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Abstract

Associations between epigenetic alterations and disease status have been identified for

many diseases. However, there is no strong evidence that epigenetic alterations are directly

causal for disease pathogenesis. In this study, we combined SNP and DNA methylation

data with measurements of protein biomarkers for cancer, inflammation or cardiovascular

disease, to investigate the relative contribution of genetic and epigenetic variation on bio-

marker levels. A total of 121 protein biomarkers were measured and analyzed in relation to

DNA methylation at 470,000 genomic positions and to over 10 million SNPs. We performed

epigenome-wide association study (EWAS) and genome-wide association study (GWAS)

analyses, and integrated biomarker, DNA methylation and SNP data using between 698

and 1033 samples depending on data availability for the different analyses. We identified

124 and 45 loci (Bonferroni adjusted P < 0.05) with effect sizes up to 0.22 standard units’

change per 1% change in DNA methylation levels and up to four standard units’ change per

copy of the effective allele in the EWAS and GWAS respectively. Most GWAS loci were cis-

regulatory whereas most EWAS loci were located in trans. Eleven EWAS loci were associ-

ated with multiple biomarkers, including one in NLRC5 associated with CXCL11, CXCL9, IL-

12, and IL-18 levels. All EWAS signals that overlapped with a GWAS locus were driven by

underlying genetic variants and three EWAS signals were confounded by smoking. While

some cis-regulatory SNPs for biomarkers appeared to have an effect also on DNA methyla-

tion levels, cis-regulatory SNPs for DNA methylation were not observed to affect biomarker

levels. We present associations between protein biomarker and DNA methylation levels at

numerous loci in the genome. The associations are likely to reflect the underlying pattern of

genetic variants, specific environmental exposures, or represent secondary effects to the

pathogenesis of disease.
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Author summary

Every human being is unique, each with an individual risk of developing disease. Varia-

tion between humans can be attributed to genetic variation or the environment to which

we are exposed. However, phenotypic differences can also be due to the epigenetic pattern

of our genes, which refers to chemical modification that affects the activity of our genes.

Epigenetic factors have recently gained a lot of interest, and aberrant epigenetic patterns,

have been linked to many diseases. In the present study, we have identified genetic and

epigenetic factors that influence the activity of our genes, by way of comparing to the level

of different proteins that our genes encode, proteins that have previously been associated

with human diseases such as cardiovascular diseases or cancer. We could clearly see that

the epigenetic pattern was associated with the expression of specific genes but that such

associations were mainly caused by genetic variants, or environmental factors influencing

both epigenetic and expression patterns. However, it appeared that some disease-associ-

ated proteins could have altering effects on the epigenetic pattern, then suggesting that

some epigenetic alterations represent secondary effects to the pathogenesis of disease.

Introduction

Over the past few years, Genome-Wide Association Studies (GWAS) have resulted in the iden-

tification of thousands of genetic variants that are associated with human traits and diseases.

However, identified single nucleotide polymorphisms (SNPs) only explain a small fraction of

the risk of disease, and most of the genetic contribution to human traits remains unidentified

[1]. It has also been suggested that other molecular factors, such as epigenetic modifications

and protein biomarkers are associated with disease development. While biomarkers are often

considered being markers of disease, epigenetic factors have commonly been suggested to

have a causal effect on disease development. Epigenome-wide association studies (EWAS)

have therefore been performed aiming to identify associations between epigenetic modifica-

tions and disease traits and differential epigenetic patters have been identified for e.g. asthma,

obesity and myocardial infraction [2–4]. However it is currently unclear whether the epige-

netic variation is causal in the pathogenesis of disease. Epigenetic variation can be influenced

by genetic variation [5], binding of transcription factors [6] or by external (environmental)

factors such as smoking [7]. Whether associations between epigenetic factors and disease risk

reflect disease pathogenesis, if the association are confounded by unknown environmental fac-

tors or if epigenetic variation is causal for disease development has still yet to be investigated.

Epigenetic modifications play an important role in regulation of gene expression [8] and in

pathogenesis of human diseases [9]. This raises the possibility that epigenetic variation can be

causal for disease development or can even to contribute to the heritability of human traits.

Trans-generational heritability of epigenetic alterations, i.e. epigenetic changes that escape

reprogramming during the formation of our gametes and during the embryogenesis [10] has

not been demonstrated in humans. Intergenerational heritability on the other hand, has. A

fetus is already exposed to a certain environment before birth, and epigenetic changes also

occur during this time. An example is that newborns to mothers that have been smoking during

pregnancy have epigenetic changes that reflect the increased activity of genes, including AHRR
encoding the aryl-hydrocarbon receptor repressor, which are involved in the metabolism of

toxic components from tobacco smoke [11]. Those changes in AHRR are similar to those ob-

served among adult smokers [7]. However, the activity of these genes is not likely to cause an

increased risk of smoke-associated disorders. Rather, the exposure to toxic compounds during

The relative contribution of DNA methylation and genetic variants on protein biomarkers

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007005 September 15, 2017 2 / 24

Research. The DNA Methylation study in NSPHS

has been funded by Swedish Medical Research

Council (Project Number 2011-2354 to ÅJ, http://
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embryogenesis could serve as the causal factor for increased disease risk as well as for variation

in AHRRDNA methylation. However, there are also epigenetic alterations caused by exposure

to different pathogenic environmental factors that might result in increased disease risk. For

example, hypermethylation of tumor suppressor genes can lead to gene inactivation and subse-

quent cancer progression [12]. The pre-birth accumulation of such causal epigenetic alterations,

can thereby also explain part of the heritability of human traits. In addition, it has been pro-

posed that genetic variants that allow for more dynamic changes in gene expression (which is

reflected by alterations in the epigenetic patterns themselves) further contribute to the heritabil-

ity [13].

Similarly to epigenetic alterations, elevated levels of many proteins have been associated

with various diseases and are therefore considered to be biomarkers for respective disease. Pro-

tein biomarkers are produced naturally in the body. Increased levels of a biomarker can reflect

up-regulation of a gene due to disease pathogenesis or due to epigenetic factors. One could

therefore believe that epigenetic alterations should give rise to changes in many downstream

factors. However, it is also known that protein levels vary between individuals due to genetic

variants and lifestyle factors [14,15]. It is therefore possible that genetic, environmental and/or

lifestyle factors are the major causes of association between epigenetic alterations and disease

related biomarker levels, as well as between epigenetic alterations and disease prevalence

where the epigenetic alterations by themselves are not causing the disease.

In this study we have investigate the genetic and epigenetic contribution to variation in a

large set of disease related biomarkers and addressed if epigenetic alterations by can be causal

for variation in biomarker levels. We have used large scale genetic, epigenetic and proteomic

data to describe the association between genetic and epigenetic factors and protein biomarkers

for inflammation, cancer and cardiovascular diseases. We have used the highly sensitive and

specific Proximity Extension Assay (PEA) [16] to measure the abundance of 144 established or

potential protein biomarkers for inflammation, cancer and cardiovascular disease (S1 Table)

[15,17] in plasma from 1,004 individuals from a cross-sectional population-based cohort from

Sweden. We have then integrated data from over 10 million SNPs and DNA methylation levels

at 470,000 CpG sites with the protein biomarker data. The specific objectives were to: 1) iden-

tify associations between genetic variants and biomarker levels, 2) identify associations

between DNA methylation (one epigenetic mechanism) and biomarkers and measure to what

extent these associations are caused by genetic variants, 3) investigate whether measured DNA

methylation can explain parts of the variation in biomarker levels that are not explained by

genetic variants, and 4) investigate whether genetic variants regulate DNA methylation levels

also influences protein biomarker abundance or vice versa.

Results

A total of 1033 participants with genotype data were included in this study. A subset of these

participants had good quality measured biomarkers (N = 961) and DNA methylation

(N = 729) data available, of which 698 had both biomarker and DNA methylation data avail-

able (S2 Table). The age of the participants ranged from 14 to 94 years with a median of 50.4

years, and 53% of the participants were females. The cohort is population-based with partici-

pants being invited independent on disease and health status, with a number of participants

having (or having experienced) different diseases (S2 Table).

GWAS for biomarker levels

In total, 121 of the 144 biomarkers passed quality control (QC) and were used in the analysis.

Many biomarkers are closely related and their abundance level in plasma clustered accordingly
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(S1 Fig). We previously used a two-stage GWAS design to identify genetic variants associated

with protein abundance levels [15,18]. In the current study we combined the material and

used an updated reference panel for imputing genotypes not included on the genotyping

arrays. Previously we have identified GWAS signals for 24 of the biomarkers [15,17]. Here we

have increased this number by identifying 45 GWAS regions (hits) for 39 of the biomarkers

(Bonferroni adjusted P< 0.05, adjusted for 11,901,634 SNPs tested) (Fig 1, S2 Fig and S3

Table). Using a more strict adjustment for multiple texting (P< 4.1e-10 - see method section),

that also adjusts for the number of biomarkers include, resulted in 35 GWAS regions for 30

biomarkers. In the GWASes, the inflation of low P-values was limited, with lambda estimates

ranging from 0.90 to 1.06 (Fig 1, S2 Fig and S1 Table). For a majority of these biomarkers

(N = 24) the associations represented cis-regulatory SNPs that were located in direct proximity

to the respective protein-encoding gene. For another five of the biomarkers, the associated

SNP was located within one megabase from the gene that encodes the respective protein (S4

Table). Adjusting for the most significant SNP for each biomarker resulted in secondary (con-

ditional) signals for five biomarkers (CCL24, MIC-A, MMP-7, MMP-10 and VEGFR-2, S5

Table) and tertiary signals for two biomarkers (CCL24 and MIC-A, S6 Table).

EWAS for biomarker levels

The EWAS revealed a total of 188 significant associations distributed over 131 chromosomal

regions with the abundance levels of 44 biomarkers (Bonferroni adjusted P< 0.05, adjusted

for 473,864 sites tested) (Fig 1, S3 Fig, S7 Table). The inflation of low P-values were somewhat

higher in the EWAS compared to the GWAS, with lambda estimates ranging from 0.9 to 1.52

(Fig 1, S3 Fig and S1 Table). A subset of the probes that were used to measure the DNA meth-

ylation levels have previously been highlighted as potentially cross-hybridizing to other parts

of the genome [19]. Removing such probes from the results reduced the number of chromo-

somal regions associated with biomarker levels from 131 to 124. For CCL24, CCL4, CHI3L1,

Cystatin B, IL6R, MIC-A and RETN the signals mapped to a cis-located CpG site near the gene

encoding the respective biomarker, similar to what was observed in the GWAS. Adjusting for

the most significant CpG site from each association signal did not result in any significant

genome-wide secondary signals. In contrast to the GWAS signals (which, for many biomarkers

extended over several megabases) most of the EWAS signals were represented by one single

CpG site. Only 20 regions consisted of multiple biomarker-associated CpG sites, including those

associated with GDF-15 [20], Flt3L and CXCL9. Out of 57 CpG sites in these 20 regions, 28 sites

represented partially independent effects (see the Method section) although only one met the

threshold for genome-wide significance (S8 Table). We observed fairly high correlations between

the methylation levels at some distantly located CpG sites (Fig 2A). Most correlations were posi-

tive with strong correlations between CpG sites located in the same chromosomal regions (e.g.

on chromosome 1, 3, 6, 7, 16, and 17), representing the dependent effects already investigated

(S8 Table). However, we also observe some correlations between trans-located CpG sites.

In total, 13 different CpG sites were associated with more than one biomarker (Table 1, Fig

2B). These sites were distributed over eleven genomic regions and all but one is located within

or in close proximity to genes that have been implicated in cardiovascular disease, cancer or

inflammation [21–32] (Table 1). One of the CpG sites, cg03636183, in F2RL3was associated

with both IL-12 and WFDC2 levels, and another site, cg05575921, in AHRRwas associated

with IL-12 levels. By including smoking in our model, these associations (between DNA meth-

ylation and biomarkers) were no longer significant (P> 0.05), which reveals that tobacco

smoking was confounding these associations. The P-values for none of the other associations

were influenced by including smoking as a covariate in the analysis.

The relative contribution of DNA methylation and genetic variants on protein biomarkers
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Integrated analyses and heritabilities

Integrating the results of the EWAS and GWAS, 18 biomarkers (CCL19, CCL24, CCL4,

CHI3L1, Cystatin B, Flt3L, IL-12, IL17RB, IL6RA, MIA, MIC-A, MMP-12, NEMO, RETN,

Fig 1. Manhattan and QQ plots for MIC-A. The red line in the Manhattan plots (left panel) indicates the threshold of significance

(Bonferroni adjusted P-value = 0.05). The black line in the QQ plots (right panel) shows the 1:1 regression line and the red line in the QQ

plots is the regression line illustrating the inflation of low P-values and the slope of the red line equals the inflation factor (Lambda). A)

Results from the primary EWAS between MIC-A and DNA methylation. B) Results from the primary GWAS. C) Results from the EWAS

adjusted for all independent SNPs (N = 3) identified in the GWAS. D) Association between MIC-A GS and DNA methylation levels across

the genome, and a zoom-in on a region of chromosome 6.

https://doi.org/10.1371/journal.pgen.1007005.g001
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ST2, TIM, TM, and TRAIL) showed significant associations with both SNPs and DNA methyl-

ation levels. For eleven of these biomarkers the GWAS and EWAS signals were located in the

same region (within two megabases from each other). To determine if the EWAS and GWAS

signals in the overlapping regions were independent, the SNPs for each biomarker (S9 Table)

were used as covariates in the EWAS (Fig 1, S4 and S5 Figs and S10 Table). None of the 11

EWAS hits that were located in the same region with a GWAS hit remained genome-wide sig-

nificantly after adjusting for the top SNPs (Fig 3B, Table 2). However, considering the number

of test performed (15 tests for 11 biomarkers), two were still significant after adjusting for mul-

tiple testing. This suggests that most of the EWAS signals were partly driven by underlying

genetic variation (Fig 3A and 3B). For seven biomarkers, where the EWAS hit was not located

in the same region as the GWAS hit, the EWAS signals were mainly unaffected or even became

more significant by adjusting for the top SNPs (Fig 3C, S10 Table). The latter is expected when

adjusting for an important precision variable (in this case the SNP) that influences the varia-

tion in the outcome variable, since failure to adjust for precision variables will tend to attenuate

association between the biomarker and the DNA methylation levels towards the null.

Fig 2. Correlation links between genomic regions. The links between the CpG sites represent squared correlation coefficients (R2) ranging from zero to

0.77 reflected by the intensity in the color with red representing positive correlations and blue negative correlation. A) Shows the correlation pattern between

DNA methylation levels at different CpG sites across the autosomal chromosomes. Only CpG sites associated with any of the biomarkers are included. The

outer circle shows the chromosome number, second circle shows the cytobands for each chromosome clock wisely directed. The third circle is an extract

from the Manhattan plot the–log10(P-values), with the scale ranging from 7 to 24. B) Shows the correlation pattern between CpG sites that are associated

with multiple biomarkers and the correlation pattern between these biomarkers. The second circle is the names of the CpG sites and the biomarkers included

in theses analyses. Inside the cytoband-circle, the CpG cites (magenta) and the genes encoding respective biomarker (cyan) with lines to the genomic

position are shown.

https://doi.org/10.1371/journal.pgen.1007005.g002
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We also estimated the heritability for each biomarker and tested whether the heritabilities

were significantly different (see method section) when adjusting for associated GWAS or

EWAS signals, which would indicate that the GWAS or EWAS hits could explain a significant

part of the heritability (S11 Table). Many of the biomarkers, even the ones for which we did

not find a GWAS hit, had high heritability estimates. For example: mAmP, TRANCE, GAL,

VEGF-D and IL-18 all had high heritability estimates (>40% of the variation is due to heritable

Table 1. CpG sites that are associated with multiple biomarkers, and previous associations between the CpG locus diseases.

CpG Name Gene(s) annotation CpG

Gene name

Disease related gene function Biomarker Pathogenic

association of

biomarker

Estimate b P

cg00329615 Immunoglobulin superfamily member

11 (IGSF11)

IGSF11 stimulates cell growth and is frequently up

regulated in intestinal gastric cancer [53]

IL-12 Inflammation, cancer 3.48 3.8x10-8

MIA Cancer 3.52 1.8x10-8

TNFRSF4 Cancer 4.16 3.1 x10-10

cg02664787 Opioid binding protein/cell adhesion

molecule-like (OPCML)

OPCML is involved in ovarian cancer and studies

have shown epigenetic inactivation in ovarian tumors

[29]

PlGF Cardiovascular,

cancer

-4.87 1.5 x10-8

TNF-RI Cardiovascular,

cancer

-4.46 5.3 x10-8

cg03636183 c Coagulation factor II (Thrombin)

receptor-like 2 (F2RL3)

F2RL3 helps to sustain platelet aggregation during

prolonged thrombin exposures [22] and DNA

methylation at F2RL3 has been shown to be a strong

predictor of mortality [32].

WFDC2 Cancer -3.41 3.1 x10-8

IL-12c Inflammation, cancer 4.36 9.9 x10-10

cg04134748 PR domain containing 16 (PRDM16) PRDM16 is associated to left ventricular

noncompaction and cardiomyopathy [21]

Flt3L Inflammation, cancer 3.96 5.3 x10-12

SRC Cardiovascular -3.77 9.1 x10-9

cg05304729 Myeloid cell nuclear differentiation

antigen (MNDA)

MNDAis identified as a marker for nodal marginal

zone lymphoma [26]

CXCL11 Inflammation, cancer -6.51 1.1 x10-9

CXCL9 Inflammation, cancer -5.36 2.5 x10-8

cg07839457 a NLR family, CARD domain

containing 5 (NLRC5)

NLRC5 is involved in immune defense [24] CXCL11 Inflammation, cancer -3.26 3.5 x10-11

CXCL9 Inflammation, cancer -2.84 1.2 x10-10

IL-12 Inflammation, cancer -2.62 2.9 x10-8

IL-18 Cardiovascular,

inflammation

-2.6 7.0 x10-8

cg09801824 DnaJ (Hsp40) homolog, subfamily B,

member 12 (DNAJB12), DNA-

damage-inducible transcript 4

(DDIT4)

VMP1 is associated with Lp-PLA2 which is

associated with increased cardiovascular risk [23].

VMP1 and MIR21 are involved in cancer risk [28].

CXCL11 Inflammation, cancer 9.91 3.6 x10-9

CXCL9 Inflammation, cancer 9.67 1.2 x10-10

cg12785694 Structural maintenance of

chromosome 4 (SMC4) Intraflagellar

transport 80 (IFT80)

SMC4 is associated with cancer [25]. CXCL11 Inflammation, cancer -4.43 6.7 x10-8

IL-12 Inflammation, cancer -4.41 8.1 x10-9

cg12790638 Hyaluronan and proteoglycan link

protein 3 (HAPLN3), Milk fat globule-

EGF factor 8 protein (MFGE8)

HAPLN3 and MFGE8 are involved in various cancers

[30,31].

Adrenomedullin Cardiovascular,

cancer

3.95 7.2 x10-8

Cystatin B Cardiovascular,

cancer

3.7 1.5 x10-8

VEGF-A Cardiovascular,

cancer, inflammation

3.98 5.4 x10-8

cg16936953a Vacuole membrane protein 1

(VMP1), Micro-RNA 21 (MIR21)

VMP1 is associated with Lp-PLA2 which is

associated with increased cardiovascular risk [23].

VMP1 and MIR21 are involved in cancer risk [28].

CXCL13 Cancer -3.68 5.6 x10-9

Follistatin Cardiovascular,

cancer

-3.55 1.0 x10-7

GDF-15 Cardiovascular,

cancer

-3.74 2.5 x10-15

IL27-A Cardiovascular -3.04 8.9 x10-9

cg20497205 Opsin 5 (OPN5) CX3CL1 Cardiovascular,

inflammation

9.04 4.1 x10-8

HB-EGF Cardiovascular,

cancer

8.19 4.1 x10-8

a. The NLRC5 and VMP1/MIR21 regions consist of multiple associated CpG sites. However, these CpG sites are not independent and therefore only the

most significant CpG site is included in this table.

b. The estimates represent change in biomarker values (in standard deviations) per 100% change in DNA methylation level (from 0 to 100%)

https://doi.org/10.1371/journal.pgen.1007005.t001
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factors), but no significant SNPs were identified. This reflects the strict threshold of signifi-

cance used in the GWAS resulting in a large number of false negative associations, which

agrees with previous GWA studies [1]. For many of the GWAS-associated biomarkers, the her-

itability was still high after adjusting for the top GWAS SNP, including for biomarkers such as

Ep-CAM, CD30-L, MMP-1, and CCL24 with residual heritabilities of over 50%. Only five bio-

markers (IL6RA, CXCL10, CCL4, MIC-A, E-selectin, and CCL24) showed a significantly

lower heritability after adjusting for the top GWAS hits. However, adjusting for the significant

EWAS hits, on top of the GWAS SNPs, did not results in significantly lower heritability for

any of the biomarkers.

Mendelian Randomization to test for causal effects of increased

biomarker levels

We then used a Mendelian Randomization (MR) like approach to determine whether cis- reg-

ulatory methylation SNPs (meQTLs), SNPs associated with DNA methylation levels, were also

influencing variation in biomarker levels, or if cis- regulatory biomarkers SNPs influenced the

variation in DNA methylation (Fig 4). The basic concept in MR is that individuals have genetic

variants that result in different genetic levels of e.g. DNA methylation or biomarker abundance

[33]. To reduce the risk of pleiotropy only cis-regulatory SNPs (within one megabase from the

gene encoding the biomarker) were considered for these analyses. The MR analyses was

divided into five parts: 1) identify IVs for biomarker levels (cis-regulatory biomarkers SNPs),

2) test if the biomarker IVs are associated with DNA methylation levels, 3) identify IVs for

DNA methylation levels (cis-meQTLs), 4) test if the DNA methylation IVs are associated with

biomarker levels, and 5) use identified IVs in bi-directional MR analyses for a small subset of

the biomarkers.

Fig 3. Association between DNA methylation and biomarkers explained by SNPs. A) Overview of possible scenarios. If the associations are fully

explained (caused) by the SNPs, there will be no correlation between the DNA methylation and the biomarker after conditioning on the SNP. If the association

is partially explained, there will be a correlation between the DNA methylation and the biomarker after conditioning on the SNPs, but the correlation will be

weaker. If the SNP is not causing the association, the correlation between the DNA methylation and the biomarker will not be influenced when conditioning on

the SNPs. B) and C) The squared marginal and partial (after conditioning on the SNPs) correlation coefficients between the DNA methylation and the

biomarkers for pairs where a cis-regulatory SNP influencing the biomarker levels has been identified. In B) for pairs where the CpG site and the gene

encoding the biomarker maps to the same locus, and in C) for pairs where CpG site and the gene encoding the biomarker map to different regions. For

calculating the marginal and partial correlation coefficients, only individuals with DNA methylation, biomarker and SNP data available were included (N = 698).

https://doi.org/10.1371/journal.pgen.1007005.g003
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Mendelian Randomization—Identification of IVs for biomarker levels

Genetic scores (GS), representing the increase (or decrease) in biomarker levels, were calcu-

lated for each individual (S12 Table) using SNPs as instrumental variables (IVs). For 29 of the

Table 2. CpG sites and SNPs in the same chromosomal region that are associated with the same biomarkers.

Biomarker Chr SNP name a SNP

position

P (GWAS)

N = 961 b
CpG

name(s) c
CpG

position

P (EWAS)

N = 698 b
Padj (EWAS)d

N = 698 b
P (CpG-SNPs)e

N = 729 b

CCL19 6 rs2395201 32451897 5.9 x 10−17 cg26805579 32372962 1.8 x 10−8 0.038 1.5 x 10−93

CCL24 7 rs10755885 75463505 1.8 x 10−39 cg12943082 75419311 8.5 x 10−13 0.0057 3.6 x 10−16

rs73359714 75447156 7.5 x 10−37

rs11465295 75442407 2.0 x 10−12

CHI3L1 1 rs2153101 203168474 2.9 x 10−41 cg07423149 203156246 1.3 x 10−24 5.9 x 10−5 3.1 x 10−75

Cystatin B 21 rs35285321 45201832 7.2 x 10−15 cg09468832 45199094 1.5 x 10−8 0.12 7.8 x 10−84

cg08529987 45206724 4.6 x 10−9 0.0024 6.6 x 10−46

IL6RA 1 rs12133641 154428283 3.0 x 10−73 cg21262032 154437693 1.2 x 10−8 0.18 8.9 x 10−18

MIA 19 rs3869574 41284915 2.4 x 10−26 cg09274963 41633902 1.1 x 10−8 0.0098 7.6 x 10−45

MIC-A 6 rs6938453 31377793 5.9 x 10−29 cg02884661 31382931 1.2 x 10−16 0.13 4.3 x 10−31

rs52979004 31402666 4.2 x 10−15 cg04628742 29973221 2.4 x 10−9 0.032 6.3 x 10−11

rs2516470 31407331 8.8 x 10−10 cg12001709 31466798 5.1 x 10−9 0.26 1.4 x 10−13

RETN 19 rs149552675 7624687 1.1 x 10−10 cg02346997 7733883, 3.1 x 10−8 1.6 x 10−6 2.5 x 10−5

RETN 19 cg22322184 7734203 9.1 x 10−9 1.9 x 10−7 0.0011

ST2 2 rs12712136 102936366 1.2 x 10−46 cg05295703 102895712 8.4 x 10−9 0.95 2.3 x 10−49

The table shows the results for the biomarkers with overlapping (with regards to chromosomal loci) signals from the EWAS and the GWAS, the association

between biomarker and CpG sites when adjusted for the SNPs, and the association between CpG methylation and SNPs.

a. Only independent top SNPs are included

b. N–Sample size for each set of analyses.

c. Only independent top CpG sites are included

d. P-value between the CpG site and the biomarker after adjusting for all independent SNPs.

e. P-value for the association between the CpG site and all independent SNPs (combined)

https://doi.org/10.1371/journal.pgen.1007005.t002

Fig 4. A directed acyclic graph of the direct effects and correlations between protein levels, genetic

variants, DNA methylation and smoking. Single-headed arrows represent direct associations and double-

headed arrows indicate correlations. Two of the correlations between DNA methylation and protein levels

could be completely explained by the confounding by smoking that is influencing both DNA methylation and

on protein levels. Similarly, 23 of the biomarker-DNA methylation correlations could be explained by genetic

variants. The numbers in the figure represent the numbers that we found among the proteins and EWAS-

significant CpG sites in our study.

https://doi.org/10.1371/journal.pgen.1007005.g004
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biomarkers, we identified valid IVs according to the IV criterion 1 (see the Method section,

Fig 4). Even though only one or a few SNPs (IVs) were included per biomarker, the strengths

of the instruments were good. Some of the IVs explained over 40% of the variation in bio-

marker levels (S6 Fig) with F-values of the IVs ranging from 30 to 600 (S12 Table), which is far

above the recommended minimum F-value of 10 that has been suggested for MR studies [34].

Mendelian Randomization—Test if biomarker IVs are associated with

DNA methylation levels

The IVs were tested for association with variation in DNA methylation across the genome. As

expected, the IVs were associated with DNA methylation for all regions overlapping between

the EWAS and GWAS. For these, we were not able to do any causal inference since the IV can

be directly associated with the DNA methylation level as well as being associated through the

biomarker level, and thereby fail the second IV criteria (Fig 4). However, many of the IVs were

associated with DNA methylation at multiple loci in the genome (S7 Fig and S13 Table). For

example, the IVs for MIC-A were not only associated with DNA methylation across a seven-

megabase region around MHC on chromosome 6 (including MICA), but also with DNA

methylation at multiple regions on other chromosomes (Fig 1D). This suggests that MIC-A

levels might influence DNA methylation across the genome. For IL6RA, the IV was associated

with methylation levels around IL6R (encoding IL6RA), but also with methylation levels at

HLA-DPA1 and HLA-DPB1, which are important genes for the immune system, indicating

that IL6RA might influence the expression of these genes. Similarly, the IVs for 25 other bio-

markers were associated (in trans) with DNA methylation patterns (S13 Table).

Mendelian Randomization—Identification of IVs for DNA methylation

levels

We then aimed to identify valid IVs for the DNA methylation levels at all EWAS-significant

CpG sites. We first performed association studies for these CpG sites (S7 Table) to identify cis-
meQTL, i.e. cis-regulatory SNPs that were associated with variation in DNA methylation level.

Out of 169 unique CpG sites, 58 were associated (P< 0.5 x 10−8) with a cis-regulatory SNP

located within one megabase from the CpG site (S14 Table). Of these, one SNP overlapped

directly with the CpG site, and three were located close to the CpG site (< 50bp). However,

most of the meQTL were located several thousand base pairs away from the CpG site.

Mendelian Randomization—Test if DNA methylation IVs are associated

with biomarker levels

To evaluate whether DNA methylation levels affect biomarkers directly, we used these meQTL

as IVs, and tested for association with their respective CpG-associated biomarker. Not surpris-

ingly, for associations that overlapped between EWAS and GWAS for the same biomarker, the

cis-regulatory IVs identified were also associated with both DNA methylation and biomarker

level. For these, the association between the DNA methylation and the biomarker was already

shown be caused by the SNP to a large extent (Fig 5). Since these IVs are directly associated

with both DNA methylation and biomarker levels, they are not valid as IVs in MR according

to the second IV criteria (Fig 5). For the non-GWAS-overlapping EWAS hits, where we had

valid IVs, there was no IV that was associated with biomarker levels after adjusting for the

number of tests performed. Most of these IVs had high strength, with F-values ranging from

14 up to 400, with a median value of 81 (S14 Table). Therefore, these results do not support

that variation in DNA methylation level itself directly affects the levels of these biomarkers.

The relative contribution of DNA methylation and genetic variants on protein biomarkers
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Bi-directional Mendelian Randomization

For biomarker-DNA methylation associations where we could identify IVs for both the bio-

marker and the DNA methylation levels, we performed bi-directional analyses. Bi-directional

MR requires that the IVs for the two variables (biomarker and DNA methylation) are indepen-

dent which discarded most of the associations from these analyses. Only for two of the associa-

tions, the IV for the biomarker and the DNA methylation levels were independent: rs10076557

(IL-12)—rs12526186 (cg03636183) with R2 = 0.001 (P = 0.34), and rs2279699 (MIA)—rs2515

669 (cg21586223) with R2 = 0.0002 (P = 0.74). In either of the cases, we could not see a signifi-

cant association between the biomarker IV the DNA methylation levels or the DNA methyla-

tion IV and the biomarker level (P>0.05). We can therefore not draw any conclusion with

regards to causality based on this experiment.

Discussion

We have investigated genetic and epigenetic determinants of protein biomarkers for cancer,

inflammation or cardiovascular disease by integrating genome-wide DNA methylation and

SNP data. The EWAS revealed 188 associations between protein abundance and DNA methyl-

ation, representing 131 loci of which 124 contained at least one probe that is not likely to

cross-hybridize in the genome. In contrast, the GWAS revealed 5,951 associations between

protein abundance and SNPs, representing 45 loci. The larger number of associations with

SNPs partly reflects the larger number of SNPs analyzed (N = 11,901,634), compared to the

number of CpG sites (N = 473,864) with the fraction of significant sites being similar in the

GWAS and the EWAS (0.04% and 0.05% respectively). However, the larger extent of correla-

tion (linkage disequilibrium [LD]) between SNPs compared to the extent between DNA meth-

ylation levels at CpG sites also results in a larger number of associated SNPs.

Fig 5. A directed acyclic graph of the causal inference. X and Y are two correlated phenotypes (the DNA

methylation level at a CpG site and a biomarker level). The instrumental variable (IV) is the cis-regulatory

genetic variant that directly influences X. If the IV is influencing Y through X in this way, there is a causal

relation between X and Y. If the IV is not influencing Y through X, there might be an unknown confounding

factor influencing both X and Y (U2), or there might be a reverse causation (Y influences X). To be a valid

instrument three criteria must be fulfilled: IV criterion 1) the genetic variant must not be associated with an

unknown confounding factor (U1) that influences Y, and IV criterion 2) the genetic variant must not be directly

associated with Y, and IV criterion 3) the genetic variant should be associated with X.

https://doi.org/10.1371/journal.pgen.1007005.g005
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We found that many of the biomarkers are regulated by cis-located SNPs in proximity to

the protein-encoding gene. However, the EWAS hits were more spread throughout the

genome. DNA methylation at a number of CpG sites was associated with more than one bio-

marker. Most of these CpGs were located within or in close proximity to genes that are part of

the same biological pathways as the biomarkers and most of these genes have previously been

shown to be involved in cardiovascular diseases, cancer or inflammation (Table 1). Some of

the biomarkers, such as GDF-15, Flt3L and CXCL9, were associated with multiple CpG sites

located in different chromosomal regions, whereas most of the biomarkers were only associ-

ated with DNA methylation at one region, similar to the results from the GWAS. In contrast

to the GWAS signals, which for many biomarkers extend over several megabases, most of the

EWAS signals were localized to one CpG site. The large GWAS regions reflect the large

amount of LD in the genome, caused by genetic variants co-segregating during meiosis due to

physical proximity (or low recombination rates in between), but it also reflect the high density

of SNPs analyzed. In contrast, the correlation pattern in DNA methylation reflects the underly-

ing regulatory properties of a chromosomal region. Two CpG sites, located in close proximity

to one another, can have a completely different methylation pattern if one is located within a

transcription factor-binding site in a promoter region, while the other is located outside the

promoter. However, two CpG sites located close to each other in the same regulatory region

are more likely to have a high correlation between their DNA methylation levels. A total of 57

of our significant CpG sites clustered in 20 regions with more than one EWAS signal. Out of

these 57 CpG sites, 28 sites represent partially independent effects.

Epigenetic changes have previously been proposed to affect the pathogenesis of complex

diseases [35]. We therefore evaluated the causal relation between genetic variants, DNA meth-

ylation and biomarker levels. We could see that SNPs identified in the GWAS, accounted for a

significant fraction of the heritability of some biomarkers. However, we could not get any evi-

dence for that DNA methylation explains any part of the heritability. We further showed that

cis-regulatory SNPs for some of the biomarkers had a direct effect on DNA methylation levels

at different locations of the genome. However, we found no evidence that DNA methylation

has any direct effect on biomarker levels. Some associations between DNA methylation and

biomarker levels were driven by environmental factors. For example, CpG sites in F2RL3 and

AHRRwere associated with both IL-12 and/or WFDC2 levels. We have previously shown that

DNA methylation at these CpG sites, as well as IL-12 levels, is strongly influenced by tobacco

smoking [7,15]. By including smoking in our model, these associations were no longer signifi-

cant, which suggests that tobacco smoking was confounding these associations. Many of the

EWAS hits were also driven by underlying cis-regulatory SNPs and the associations were no

longer significant when adjusting for the GWAS-SNPs. Such confounding, caused by SNPs or

environmental factors, seem to be a major driver of associations between DNA methylation

and biomarker levels. It could therefore be considered very likely that many of the remaining

EWAS hits reflect different unmeasured health or lifestyle-related factors, such as immune sys-

tem disorders or infections. Taken together, our results indicate that DNA methylation has a

limited direct effect on biomarkers of complex diseases, and rather reflect the underlying pat-

tern of genetic variants, specific environmental exposures, or represent secondary effects of the

pathogenesis of disease.

One limitation of the study is that DNA methylation was measured in white blood cells and

it is possible that analysis of other tissues could have generated different results, in particular

for biomarkers that are not primarily expressed in blood cells. Another limitation may be the

use of causal interference where direct experiments, with individuals randomized into be

exposed or not be exposed to a specific biomarker, would have been preferred. However, in

order to perform a similar study using direct experiments, one would have to use a large
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population of experimental animals and design experiments separately for each of the bio-

markers and for each of the CpG sites. Exposing animals to biomarkers, by direct injections,

and measure the short-term epigenetic response would be possible. However, there is no high-

throughput method available for in situ alterations in DNA methylation levels and thus the

influence of DNA methylation changes on biomarker levels cannot be tested. Therefore, the

best way to address the causality between biomarkers and CpG sites is to use well-established

statistical methods for causal inference as done in our study. It is also worth pointing out that

defining an IV as the most significant SNP from a GWAS and by using the same cohort for

defining IVs, as performing the MR, can lead to overestimation of the regression coefficients

and over-fitting. However this will not influence the P-values in the causal inference but possi-

bly the estimate of the causal effect, which should thereby be interpreted with care. Another

limitation of the study is that samples were stored for several years prior to epigenetic and pro-

teomics analyses. While DNA methylation appears to be stable over time, proteins are more

sensitive to storage time [36]. In all our analyses we used a dummy variable to separate the

samples that had been stored for different amount of time (year of sampling), and we also per-

formed normalization to account for batch effects, which should eliminate the risk of intro-

ducing false positive associations. However, it is possible that some proteins have been partly

degraded during storage, which could influence the detection frequency, as well as resulting in

weaker associations with biomarker levels compared to using samples with shorter storage

time.

Another limitation with the study might be the strict adjustment for multiple testing in the

EWAS where we have used Bonferroni adjustment for the number of CpG sites analyses,

rather than FDR adjustment that is commonly used in DNA methylation studies. This might

have resulted in slightly fewer significant findings, but the probability of false positive results is

reduced. Most of the tests are not independent due to the correlation between biomarkers, the

LD between SNPs and the correlation between DNA methylation levels at nearby CpGs. We

have therefore adjusted for the total number of SNPs and CpG sites analyzed, but not for the

number of biomarkers included in the analyses. However, all our genome-wide significant

EWAS hits were also significant using FDR (Benjamini-Hochberg) adjustment for all CpG

sites and all biomarkers. We also observed inflation of low P-values in the EWAS for some of

the biomarkers. Such inflation is not unexpected and is not comparable to inflation in a

GWAS. Association between biomarker levels and in DNA methylation levels can reflect

underlying environmental factors leading to a change in both markers. For example, an

inflammatory response will be associated with increased levels of some inflammatory biomark-

ers. This is mediated by activating the expression of the genes, which is tightly linked to the

DNA methylation level. Therefore, we would expect co-variation between biomarkers and

DNA methylation at many regions in the genome, giving rise to inflation of low p-values.

Finally, the use of cis-regulatory genetic variants as IVs in MR might is not completely resistant

to pleiotropy [37]. It is possible that the cis-regulatory variant influences the expression of sev-

eral genes and that the causal path from the SNP to the response variable is not (only) through

the biomarker/CpG site under investigation. One way to overcome the risk of pleiotropy in

MR studies is the inclusion of many independent IVs. However, due to the strong cis-regula-

tory effects on biomarker and DNA methylation levels, in combination with the LD pattern of

the genome, it is not possible to find independent IVs for the variables investigated.

Conclusions

We have integrated genetic and DNA methylation data to study associations and causal rela-

tionship between DNA methylation and protein abundance. For 36% (44/121) of the studied
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protein biomarkers, the abundance level was associated with DNA methylation, but for 52%

these biomarkers (23/44), the associations were explained by genetic variants (Fig 4). For a

subset of biomarkers, the association with DNA methylation was confounded by environmen-

tal factors (e.g., smoking), but for the majority of the associations, no such relationship could

be found. Interestingly, for 22% of the proteins (N = 27), the abundance level was likely to

affect DNA methylation patterns at different genomic loci based on the fact that their respec-

tive IVs were associated with DNA methylation levels (Fig 4). However, the opposite direction

(DNA methylation IVs influencing biomarker levels) was not observed. These results does not

indicate that DNA methylation plays a major direct role in the regulation of these disease bio-

markers but that many of these biomarkers instead might exert their effects by affecting DNA

methylation and thereby the expression of other genes.

Methods

Ethics statement

The NSPHS study was approved by the local ethics committee at the Uppsala University in

compliance with the Declaration of Helsinki (Regionala Etikprövningsnämnden, Uppsala Dnr

2005:325) and extension of the project period was approved 2016-03-19 (same Dnr). All par-

ticipants gave their written informed consent to the study. In case the participant was not full

age, a legal guardian signed additionally. The procedure which was used to obtain informed

consent and the respective informed consent form has been recently discussed in the light of

present ethical guidelines [38].

Study cohort NSPHS

Northern Sweden Population Health Study (NSPHS), the study cohort used in this project,

was a health survey of the population in the parishes of Karesuando (year 2006) and Soppero

(year 2009), county of Norrbotten. NSPHS was initiated to study the medical consequences of

lifestyle and genetics. These parishes had about 3,000 inhabitants who met the eligibility crite-

ria in terms of age (>14 years), of which 1,069 individuals participated in the study. More

information about the NSPHS has been published previously [14]. For each participant in the

NSPHS, blood samples were taken and immediately frozen and stored at −70 C. Genomic

DNA for methylation and SNP analyses was extracted from previously frozen peripheral blood

leukocytes using a phenol:chloroform protocol.

Genetic data

DNA samples from the NSPHS individuals were genotyped using the Illumina HumanExome-

12v1 and either Illumina Infinium HumanHap300v2.0 or Illumina HumanOmniExpress-12v1

bead microarrays [14]. Analysis of genotype raw data and quality control (QC) were per-

formed using GenABEL package [39]. A total of 556,432 and 979,343 genotypes passed the QC

in the samples collected in 2006 and 2009 respectively, and were used to impute unassayed

genetic variants. Genotype data were imputed with a pre-phasing approach implemented in

SHAPEIT version 2.5 (r790)) [40] and IMPUTE2 (version 2.3.2) [41] in the two sub-cohorts

separately, using the 1000 Genomes Phase 3 integrated variant set (released October 2014) as

the reference panel. Quality control (QC) were performed using GTOOL (v0.7.5) [42]. First,

IMPUTE’s ‘info’ score >0.3 were required in both sub-cohorts prior to merging. The merged

data were filtered using a Bonferroni-corrected Hardy–Weinberg cutoff of 0.05, combined

info score>0.3 and a minor-allele frequency (MAF) > 0.0001, corresponding to at least one

chromosome in the whole material. Only autosomal SNPs were included in the analyses. After
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QC of imputed autosomal data 11,901,484 SNPs and a total of 1,033 individuals remained (S2

Table). All genomic positions have been reported according to GRCh37.

DNA methylation data

Genomic DNA for 743 samples that had passed the SNP QC (all samples that was collected in

2006 and a random selection of samples from the 2009 collection) was bisulfite-converted

using an EZ DNA methylation Kit (ZYMO research) according to the manufacturer’s recom-

mendations. The methylation status of the genomic DNA was then assessed using the Human

Methylation450 BeadChip, (Illumina, San Diego, USA) according to the standard protocol.

Analysis of the raw data was performed using minfi. Normalization was done using Subset-

quantile Within Array Normalisation (SWAN). A marker detection P—value � 1.38�10−10

(Bonferroni adjusted P -value = 0.05, adjusted for the number of individuals � the number of

CpG sites analyzed) was applied, a Probe Call rate of>0.98, and an individual call rate of

>0.98 was used. A total of eight control samples were included: two positive controls, two neg-

ative controls, two duplicated samples that originated from the same blood samples and two

duplicated samples that came from the same individual but blood samples were taken with

three years in between as has been described previously [7]. After removing control samples,

and two genetic outliers, 729 samples with DNA methylation data, which had also passed the

QC in the SNP genotyping, remained for downstream analyses (S2 Table). Only autosomal

sites were included in the analyses, leaving 473,864 sites post-QC. To ensure that the results

were not influenced by variation in blood cell fractions between samples, we estimated the

fraction of CD8T-, CD4T-, NK- and B-cells, monocytes and granulocytes in the study samples.

This was done using the R package minfi [43] that allows for estimating cell fractions in Illu-

mina 450K methylation data from whole blood. This method is based on the methylation data

published for flow-sorted cells [44] and algorithms derived from the study by Houseman et al.
[45]. Annotation of CpG site proximity to genes was provided by Illumina but we also vali-

dated these by comparing chromosomal positions of CpG sites with positions of human genes

using build 37. A fraction of the probes, which are used to measure the DNA methylation on

the Illumina 450K chips, have previously been suggested to cross-hybridize to different geno-

mic loci [46] and these have been flagged in Supplemental Tables.

Biomarkers

Directly after blood samples were taken, plasma was frozen and stored in aliquots at -70˚C

until central analysis. Biomarkers were measured in plasma for 1,004 randomly selected indi-

viduals, all of which had passed the SNP QC, using the Olink Proseek Multiplex Oncology I

and CVD I 96x96 kit and quantified by real-time PCR using the Fluidigm BioMark™ HD real-

time PCR platform as described earlier [15–17,47]. In brief, two oligonucleotide-labeled anti-

bodies probes are bound to each biomarker. If the two probes are in close proximity a PCR tar-

get sequence is formed by a proximity-dependent DNA polymerization, which is quantified

using standard real-time PCR. For cost efficiency, most of the biomarkers that overlap between

the Oncology and CVD panel were only measured once with exception for Cystatin B and

HB-EGF that were measured twice due to their associations with both cancer and CVD. The

biomarkers were measured in batches (plates) of 92 individuals and 4 internal controls on

each plate and normalized as described previously [15–17,47]. Due to systematic differences

between plates, the plate number was included as a covariate (a factor) in all statistical analyses.

In addition, all measurements for a given biomarker on a given plate were excluded if there

were too many (>90%) individuals below the detection limit on a given plate. Individuals were

excluded if at least one internal control was flagged as an outlier, if they were outliers regarding
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all biomarker measurements, or if>75% of the biomarker measurements were below the

detection limit. Finally, we removed all biomarkers with a post-QC detection rate below 20%,

which is a reasonable cutoff since many biomarkers are only expected to be detected in indi-

viduals with a disease related condition. After all QC steps, 121 biomarkers and 961 individuals

(S2 Table) remained for downstream analyses. All individual measurements that did not pass

QC were set to missing, meaning also that all measurements below detection limit were

removed prior to statistical analyses. The measured values for biomarkers were then rank

transformed to normality (mean = 0 and standard deviation = 1), using the rntransform func-

tion in GenABEL [48] and adjusted for sex, age, body-mass index (bmi), year of collection and

plate number (as a factor).

Statistical analysis—GWAS for biomarker levels

Analyses were performed using GenABEL [48] or using ProbABEL [49], including 961 indi-

viduals with SNP and biomarker data. We used a polygenic model in GenABEL to adjust for

relatedness among individuals by utilizing a genetic kinship matrix. The kinship matrix was

estimated using the ibs function in GenABEL including genotyped autosomal SNPs (MAF

> 0.05) that overlap between the two different genotyping chips. The inverse of the variance-

covariance matrix, and the residuals from the polygenic models were exported as input in the

GWA analyses. The GWA analyses was performed by palinear function in ProbABEL using

the -mmscore option, with a dummy variable separating samples genotyped with two different

genotyping arrays as the only covariate. All biomarkers were already adjusted for relevant

covariates as part of the QC. In the GWAS we primarily used a P-value cutoff of 0.05 / the total

number of SNPs tested. However, we also indicate which associations would pass a threshold

if also adjusting for the number of biomarkers tested using a threshold of 5e-8 (the standard

GWAS P-value cutoff) divided by the number of biomarkers analyzed (N = 121) resulting in a

P-value cutoff of 4.1e-10. QQ-plots and Manhattan plots were produced using qqman [50].

Statistical analysis—EWAS for biomarker levels

All statistical analysis and plots were carried out in R [51]. A total of 729 individuals passed QC

for DNA methylation and out of these, 698 also had post-QC biomarker data available (S2

Table) and were included in the EWAS analyses. The DNA methylation levels (aka. beta-values)

were adjusted for sex, age, batch and plate effects, year of sampling and cell fractions (CD8T-,

CD4T-, NK- and B-cells, monocytes and granulocytes) using a linear model. Adjusted biomark-

ers were compared to adjusted methylation levels using the polygenic model implemented in

the GenABEL package [48], which adjust for relatedness among individuals using a genetic kin-

ship matrix. Biomarkers were used as response variables and methylation levels as explanatory

variables. The estimates were extracted directly from the polygenic model, and P-values were

estimated by comparing the polygenic model to a null model where the explanatory variable

(DNA methylation) was removed. Independency between EWAS significant CpG sites that

were located in the same region (within 2Mb from each other) and that were associated with

the same biomarker was investigated. This was done by including the most significant CpG site

as a covariate in the null model and compare the null model to an alternative model where the

most significant and one additional CpG site from the region was included. The P-values for

the additional CpG sites were retrieved from the chi2 distribution and chi2 values were calcu-

lated as the difference in twice the negative maximum log-likelihood between the alternative

and the null models. If and additional significant CpG sites were detected (P< 0.05), this CpG

site was also included in the null model and the procedure was repeated until no additional

CpG sites within the region were significant. State of the art in EWAS studies is to use FDR
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adjustment for multiple testing. We have been somewhat stricter in adjusting for multiple test-

ing and the results presented from the GWAS are the ones that have FDR Q-values< 0.05

when adjusting for all CpG sites and all biomarkers. However, we also applied a per biomarker

Bonferroni threshold that takes into account the number of CpG sites tested for each biomarker,

resulting in a somewhat more conservative threshold of P = 1.06e-07 compared to 1.97e-07.

Statistic analyses—integrated analyses and heritability estimation

We also tested if significant DNA methylation–biomarker associations could be explained by

(caused by) underlying SNPs for all biomarkers for which an EWAS and a GWAS hit was

identified. We computed the squared marginal correlation coefficient between the biomarker

(Y) and the DNA methylation level (X) and the squared partial correlation coefficient condi-

tioning on the SNPs (adjusting for the same covariates and using the same transformation as

above). In these analyses, only individuals with data for biomarkers, DNA methylation and

SNPs were included (N = 698). The association was considered to be fully explained if X and Y

was not correlated when conditioning on the SNPs (P> 0.05/number or tests performed), par-

tially explained if X was correlated with Y after conditioning on the SNPs (P� 0.05/number or

tests performed), but the P-value did not meet the threshold for genome-wide significance

used to identify the association in the first place (P> 0.05/473,864). If P� 0.05/473,864 in the

conditional analyses, the association was considered not to be explained by an SNP. Heritabil-

ity estimates for the biomarkers were calculated using the polygenic function in GenABEL

[39] using a maximum likelihood. Biomarkers were first adjusted for covariates and normal-

ized as in previous analyses, and year of sampling was included as a covariate in the polygenic

model. The polygenic function maximizes the likelihood of the data under polygenic model to

test for the most likely estimate the heritability of a trait. To retrieve test statistics for the herita-

bility estimates, a null model (with heritability set to zero) was compared to the alternative

model (with the most likely heritability estimate). P-values were retrieved from the chi2 distri-

bution and chi2 values were calculated as the difference in twice the negative maximum log-

likelihood between the model when heritability is optimized and the model where heritability

is fixed to a set value (e.g. zero to test if the heritability differs from zero). To test if a SNP or

DNA methylation level can explain a significant part of the heritability, the null model (when

heritability is optimized) was compared to the alternative model (when heritability is opti-

mized with additional covariates in form of SNPs or DNA methylation levels).

Statistic analyses—Mendelian Randomization

We used Mendelian Randomization (MR) to determine if DNA methylation was directly

affecting variation in biomarker levels, or if biomarkers themselves were affecting the variation

in DNA methylation, and to estimate the magnitude of causal effects. MR uses genetic variants

associated with a phenotype (X) as an instrumental variable (IV) to test for causal effects of X

on a second phenotype (Y) (Fig 5). To be a valid instrument three criteria must be fulfilled

[52]: IV criterion 1) the genetic variant must not be associated with an unknown confounding

factor (U1) that influences Y, and IV criterion 2) the genetic variant must not be directly asso-

ciated with Y and IV criterion 3) the genetic variant should be directly associated with X. To

fulfill the first criterion, only genetic variants that are directly associated with X were consid-

ered as IVs. These variants were selected as cis-regulatory genetic variants that directly regulate

the expression of the protein biomarker or the DNA methylation level and therefore, the risk

of pleiotropic effects, where the genetic variant is associated with an unknown confounding

factor that influences Y, is minimized. Criterion 2 above implies that we cannot make any

causal inference between biomarkers and CpG sites that are located within the same loci and
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regulated by the same genetic variants. If there is a causal relation identified between X and Y

we can use MR to estimate the effect.

The causal inference was performed in two ways. Firstly, the DNA methylation level was set

as the explanatory variable (X) and the biomarker level to the response variable (Y), using the

most significant cis-regulatory meQTL as the IV for all EWAS significant CpG sites where

such variant was identified. Secondly, the biomarker level was set as the causal variable (X) and

the DNA Methylation level as the response variable (Y), then using the SNPs being cis-regula-

tory in relation to the gene encoding respective biomarker as the IVs. For DNA methylation

levels only the most significant SNP for each CpG site was included as IV in the causal infer-

ence, but for biomarker levels all independent SNPs from the GWAS were used as IVs. The F-

statistics was used to estimate the strength of the IVs [52] according to Eq 1, where R2 is the

squared correlation coefficient between the IV and the explanatory phenotype (X in Fig 5), n is

the sample size, and k the number of instruments. Since we were using mainly single SNPs as

IVs, k was set to 1 for most tests, except for biomarkers with more that one independent

GWAS hit.

F ¼
n � k � 1

k

� �
R2

1 � R2

� �

ðEq 1Þ

The causal inference was performed using the Two-Stage Least Squares (2SLS) regression

analysis. As in the GWAS and EWAS analyses, we first regressed out all the variation due to

the covariates, both for the explanatory variable (X) and the response variable (Y). We then

considered the linear regression model:

Y ¼ b0 þ b1X þ ε ðEq 2Þ

We assume that ε is normally distributed with zero mean. To obtain the estimated value X̂
we regressed X on the instrumental variables (IV) for each X:

X ¼ g0 þ g1IV1 þ g2IV2 þ g3IV3 þ n ðEq 3Þ

to estimate the regression coefficients γ0,γ1,γ2,γ3. Subsequently, we calculated the predicted val-

ues of X such that:

X̂ ¼ GS ¼ ĝ0 þ ĝ1IV1 þ ĝ2IV2 þ ĝ3IV3 ðEq 4Þ

derived from Eq 3, and pasted X̂ into the original linear regression model (Eq 2):

Y ¼ b0 þ b1X̂ þ o; ðEq 5Þ

Here, ω is a composite error term that is uncorrelated with X̂ . For biomarkers with only

one IV and DNA methylation levels, only one IV was included in Eqs 4 and 5. The predicted

value of X, X̂ , commonly referred to as a genetic score (GS) in genetic studies, represents the

genetically determined level of a biomarker, of DNA methylation level at a CpG site. A final

test of the significance of β1 (the MR estimate) was performed, adjusting for relatedness

among individuals using the polygenic model in GenABEL, as described above.

Statistical analysis—cis-regulatory meQTL

For all CpG sites identified in the EWAS, we performed association analyses to identify cis-regula-

tory meQTL (SNPs influencing the DNA methylation level) and to estimate the ĝ values to be

inserted into Eq 4. All SNPs within a one-megabase region flanking each CpG site were considered

as being cis-regulatory and included in the analyses. DNA methylation is known to be highly
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heritable, mainly due to underlying SNPs. In such situation, with a more or less monogenetic phe-

notypes, the variance explained by the relatedness among individuals is very similar to the variance

explained by one single SNP. Using the polygenic model (as in our previous analyses) will then

remove all of the phenotypic variance that is due to that SNPs. Consequently, adjusting the methyl-

ation levels for relatedness was not desirable. Therefore, DNA methylation levels were adjusted for

the same covariates as in the EWAS and analyzed using the linear model for association analyses

implemented in the palinear function in ProbABEL [49]. Since different chromosomes were ana-

lyzed for each CpG site, resulting in a different number of tests performed, a general GWAS cut-

off for statistical significance of 5 x 10−8 was used and a 0.01 minor allele frequency cut-off.
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