

branchs and other vertebrates. The only morphological signal we were able to recover to

diagnose these species was using discriminant function analysis (Fig 5). Linear discriminant

functions have already been used successfully by others to recognize parasite lineages [74, 75]

and other groups of Metazoa (e.g., [76, 77]). Our study suggests that the inclusion of discrimi-

nant function analysis into the toolbox of cestode systematics might be fruitful, especially in

the absence of molecular data, which for Anindobothrium provided discrete nucleotide data

to diagnose all the species we now recognize for the genus. We are not advocating that species

should be erected on the basis of molecular or discriminant analyses alone—although some

have taken this path [78, 79]. The approach adopted in the present study should be an exam-

ple of integrative taxonomy (sensu Padial et al. [80, 81]), a concept based on integration by

congruence of evidence generated from the analysis and evaluation of data from different

sources (e.g., molecular, morphological, biogeographical, among others). This approach, as

was undertaken in the present study, has the potential to support robust hypotheses for

species.

Integrative taxonomy and cryptic species in cestodes

The morphological homogeneity of these three marine species of Anindobothrium and their

distribution in two species of batoid fishes draws attention to a component on the diversity of

cestodes that might have been neglected in the past, that is cryptic species—those assumed to

be only recognized by the examination of molecular data. Reports of cryptic species have been

published for cestodes before (see reviews in [82, 83]), but to the best of our knowledge, no

accounts of cryptic species exists for cestodes infecting elasmobranchs. Even so, compared to

other groups of Metazoa, there is a small number of publications addressing cryptic speciation

in cestodes. Pérez-Ponce de León & Nadler [82] reported 15 studies referring to cryptic species

for this group from 1999 to 2009. Recently, this list was revised by Pérez-Ponce de León & Pou-

lin [83] who found 14 studies from 1978 to June 2016 for cryptic species in cestodes.
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Independent of the status of A. inexpectatum as a truly cryptic species or a pseudocryptic

one—those not initially recognized as phenotypically distinct due inadequate analysis of mor-

phological data [84, 85]—, this species would not have been recognized by traditional

approaches applied by taxonomists in the group. The taxonomy of cestodes, in particular those

lineages parasitic in elasmobranchs, has historically been based on morphological discontinui-

ties and on the assumption that cestode fauna of a species of elasmobranch does not vary sub-

stantially across its distribution [86]. Since cryptic lineages have been shown to be common

throughout the metazoan taxa (see [87–91], and references therein), we should expected to

find them also among cestode species.

Many studies have found cryptic species by evaluating the molecular diversity of wide

spread taxa composed by populations that are morphologically similar—if not indistinguish-

able (e.g., [79, 92–98]). These studies illustrate the importance of recognize cryptic speciation

as part of the process that produces biodiversity since the failure to detect cryptic species can

result in underestimation of biodiversity [91]. The importance of recognizing this component

of our biota relies on the fact that most questions in evolutionary biology (e.g., speciation),

ecology (e.g., ecosystem development), conservation biology (e.g., conservation priorities) or

biogeography (e.g., diversification processes) depend, to a great extent, on the accurate recog-

nition of the lineages that comprise that biodiversity [80]. For host-parasite systems, the cir-

cumscription of host and parasite lineages shape our understanding of host specificity,

influence our efforts to control parasitic diseases and may determine our ability to provide

robust hypotheses for historical association events [83, 99].

As pointed out by Goldstein & DeSalle [100], the documentation of cryptic species

demands creative approaches. The inclusion of scanning electron microscopy is a common

practice in the taxonomy of elasmobranch cestodes to document tegumental structures (i.e.,
microtriches patterns) and it has been useful in taxonomic decisions (see Caira [86] and refer-

ences therein). Also, the concern for selecting characters not subject to fixation artifacts and

the search for those thought to display interspecific variation are credited to have improved

the taxonomy of cestodes over the years [86]. Molecular data have contributed to the taxon-

omy of many groups of cestodes, however timidly so. A non-exhaustive survey of cestode spe-

cies described in the past 10 years revealed that more that 300 species were described during

this period (source: Global Cestode Database [101] and ISI Web of Knowledge; December

2016), from which 47 species were described in studies that included molecular data (e.g., [7, 8,

102–124]). In addition to the list provided by Pérez-Ponce de León [83] accounting for studies

revealing cryptic species in cestodes we found 8 more publications [125–132] (Source: ISI Web

of Knowledge, March 2017). Among all theses studies, only one described a species after recog-

nizing it as cryptic, which turned out also to be distinct morphologically [131] (see also Nakao

et al. [128]). Marques et al. [133], for instance, explicitly recognized that their study provided

molecular data to circumscribe two different species of Didymobothrium Nybelin, 1922, but

refrained to make any nomenclatural changes as they were unable to provide morphological

diagnoses.

Molecular data has greatly accelerated the identification of cryptic species (see Padial et al.
[81], and references therein), but the sole identification of cryptic species will not solve the tax-

onomic challenges we face today. Formally described species are not only the basis for biologi-

cal classification but also the only means by which we can effectively communicate and link

information to existing knowledge [134]. Be that as it may, molecular data are rarely included

in formal descriptions [134, 135] and there is still the prevailing notion that a morphological

diagnosis is required to describe species, although no current codes for biological nomencla-

ture specify the class of characters upon which descriptions ought to be based [136]. Thus, the

trend observed in cestode systematics mirrors the practice observed in other groups.
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Especially in cases of cryptic species, we should acknowledge that molecular data could be

valuable as diagnostic characters in the absence of morphological discontinuities and there is

no epistemological justification to exclude them. The goal of modern taxonomy is to provide

sets of characters upon which we can erect species hypotheses. Systematists should be under

no obligation to stick to any class of data (i.e., phenotypic and/or genotypic) in their taxonomic

practice. Rather, we should embrace the virtues of “integrative taxonomy”, which seems to be

the most profitable path not only to incorporate all information available at the time into spe-

cies description but also to provide a more robust empirical foundation for systematics [100].

Systematics, as a science, should proceed via free exploration of ideas, and not by peer pressure

to give preference to any class of characters as the primary data source for species descriptions

nor by restricting the methods available to investigators [137]. We predict that as we closely

look at cestode fauna across biogeographical areas and apply a variety of tools available for spe-

cies discovery, we will encounter closely related species morphologically very similar but yet

displaying discrete sets of molecular characters, which may also be congruent with other attri-

butes (e.g., host association, paleogeographical history, among others). Our only concern

should be to provide testable hypotheses about the structure of biodiversity [138], which can

be corroborated or refuted in light of new empirical data.
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90. Jörger KM, Schrödl M. How to describe a cryptic species? Practical challenges of molecular taxonomy.

Front Zool. 2013; 10: 59. https://doi.org/10.1186/1742-9994-10-59 PMID: 24073641

91. Karanovic T, Djurakic M, Eberhard SM. Cryptic species or inadequate taxonomy? Implementation of

2D geometric morphometrics based on integumental organs as landmarks for delimitation and descrip-

tion of copepod taxa. Syst Biology. 2016; 65: 304–327. https://doi.org/10.1093/sysbio/syv088
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