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Abstract

Over the last decades, extensive basic and clinical knowledge has been acquired on the use of subthalamic
nucleus (STN) deep brain stimulation (DBS) for Parkinson’s disease (PD). It is now clear that mechanisms involved
in the effects of this therapy are far more complex than previously anticipated. At frequencies commonly used in
clinical practice, neural elements may be excited or inhibited and novel dynamic states of equilibrium are reached.
Electrode contacts used for chronic DBS in PD are placed near the dorsal border of the nucleus, a highly cellular
region. DBS may thus exert its effects by modulating these cells, hyperdirect projections from motor cortical
areas, afferent and efferent fibers to the motor STN. Advancements in neuroimaging techniques may allow us to
identify these structures optimizing surgical targeting. In this review, we provide an update on mechanisms and
the neural elements modulated by STN DBS.
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Over the last decades, extensive basic and clinical knowledge has been acquired on the use of subthalamic
nucleus (STN) deep brain stimulation (DBS) for Parkinson’s disease (PD). It is becoming clear that DBS
exerts its effects through several mechanisms and influences various neural structures and circuits. In this
article, we discuss electrophysiological findings suggesting that stimulation not only modulates activity of
neural elements but also leads to novel dynamic states of equilibrium. We also present anatomic data
showing that the STN is not a homogeneous structure and review fiber pathways and regions of the nucleus
potentially modulated by DBS. Finally, we discuss novel neuroimaging modalities and how these may be
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Introduction
From its origins to clinical approval, the history of sub-
thalamic nucleus (STN) deep brain stimulation (DBS) for
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Parkinson’s disease (PD) has been one of extreme suc-
cess. In the late 1980s, thalamic stimulation was pro-
posed as an alternative to ablative procedures for treating
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patients with tremor (Benabid et al., 1991). In 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated nonhu-
man primates, both STN lesions (Bergman et al., 1990)
and stimulation (Benazzouz et al., 1993) were shown to
improve parkinsonian features. Soon after, a series of PD
patients was successfully treated with STN DBS (Limou-
sin et al., 1995). To date, over 120,000 patients worldwide
have been implanted with DBS systems. In PD, marked
improvements have been reported in motor symptoms
and levodopa-induced involuntary movements (Deuschl
et al., 2006; Weaver et al., 2009).

Aside from impacting patient care, investigational data
from preclinical models and surgical candidates have
yielded significant advancements in our understanding of
the physiology and pathophysiology of the basal ganglia.
Despite this fact and the 30 years of experience with DBS,
its mechanisms of action are still not fully understood.

In this review, we provide an update on mechanisms
and structures modulated by STN stimulation. We discuss
the complexity of DBS and the fact that neural elements
may be excited or inhibited, reaching novel dynamic
states of equilibrium. We also review neuroanatomical
substrates modulated by DBS in the region of the STN.
Finally, we examine how advancements in neuroimaging
techniques may allow us to identify specific STN regions,
so that this therapy may be optimized.

Anatomic aspects of the STN and nearby

fiber structures

The STN is a lens-shaped densely populated structure,
with extensive membrane apposition between the cell
bodies, dendrites, and proximal axonal segments (Chang
et al., 1983; Afsharpour, 1985; Hamani et al., 2004). It is
predominantly composed of glutamatergic projection
neurons with 7.5% of cells in humans being identified as
GABAergic interneurons (Hamani et al., 2004; Lévesque
and Parent, 2005). In primates, the STN has been subdi-
vided in a tripartite arrangement based on physiologic
characteristics and the distribution of efferent/afferent
projections (Alexander et al., 1990; Parent and Hazrati,
1993, 1995a,b; Hamani et al., 2004; Krack et al., 2010;
Fig. 1). The limbic STN and part of the associative territory
lie in medial-rostral portions of the nucleus. The ventral-
lateral-rostral portion comprises the remainder of the as-
sociative region. The dorsolateral aspects of the rostral
STN and the caudal third of the nucleus are associated
with motor circuits (Parent and Hazrati, 1995a; Shink
et al., 1996; Hamani et al., 2004).
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Fiber systems

One of the characteristics of the STN is that it is envel-
oped by fibers, including the internal capsule, pallidofugal
system, and medial lemniscus.

Pallidofugal systems

The ansa lenticularis (AL) and fasciulus lenticularis (FL)
are largely comprised by globus pallidus internus (GPi)-
thalamic projections. In primates, the former was thought
to originate largely from the lateral GPi (Kuo and Carpen-
ter, 1973; Kim et al., 1976), sweeping around the internal
capsule and curving posteriorly to reach the H field of
Forel (Fig. 2). The FL (H2 field of Forel) was believed to
arise from the medial GPi (Kuo and Carpenter, 1973; Kim
et al., 1976), perforate the internal capsule, and form a
bundle ventral to the zona incerta. In contrast to this
classical view, however, recent studies suggest that the
AL and FL should be considered as ventral and dorsal
portions of a morphologic continuum that harbors pallid-
ofugal axons arising from all sectors of the GPi (Parent
and Parent, 2004). Independent of the origin of pallidotha-
lamic projections, the lenticular fasciculus joins the ansa
along with fibers from the superior cerebellar peduncle
and brainstem in the H field of Forel, forming the thalamic
fasciculus (H1 field of Forel; Hamani et al., 2004; Parent
and Parent, 2004). An important aspect to be noticed in
nonhuman primates is that a substantial portion of pallid-
ofugal fibers seems to run anterior to the motor STN (Fig.
3).

Afferent and efferent STN projections

STN-basal ganglia

Projections from the basal ganglia to the STN derive
largely from the globus pallidus externus (GPe) via the
subthalamic fasciculus, a fiber bundle that enters/departs
the STN from its inferolateral border and crosses the
internal capsule. Efferents from the STN to the basal
ganglia comprise glutamatergic projections that innervate
the globus pallidus, substantia nigra and striatum. Al-
though most STN-nigral projections innervate the pars
reticulata (SNr), fibers to the pars compacta (SNc) have
received considerable attention as a substrate capable of
regulating dopamine release (Smith et al., 1990; Parent
and Hazrati, 1995a; Rodriguez et al., 1998). Overall, STN-
basal ganglia projections seem to follow the ftripartite
distribution (Fig. 1; Parent and Hazrati, 1995a; Shink et al.,
1996; Hamani et al., 2004; Krack et al., 2010).

STN-cerebral cortex

The hyperdirect pathway is comprised of motor and
premotor cortical fibers that travel though the internal
capsule and directly innervate the STN. The former inner-
vates the dorsal STN and arises from the primary motor
cortex, supplementary motor area (SMA), pre-SMA, as
well as the dorsal and ventral premotor cortices (Nambu
et al.,, 1996; Nambu et al., 1997; Nambu et al., 2000).
Ventromedial portions of the nucleus receive afferents
from the frontal and supplementary frontal eye fields and
are involved in circuits related to eye movements (Mat-
sumura et al.,, 1992). Prefrontal cortical afferents from
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Figure 1. STN and the tripartite model. Intrinsic organization of the STN, basal ganglia structures, and cortical regions according to
the tripartite functional subdivision. The motor circuit (blue) includes motor cortical areas (primary motor cortex, supplementary motor
cortex, premotor cortex, and portions of the somatosensory dorsal parietal cortex), the dorsolateral portion of the postcommissural
putamen, the lateral two-thirds of the globus pallidus (GPe and GPi), and a small portion of the substantia nigra (SNr). In the STN,
motor regions comprise dorsal-lateral aspects of the rostrocaudal third of the nucleus (Hamani et al., 2004). Associative circuits
(purple) comprise associative cortical regions, most of the caudate nucleus, the putamen rostral to the anterior commissure, the dorsal
aspect of the medial third of the globus pallidus (GPe and GPi) and most of the substantia nigra. Associative STN regions may be
found in ventral-lateral-rostral portions of the nucleus (Hamani et al., 2004). Limbic circuits (gray) are comprised of limbic cortical areas
(e.g., orbitofrontal and the anterior cingulum), the nucleus accumbens and the most rostral portions of the striatum, the subcom-
missural ventral pallidum (VP), small limbic regions in the ventral portion of the medial third of the globus pallidus (GPe and GPi), the
medial tip of the substantia nigra, and the ventral tegmental area. The limbic STN lies in mediorostral portions of the nucleus (Hamani
et al., 2004). Arrows represent some of the most important connections between structures. D, dorsal; L, lateral; M, medial; V, ventral.
We note that this schematic diagram largely represents structures in two planes with the anteroposterior depiction often lacking. This
is the main reason for the superposition of colors representing motor, associative and limbic regions. Parts of this figure were modified
and reprinted with permission from Hamani et al. (2004); Krack et al. (2010).

areas the dorsolateral prefrontal cortex and anterior cin-
gulate cortex terminate in ventromedial and medial re-
gions of the STN, respectively (Haynes and Haber, 2013).

Thalamus and brainstem

The main projections from the thalamus to the STN
originate from the parafascicular and centromedian nuclei
(Sadikot et al.,, 1992; Hamani et al.,, 2004). Brainstem
projections arise from various nuclei and involve multiple
neurotransmitter systems. These include dopaminergic
fibers from the SNc (Lavoie et al., 1989; Francois et al.,
2000; Hamani et al., 2004), cholinergic and noncholinergic
projections from the pedunculopontine nucleus and lat-
erodorsal tegmental nuclei (Carpenter et al., 1981; Mesu-
lam et al., 1992; Lavoie and Parent, 1994), noradrenergic
fibers from the locus ceruleus (Carpenter et al., 1981), and
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serotonergic fibers likely from the raphe (Parent et al.,
2011).

Physiologic properties of the STN and

oscillatory activity

STN cells in nonhuman primates fire at 18 + 25 Hz,
mostly in irregular but also regular and bursty patterns
(Wichmann et al., 1994a; Hamani et al., 2004). In parkin-
sonian states, the STN fires more irregularly at higher
rates, ultimately disrupting the functioning of downstream
basal ganglia structures (Robledo and Féger, 1990; Berg-
man et al., 1994; Hassani et al., 1996; Hutchison et al.,
1998). Also abnormal in PD are cortico-basal ganglia
oscillations. STN cells oscillating at frequencies below 10
Hz are sometimes related to parkinsonian tremor (Levy
et al., 2000; Magarifios-Ascone et al., 2000). Oscillations
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Figure 2. Anatomic aspects of the STN. Principal brain structures surrounding the STN. FF, fields of Forel; FS, subthalamic fascicle;
H1, H1 field of Forel (thalamic fasciculus); H2, H2 field of Forel; IC, internal capsule; ML, medial lemniscus; PPN, pedunculopontine
nucleus; Put, putamen; SN, substantia nigra; Thal, thalamus; ZI, zona incerta. Part of this figure was modified and reprinted with

permission from Hamani et al. (2004).

in the 70- to 85-Hz range occur during movement or
treatment with dopaminergic agonists (Magill et al., 2001;
Levy et al., 2002; Hamani et al., 2004). Oscillations in the
beta range (15-30 Hz) are prominent in sensorimotor
regions of the basal ganglia and cortex (Bergman et al.,
1994; Brown et al., 2001; Mallet et al., 2008b). These in
fact seem to entrain spiking activity in the STN, striatal
cholinergic interneurons and basal ganglia downstream
structures (Deffains et al., 2016).

ant

A
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In the clinic, while treatment-induced reductions in bra-
dykinesia and rigidity correlate with decreases in beta
(Brown et al., 2001; Kihn et al., 2008; Ray et al., 2008;
Kihn et al., 2009), STN stimulation at beta frequencies
may worsen bradykinesia (Chen et al., 2007; Eusebio
et al., 2008). These same results have not been observed
in drug-naive nonhuman primates, which have been
shown to develop dystonia and myoclonia but no brady-
kinesia following STN stimulation (Syed et al., 2012). The

sup

lat 4—T

Figure 3. STN and pallidofugal fibers. Axial (A) and coronal (B) schematic representations of the AL (red) and LF (H2; blue), in
relationship to the STN, in nonhuman primates. Note that both the tracts travel dorsal to the most anterior aspect of the STN. A, The
thalamic fasciculus is represented in green. ant, anterior; lat, lateral; sup, superior. Modified and reprinted with permission from Parent

and Parent (2004).
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actual role of beta oscillations on mechanisms of brady-
kinesia remains disputed.

Also characteristic of PD are altered cross-frequency
interactions (CFls; Loépez-Azcarate et al., 2010; Shi-
mamoto et al., 2013; de Hemptinne et al., 2015). These
are often appreciated when a more complex analysis of
interactions between different frequency bands is con-
ducted (Canolty and Knight, 2010). Similar to beta oscil-
lations, CFls correlate with motor symptoms and may be
reversed by the administration of dopaminergic medica-
tions (Lopez-Azcarate et al., 2010).

Behavioral effects of STN stimulation

In rodents, focal injections of GABAergic antagonists
into the STN induce postural asymmetry and abnormal
movements (Dybdal and Gale, 2000; Périer et al., 2000).
Similar to the clinical scenario (Dewey and Jankovic,
1989; Lee and Marsden, 1994), both lesions and the focal
inactivation of the STN in nonhuman primates induce
ballism, choreic and dyskinetic movements (Hammond
et al., 1979; Crossman et al., 1980; Hamada and DelLong,
1992; Beurrier et al., 1997). STN DBS delivered to other-
wise naive nonhuman primates may induce dyskinesias
and abnormal movements, particularly when applied at
relatively high currents (Beurrier et al., 1997; Hamani et al.,
2004). In parkinsonian rodents and primates, STN lesions
or high-frequency stimulation (HFS) mitigate motor defi-
cits, bradykinesia, rigidity, and tremor (whenever this is
present; Bergman et al., 1990; Aziz et al., 1992; Benaz-
zouz et al., 1993; Wichmann et al., 1994b; Carvalho and
Nikkhah, 2001; Darbaky et al., 2003; Hamani et al., 2004).

In addition to motor effects, clinical studies suggest that
STN DBS may be associated with impulsivity, cognitive
and psychiatric adverse events (Rodriguez-Oroz et al.,
2005; Frank et al., 2007; Halbig et al., 2009; Okun et al.,
2009; Weaver et al., 2009; Follett et al., 2010; Bronstein
et al., 2011; Rothlind et al., 2015). As patients receiving
DBS often have PD and are under pharmacological treat-
ment, the physiologic role of the STN in nonmotor behav-
ior may be better appraised in preclinical models (Hamani
and Temel, 2012).

In animals, some of the most commonly investigated
nonmotor behaviors are impulsivity, compulsivity, and
drug and reward consumption (Hamani and Temel, 2012).
Impulsivity can be broadly defined as acting or making
decisions without appropriate forethought (Winstanley,
2011). Overall, impulsive behavior encompasses multiple
facets, from motor disinhibition to maladaptive decision
making, involving motor, attention, and nonplanning as-
pects (Brunner and Hen, 1997; Evenden, 1999; Winstan-
ley, 2011). Frequently used paradigms to study impulsivity
in rodents are those in which individuals need to withhold
from making a response (e.g., measurements of reaction
time) or have to properly select a response to obtain a
reward (e.g., five-choice serial reaction time task; Win-
stanley, 2011). Commonly observed inappropriate responses
during such tasks include prematurely responding to the stim-
uli or making errors of perseveration. In some of these
paradigms, STN lesions or the focal administration of
GABAergic agonists in otherwise naive rats induce
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impulsive-like behavior (Baunez et al., 1995; Baunez and
Robbins, 1997, 1999b). In parkinsonian rodents, STN le-
sions increase perseverative responses (Baunez and Rob-
bins, 1999a). Compared to lesion studies, the effects of
STN DBS are far more controversial. In naive animals,
HFS has been shown not to affect impulse-like behavior
(Desbonnet et al., 2004), reduce premature responses
(Desbonnet et al., 2004), or even impair performance (e.g.,
is a visual attention task; Baunez et al., 2007). Similarly,
studies in PD animals have shown reversal (Temel et al.,
2005; Temel et al., 2006a), no effect (Darbaky et al., 2003),
or a transient worsening of associated deficits (Baunez
et al.,, 2007). Reasons for discrepancy across studies
remain unclear but may be related to differences in be-
havioral paradigms, current intensity or the use of unilat-
eral versus bilateral stimulation.

Along with impulsivity, gambling and punding are as-
pects commonly described as part of the so-called do-
pamine dysregulation syndrome (DDS; Fenu et al., 2009;
O’Sullivan et al., 2009). In the clinic, STN DBS has been
used to treat these conditions following the reduction in
dopaminergic medication intake (Broen et al., 2011). Pre-
clinical paradigms suited to model some aspects of
gambling-type behavior involve the presentation of ani-
mals with options associated with variable amounts of
reward, from smaller immediate to late but more gratifying
compensations (Cocker and Winstanley, 2015). In other-
wise naive rodents, STN-DBS significantly increases the
number of premature responses in some of these para-
digms (i.e., the selection of immediate disavantageous
rewards; Aleksandrova et al., 2013). In contrast, animals
bearing STN lesions have a decrease in impulsive deci-
sion making and are able to wait for larger delayed re-
wards (Winstanley et al., 2005; Uslaner and Robinson,
2006).

Another commonly reported side effect of STN DBS is
depression (Temel et al., 2006b). Similar to the clinical
scenario, rodents treated with STN DBS present depressive-
like behavior in different models (Temel et al., 2007; Creed
et al., 2013).

In recent years, DBS has been used to treat patients
with refractory obsessive-compulsive disorder (OCD;
Mallet et al., 2002; Mallet et al., 2008a; Haynes and Mallet,
2010). Preclinical models to mimic this condition are usu-
ally characterized by repetitive, excessive and inappropri-
ate behaviors, which may occur either naturally or as a
consequence of pharmacological and behavioral manip-
ulations (Joel, 2006; Albelda and Joel, 2012; Hamani and
Temel, 2012). A limitation of these paradigms, however, is
that they only mimic compulsivity but not obsessions
(Albelda and Joel, 2012; Hamani and Temel, 2012). In
rodents, STN HFS has been shown to improve persevera-
tive and compulsive-like behaviors (Winter et al., 2008;
Klavir et al., 2009). Similarly, nonhuman primates treated
with HFS in the limbic portion of the STN had an improve-
ment in compulsive-like features induced the injections of
GABAergic antagonists into basal ganglia structures
(Baup et al., 2008).

Another interesting aspect of the STN physiology is its
role in mechanisms of reward and addiction. In rodents,
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bilateral STN lesions increase motivation to obtain food
reward (Baunez et al., 2002; Baunez et al., 2005; Rouaud
et al., 2010) while reducing the preference and willingness
to work for cocaine (Baunez et al., 2005; Rouaud et al.,
2010). When alcohol is considered, STN lesions increase
motivation for drug intake in animals considered to be
“high drinkers,” inducing an opposite effect “low drinker”
rats (Lardeux and Baunez, 2008). These results highlight
the complexity of physiologic mechanisms of the STN on
reward.

Mechanisms of DBS

Single pulses of cathodic extracellular stimulation de-
polarize cells, axons, and dendrites. Once action poten-
tials are fired, neurons tend to repolarize, and the normal
ionic/neurotransmitter baseline equilibrium is reestab-
lished. These same physiologic responses do not occur
when stimulation is delivered at clinical frequencies (i.e.,
130-185 Hz). For one, only neural appendages fire action
potentials in response to HFS. In addition, the continuous
delivery of HFS overloads mechanisms responsible for
the extracellular removal of certain ions and transmitters
(Florence et al., 2016). Ultimately, stimulated regions
reach a new dynamic state, characterized by altered ionic
currents, nonsynaptic mechanisms, excessive extracellu-
lar levels of neurotransmitters/ions (e.g., potassium), and
microenvironmental changes that favor the development
of plasticity (Hamani and Temel, 2012; Florence et al.,
2016).

From a neuronal perspective, a commonly proposed
pattern of response following HFS involves the depolar-
ization of axons and functional inhibition of cell bodies
(Lozano et al., 2002; Vitek, 2002; Hamani and Temel,
2012; Florence et al., 2016). Although this is well suited to
explain some DBS responses, it is rather simplistic. For
example, one of the proposed mechanisms for the effects
of HFS is the so-called “depolarization block” (Beurrier
et al., 2001; Magarifios-Ascone et al., 2002; Kringelbach
et al., 2007). This has been largely defined as a state in
which cells undergo depolarization with an almost com-
plete abolishment of spontaneous action potentials (Beur-
rier et al., 2001; Magarifios-Ascone et al., 2002). The
rationale suggesting that depolarization block and a func-
tional target inactivation may play a role in a HFS re-
sponse stems from the fact that clinical outcome in some
DBS applications (e.g., tremor, PD) resembles that ob-
served with lesions. To date, stimulation-induced depo-
larization blocks have been largely demonstrated in brain
slices. In vivo studies conducted in rodents (Tai et al.,
2003), nonhuman primates (Meissner et al., 2005), and
humans (Filali et al., 2004) have shown striking reductions
in the firing of STN cells nearby the electrodes. Yet, the
mechanisms responsible for this effect may not only in-
volve a depolarization block but also the excitation of
pallidal GABAergic terminals to the STN (Filali et al., 2004).

An aspect not commonly reported, however, is that
depolarization blocks are not sustainable events. Over
time, cells restore repolarizing mechanisms and become
once again capable of firing action potentials until the
development of a new depolarization block (Zheng et al.,
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2011; Florence et al., 2016). As a result, the same stimu-
lated region may contain cells that are either functionally
blocked or firing in tonic or even bursty modes (Kass and
Mintz, 2006; Wu and Shuai, 2012). Also, not commonly
described is the fact that cells held in a depolarization
block are theoretically capable of releasing neurotrans-
mitters. As the membrane potential becomes more posi-
tive and the amplitude of action potentials decreases,
both intracellular calcium influx and neurotransmitter re-
lease are decreased. Depolarized membranes, however,
may still release neurotransmitters in smaller nonquanta
amounts, even when the cell stops firing. This “synaptic
noise” has in fact been shown to modulate postsynaptic
currents (Ammari et al., 2011). Depending on the released
neurotransmitter, postsynaptic neurons may depolarize or
hyperpolarize, becoming more or less responsive to in-
puts from other presynaptic cells (Fellous et al., 2003;
Faisal et al., 2008). Highlighting the importance of this
mechanism, STN synaptic noise has been shown to in-
terrupt abnormal oscillatory patterns in parkinsonian ani-
mals (Ammari et al., 2011). That said, further evidence is
required to confirm the relevance of synaptic noise-
associated neurotransmitter release as a mechanism of
DBS.

Another commonly proposed mechanism underlying
the effects of HFS is the excitation of fiber pathways
(afferent and efferent projections from targeted regions as
well as en passant fibers; Kringelbach et al., 2007). This is
of importance, as the anterograde and retrograde propa-
gation of action potentials may influence the physiology of
brain regions at a distance from the original stimulation
site (Windels et al., 2000; Hashimoto et al., 2003; Krin-
gelbach et al., 2007; Temel et al., 2007). Fibers modulated
by HFS may be those arriving, departing or passing
through (en passant) the target zone. Neurotransmitters
released may dictate the effects of DBS at a distance. For
example, with a predominance of glutamatergic projec-
tion cells DBS in the STN has been shown to increase cell
firing in structures innervated by the nucleus (Hashimoto
et al., 2003). Microdialysis studies corroborate this asser-
tion, showing glutamate release in output basal ganglia
structures (Windels et al., 2000). However, with a complex
interplay of modulated afferent and efferent projections,
the net effects of DBS are not always predictable. As an
example, STN DBS has been shown to significantly re-
duce neuronal firing in the nigra, particularly when applied
at lower amplitudes (Maurice et al., 2003; Tai et al., 2003).
This may occur due to an increased release of GABA via
the modulation of pallidal activity (Windels et al., 2005).
Also contributing to a functional inhibition of circuits, cells
at a distance from the DBS target may not recognize
stimulation-driven high-frequency rhythms that replace
physiologic firing patterns (i.e., “jamming”; Benabid et al.,
2002). Finally, we note that, though the main conse-
quence of DBS at 130-185 Hz is to drive axonal projec-
tions, frequencies closer to 200 Hz may potentially lead to
a state of intermittent excitation or even partial blockage
of axonal firing (Kilgore and Bhadra, 2004; Florence et al.,
2016).
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Figure 4. Histologic sections of the subthalamic nucelus (STN) region in individuals with no neurologic disorders stained for
gallocyanin. A, Note the presence of high-density cellular regions near the borders of the nucleus (white arrow) and fibers inside its
core (¥). The dark arrow points to a vessel branching in the vicinity of the STN. B, Sagittal section (400-um thickness) showing
high-density neuronal clusters (white arrow) and a region largely comprised by capsular fibers (arrowhead) near the dorsal border of
the STN. Magnified view is presented in the square above. C, Axial (horizontal) section (440-um thickness) showing the anteromedial
aspect of the STN in relation to the lateral hypothalamus (LH) and fornix (Fx). Black arrows denote subthalamic cell strands piercing
the internal capsule and forming dissipated accessory cell groups (black open triangle) near the lateral hypothalamus. White open
triangles represent the irregular boundary between STN cell clusters and capsular fibers. D, Coronal section (440-um thickness)
showing the STN region under dark-field illumination (RN, red nucleus). SNr, substantia nigra reticulata; SNc, substantia nigra

compacta; ZI, zona incerta.

Also described following HFS are changes in glial ac-
tivity, synaptic transmission and the development of var-
ious forms of plasticity (Hamani et al., 2012; Cooperrider
et al., 2014). In some clinical applications (e.g., dystonia,
epilepsy) the effects of DBS are often protracted or build
up with time. Although an immediate clinical benefit is
often appreciated in PD, when batteries expire patients
may not present the same preoperative symptoms or
medication requirements, suggesting that plastic events
may have reorganized the system.

To date, several studies in PD patients and animal
models have shown that STN HFS reduces beta oscilla-
tions, coherence between motor cortex and STN activity,
and phase amplitude coupling (Wingeier et al., 2006; Eu-
sebio et al., 2008; Kuhn et al., 2008; Bronte-Stewart et al.,
2009; Giannicola et al., 2010; Tass et al., 2012; de Hemp-
tinne et al., 2015). Some of these signals have been
recently proposed to feed closed-loop stimulation sys-
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tems. Studies in nonhuman primates (Rosin et al., 2011;
Johnson et al., 2016) and PD patients (Little et al., 2013)
have shown that, compared to regular or intermittent HFS,
stimulation delivered following the detection of beta os-
cillatory bursts or according to the pattern of neuronal
firing induce a similar or slightly more pronounced clinical
improvement. In a recent report, however, closed-loop
STN stimulation delivered to PD primates did not improve
bradykinesia during a reaching task (Johnson et al., 2016).
This result has been attributed to the fact that beta am-
plitude declines during motion and suggests that addi-
tional work is still needed before closed-loop stimulation
may be implemented in the clinic.

Cytoarchitectonic features and elements
modulated by DBS

As most human studies addressing cytoarchitectonic
features were conducted with classical staining tech-
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Figure 5. Neural elements modulated by DBS delivered to the dorsal region of the motor subthalamic nucleus (STN) territory.
A, Schematic representation of the STN showing potential fiber pathways modulated by DBS. Hyperdirect STN projections from
motor cortical regions are depicted in blue. Pallidofugal fibers are depicted in red. B, Schematic representation of an STN neuron
modulated by DBS. STN axons driven by stimulation would excite connected structures. Stimulation of STN afferents would
potentially excite these projections, inducing complex effects. STN cells would be excited by stimulation of cortical and thalamic-STN
projections (blue) and inhibited by stimulation of globus pallidus projections and appendages from local interneurons (red). Stimulation
of brainstem-STN projections would modulate STN neuronal activity via different neurotransmitter systems (green). 5HT, serotonin;
ACh, acetylcholine; CM, centromedian nucleus of the thalamus; DA, dopamine; GPe, globus pallidus externus; GPi, globus pallidus
internus; LC, locus ceruleus; LDTg, laterodorsal tegmental area; NE, norepinephrine; PPN, pedunculopontine nucleus; SNc, sub-
stantia nigra compacta. Part of the figure was reprinted with permission from Hamani et al. (2004).

niques, a few caveats need to be taken into account. First,
the STN has an intimate relationship and is partly en-
wrapped by fibers. Second, its axes are not arranged in
parallel to the main axes of the hemispheres. Third, de-
pending on the plane of section, shape and individual
orientation, different profiles and grazing artifacts may be
observed in Nissl or Golgi-stained sections. Finally, cyto-
architectonic delineations are subject to interindividual
variability. When thick gallocyanin stained slices and
dark-field illumination sections are examined (Heinsen
et al.,, 2000), a few aspects not previously reported in
classical postmortem human studies can be appreciated.
(1) Rather than a homogeneous structure, the STN has a
looser cellular core and densely packed peripheral re-
gions (Fig. 4). (2) Fiber bundles may be identified near the
STN borders as well as in central parts of the nucleus. (3)
The medial STN has a fairly irregular outline, with rostro-
medial strands of cells almost reaching the hypothalamus
(Fig. 4).

Electrode contacts used for chronic DBS in PD are
often located near the dorsal border of the nucleus (Her-
zog et al., 2004; Pollo et al., 2007). In addition to being
part of the motor territory, this region is characterized by
the presence of high-density cellular clusters in postmor-
tem studies. The main fiber pathways entering the motor
STN are hyperdirect projections from motor cortical ar-
eas, which in fact may be a major substrate modulated by
STN DBS (Fig. 5). In agreement with this statement,
optogenetic studies have shown that stimulation of hy-
perdirect pathways may rescue behavioral deficits in par-
kinsonian rodents (Gradinaru et al., 2009). To date, the
modulation of fibers in the fields of Forel, particularly
pallidothalamic projections, have been proposed as a
potential mechanism for the effects of DBS. Although not
many studies have reported anatomic details of these
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systems in humans, data from nonhuman primates sug-
gest that most of the AL and FL lie slightly anterior to the
region where electrodes are often implanted. Other sub-
strates that could be potentially modulated by DBS are
axons within the motor STN territory. These may comprise
afferents/efferents to and from the motor STN. Stimula-
tion of the former would theoretically excite or inhibit the
target zone, depending on the neurotransmitter released
(e.g., glutamate from cortical/thalamic afferents, GABA
from pallidal afferents, serotonin/dopamine/acetylcholine
from brainstem afferents). The excitation of STN glutama-
tergic efferents would drive activity in structures receiving
its projections.

DBS electrodes used to treat OCD are placed in an-
teromedial regions of the STN (Mallet et al., 2008a). Under
these circumstances, cell bodies modulated by stimula-
tion would be those innervating limbic/associative STN
territories and nearby hypothalamic regions. Hyperdirect
components would be fibers from the dorsolateral pre-
frontal cortex, orbitofrontal cortex and cingulate gyrus.
Stimulated afferents/efferents to and from the STN would
be those innervating limbic/associative regions of the
basal ganglia, thalamus and brainstem. As PD patients
who develop DBS-induced psychiatric side effects often
have electrodes implanted medially, the same neural ele-
ments could be theoretically involved in mechanisms of
these adverse events.

Neuroimaging

Adequate visualization of the STN greatly depends on
MRI protocols. On T2, T2*, and susceptibility weighted
images, the nucleus appears as a dark structure. At 1.5T
and less so at 3T, MRI identification of the STN may be
hindered by limited imaging contrast and the poor iden-
tification of the STN/SN border (Fig. 6). Ultrahigh field (7T
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Figure 6. Tractography based subdivision of the STN. A, CoronalT2:-weighted images obtained at 7.0T, 3.0T, and 1.5T. B, Coronal
images showing STN connectivity with limbic (red), associative (green), motor (blue), and remaining (yellow) cortical areas. C, Oblique
view of the STN with a superposed DBS electrode and an active contact implanted in the motor territory. Reprinted with permission
from Cho et al. (2010); Plantinga et al. (2014); Plantinga et al. (2016).

and higher) MRI has the potential to overcome some of
these limitations and promises to facilitate patient-
specific direct targeting (Plantinga et al., 2014).

As described above, the STN may be subdivided in
different subterritories based anatomic connections and
physiologic characteristics. The use of diffusion weighted
imaging based tractography has been proposed as a
potential strategy for classifying deep brain structures into
subregions (Behrens et al., 2003). The simplest of these
models is diffusion tensor, which can be created with
relatively short scan times but fails when there are multi-
ple fiber orientations within one voxel. More advanced
models seem to be able to cope with crossing fibers when
combined with probabilistic tracking algorithms (Behrens
et al., 2007; Tournier et al., 2007). On a group level, these
models have been used to subdivide the STN into func-
tional regions in 3T scanners (Lambert et al., 2012). At 7T,
the motor region could be successfully discriminated
based on structural connectivity (Plantinga et al., 2016;
Fig. 6). Although this technique is not without limitations
(e.g., false positives and negatives), these results highlight
the potential future application of neuroimaging strategies
to refine surgical targeting.

Conclusions

In summary, the mechanisms involved in the effects of
DBS seem to be far more complex than previously antic-
ipated. Instead of a simple excitation of fibers and inhibi-
tion of cells, neural elements influenced by DBS reach
novel dynamic states over time. From an anatomic per-
spective, human pathologic specimens suggest that the
STN has dense cellular aggregates near its borders and a
less compact central core, which is infiltrated by fibers.
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Discriminating the nature of these fibers and those cross-
ing the dorsal STN border (i.e., where active contacts are
implanted) will be crucial for a better appraisal of mech-
anisms responsible for this therapy.

One of the ultimate goals to be achieved with DBS is to
maximize efficacy while minimizing side effects. The for-
mer has been attempted by mimicking brain rhythms so
that some forms of beta band activity and other patho-
logic rhythms may be reduced. To date, similar strategies
have been effective in preclinical models but still need to
be perfected for clinical use. With proven efficacy, a key
factor to minimize DBS-induced side effects is to avoid
stimulating structures and brain regions involved in ad-
verse events. A major advance toward this objective is the
use of directional leads, which may deviate and steer
current away from these structures. Also important have
been recent advancements in neuroimaging modalities.
The use of higher magnetic fields and diffusion/connec-
tivity approaches to identify subregions of the nucleus
and specific fiber bundles may advance the way we do
surgery by improving targeting precision.
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