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Prediction of human physical traits and demographic informa-
tion from genomic data challenges privacy and data deidenti-
fication in personalized medicine. To explore the current capa-
bilities of phenotype-based genomic identification, we applied
whole-genome sequencing, detailed phenotyping, and statistical
modeling to predict biometric traits in a cohort of 1,061 partici-
pants of diverse ancestry. Individually, for a large fraction of the
traits, their predictive accuracy beyond ancestry and demographic
information is limited. However, we have developed a maximum
entropy algorithm that integrates multiple predictions to deter-
mine which genomic samples and phenotype measurements origi-
nate from the same person. Using this algorithm, we have reiden-
tified an average of >8 of 10 held-out individuals in an ethnically
mixed cohort and an average of 5 of either 10 African Americans or
10 Europeans. Thiswork challengescurrent conceptionsof personal
privacy and may have far-reaching ethical and legal implications.

genomic privacy | genome sequencing | DNA phenotyping |
phenotype prediction | reidentification

Much of the promise of genome sequencing relies on our
ability to associate genotypes to physical and disease traits

(1–5). However, phenotype prediction may allow the identifica-
tion of individuals through genomics—an issue that implicates
the privacy of genomic data. Today, where online services with
personal images coexist with large genetic databases, such as
23andMe, associating genomic data to physical traits (e.g., eye
and skin color) obtains particular relevance (6). In fact, genome
data may be linked to metadata through online social networks
and services, thus complicating the protection of genome pri-
vacy (7). Revealing the identity of genome data may not only
affect the contributor, but may also compromise the privacy of
family members (8). The clinical and research community uses a
fragmented system to enforce privacy that includes institutional
review boards, ad hoc data access committees, and a range of pri-
vacy and security practices such as the Health Insurance Portabil-
ity and Accountability Act (HIPAA) (9) and the Common Rule.
These approaches are important, but may prove insufficient for
genetic data (10). Even distribution of genomic data in summa-
rized form, such as allele frequencies, carries some privacy risk
(11). Computer science offers solutions to secure genomic data,
but these solutions are only slowly being adopted.

In this study, we assess the utility of phenotype prediction
for matching phenotypic data to individual-level genotype data
obtained from whole-genome sequencing (WGS). Models exist
for predicting individual traits such as skin color (5, 10, 12, 13),
eye color (10), and facial structure (14). We built models to
predict 3D facial structure, voice, biological age, height, weight,
body mass index (BMI), eye color, and skin color. We predicted
genetically simple traits such as eye color, skin color, and sex at
high accuracy. However, for complex traits, our models explained
only small fractions of the observed phenotypic variation. Predic-
tion of baldness and hair color was also explored, and negative

results are presented in SI Appendix. Although individually, some
of these phenotypes have been evaluated (1, 15), we propose an
algorithm that integrates each predictive model to match a de-
identified WGS sample to phenotypic and demographic informa-
tion at higher accuracy. When the source of the phenotypic data
is of known identity, this procedure may reidentify a genomic
sample, raising implications for genomic privacy (6–9, 16).

Results
First, we used 10-fold cross-validation (CV) to evaluate held-out
predictions of each phenotype from the genome, images, and
voice samples. For each of 10 random subsets of the data, we
have trained models on the 9 remaining subsets. Accuracy was
measured by the fraction of trait variance explained by the pre-
dictive model (R2

CV ), averaged over 10 CV sets (SI Appendix).
Second, we consolidated all predictions into a single machine

Significance

By associating deidentified genomic data with phenotypic
measurements of the contributor, this work challenges cur-
rent conceptions of genomic privacy. It has significant ethical
and legal implications on personal privacy, the adequacy of
informed consent, the viability and value of deidentification
of data, the potential for police profiling, and more. We invite
commentary and deliberation on the implications of these
findings for research in genomics, investigatory practices,
and the broader legal and ethical implications for society.
Although some scholars and commentators have addressed
the implications of DNA phenotyping, this work suggests that
a deeper analysis is warranted.
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Fig. 1. Study overview. (A) Distribution of self-reported ethnicity in the
study. (B) Inferred genomic ancestry proportions for each study participant.
Ancestry components are African (AFR), Native American (AMR), Central
South Asian (CSA), East Asian (EAS), and European (EUR). (C) Distribution
of ages in the study.

learning model for reidentifying genomes based on phenotypic
prediction. This application establishes current limits on the de-
identification of genomic data.

Study Population. We collected a convenience sample of 1,061
individuals from the San Diego, CA, area. Their genomes were
sequenced at an average depth of >30× (17). The cohort was
ethnically diverse, with 569, 273, 63, 63, and 18 individuals
who identified themselves as of African, European, Latino, East
Asian, and South Asian ethnicity, respectively, and 75 as oth-
ers (Fig. 1A). The genetic diversity in the San Diego area was
reflected in continuous differences in admixture proportions (18)
(Fig. 1B). It also included a diverse age range from 18 to 82 y old,
with an average of 36 y old (Fig. 1C). Each individual underwent
standardized collection of phenotypes, including high-resolution
3D facial images, voice samples, quantitative eye and skin col-
ors, age, height, and weight (Fig. 1). The study was approved
by the Western Institutional Review Board, Puyallup, WA. All
study participants provided informed consent, allowing research
use of their data (see SI Appendix).

Predicting Face and Voice. Modern facial- and voice-recognition
systems reach human-level identification performance (19, 20).
Although still in its infancy, genomic prediction of the face may
enable identification of a person. We first represented face shape
and texture variation using principal components (PC) analy-
sis to define a low-dimensional representation of the face (14,
21–25). Next, we predicted each face PC separately using ridge
regression with ancestry information from 1,000 genomic PCs
[also equivalent to genomic best linear unbiased prediction from
common variation (26)], with sex, BMI, and age as covariates.
We undertook a similar procedure using distances between 3D
landmarks. A sample of predicted faces is presented in Fig. 2.
Predictions for 24 consented individuals are presented in SI
Appendix, Fig. S11. We observed that facial predictions reflected
the sex and ancestry proportions of the individual.

To assess the influence of each covariate on predictive accu-
racy, we measured the per-pixel R2

CV between observed and
predicted faces. Because errors were anisotropic, we separated
residuals for horizontal, vertical, and depth dimensions. Fig. 3
shows the distribution of R2

CV along each axis as a function

Fig. 2. Examples of real (Left) and predicted (Right) faces.

Fig. 3. Violin plots of the per-pixel variation in R2
CV for face shape across

three shape axes achieved for different feature sets. Anc refers to 1,000
genomic PCs. SNPs refers to previously reported SNPs related to facial struc-
ture (5, 14, 27).

of the model covariates. We observed from this plot that sex
and genomic PCs alone explained large fractions of the predic-
tive accuracy of the model. Previously reported single nucleotide
polymorphisms (SNPs) related to facial structure (5, 14, 27) did
not improve the sex and PC model. In contrast, we found that
accounting for age and BMI improved the accuracy of facial
structure along the horizontal and vertical dimensions (Fig. 3).
To further understand predictive accuracy for the full model,
we mapped per-pixel accuracy onto the average facial scaffold
(Fig. 4), finding that most of the predictive accuracy was in facial
regions that differed the most between African and European
individuals (SI Appendix, Fig. S13): Much of the predictive accu-
racy along the horizontal dimension came from estimating the
width of the nose and lips. Along the vertical dimension, we
obtained the highest precision in the placement of the cheek-
bones and the upper and lower regions of the face. For the depth
axis, the most predictable features were the protrusions of the
brow, nose, and lips. A genome-wide association study (GWAS)
on distances between 36 landmarks (SI Appendix, Tables S1
and S2) found no significant associations after correcting for
the number of phenotypes tested (SI Appendix and Dataset S1).
Because the predictive analysis used the same cohort, we did not
use any results from our GWAS to improve (i.e., overfit) predic-
tive models.

For prediction of voice, we extracted and predicted a 100-
dimensional identity-vector and voice pitch embedding (28) from
voice samples collected from our cohort. Similar to face predic-
tion, we fitted ridge regression models to each dimension of the
embedding. As covariates, we used 1,000 genomic PCs and sex.
We were able to predict voice pitch with an R2

CV of 0.70. How-
ever, predictions for only 3 of the 100 identity-vector dimensions
exceeded an R2

CV of 0.10.
Besides genomic prediction, our method for reidentification

used predictions from image and voice embeddings. Face shape,
face color, and voice were reasonably predictive of age, sex, and
ancestry (Table 1). In summary, we are able to predict variation
in face and voice from WGS data and to predict age, sex, and
ancestry from face and voice embeddings.

Fig. 4. Per-pixel R2
CV in face shape for the full model, across three shape axes.
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Table 1. Prediction from images and voice samples

Source trait Age Sex AFR EUR EAS AMR CSA

Shape 0.82 0.79 0.84 0.78 0.57 0.16 0.11
Color 0.75 0.84 0.89 0.84 0.62 0.24 0.24
Voice 0.62 0.70 0.67 0.38 0.14 0.03 0.02

R2
CV values for age, sex, and five components of genetic ancestry from

face shape (shape), face color (color), and voice.

Predicting Age from WGS Data. Age is a soft biometric that
narrows down identity (15). We predicted age from WGS
data based on somatic changes that are biologically associated
with aging (e.g., telomere shortening). Telomere length can be
estimated from WGS data based on the proportion of reads
containing telomere repeats (29). We predicted age from esti-
mated telomere length with R2

CV =0.29 (Fig. 5A). A similar
method had been reported to predict age from telomeres with
an R2 of 0.05 (29), consistent with our result on 1,960 females
from the same cohort that had been sequenced by using the
same pipeline as our study cohort (SI Appendix) (30). In addi-
tion to telomere length, we were able to detect mosaic loss of
the X chromosome with age in women from WGS data. This
effect has been reported using in situ hybridization (31). In
men, no such effect has been observed, presumably because at
least one functioning copy of the X chromosome is required
per cell. Additionally, we were able to replicate previous results
(32, 33) and detect mosaic loss of the Y chromosome with age
in men. Together, telomere shortening and sex chromosome
loss, quantified by using sex chromosome copy numbers, were
predictive of age, with an R2

CV of 0.44 (mean absolute error
(MAE ) = 8.0 y).

Height, Weight, and BMI Prediction. To predict height, weight, and
BMI, we applied joint shrinkage to previously reported effect
sizes (34–36). For height, where we observed the largest pre-
dictive power among these traits, a model using reported SNP
effects alone yielded R2

CV =0.06 in males (m) and R2
CV =0.08

in females (f). Simulations indicated that such predictive perfor-
mance would result in marginal improvements in discriminative
power over random (SI Appendix, Fig. S34). Consequently, mod-
els added genomic PCs and sex. As shown in Fig. 5B, we observed
a strong performance for the prediction of height (R2

CV =0.53,

A

B

C

D

Fig. 5. (A) Predicted vs. true age. R2
CV for models using features including telomere length (telomeres) and X and Y chromosome copy numbers quantifying

mosaic loss (X/Y copy). (B) Predictive performance for height, weight, and BMI using covariate sets composed from predicted age and/or sex, 1,000 genomic
PCs, and previously reported SNPs. (C) Predictive performance for eye color. PC projection of observed eye color, the correlation between the first PC of
observed values and the first PC of predicted values, and predictive performance of models using different covariate sets composed from three genomic PCs
and previously reported SNPs are shown. (D) Predictive performance for skin color. PC projection of observed skin color, the correlation between the first
PC of observed values and the first PC of predicted values, and cross-validated variance explained by models using different covariate sets composed from
three genomic PCs and previously reported SNPs are shown.

MAE =4.9cm) and weaker performance for the prediction of
weight (R2

CV =0.14, MAE =15.6kg) and BMI (R2
CV =0.17,

MAE =5.3kg/m2).

Eye Color and Skin Color Prediction. Whereas weight and BMI have
complex genetic architecture and have mid to high heritability
estimates from 50 to 93% (34, 37), eye color has an estimated heri-
tability of 98% (38), with eight SNPs determining most of the vari-
ability (39). Similarly, skin color has an estimated heritability of
81% (40), with 11 genes predominantly contributing to pigmen-
tation (41).

For both eye and skin color, previous models predicted color
categories rather than continuous values (10, 13, 42), often by
using ad hoc decision rules. To our knowledge, none have used
genome-wide variation to predict color. Here, we modeled eye
and skin color as 3D continuous RGB values, maintaining the full
color variation (see Fig. 5 C and D for eye and skin color, respec-
tively). For both, we calculated per-channel R2

CV of 0.77–0.82.

Linking Genomes to Phenotypic Profiles. In the previous sections,
we presented predictive models for face, voice, age, height,
weight, BMI, eye color, and skin color. We integrated each of
the predictions as outlined in Fig. 6. In brief, we used predictive
models to embed each phenotype and each genome and ranked
individuals by their similarity computed from the embeddings
listed in SI Appendix, Table S14. Face and voice prediction were
modified to use genomic predictions of sex, BMI, and age rather
than observed values. We predicted sex, age and ancestry pro-
portions from face and voice as additional variables that could
be compared with corresponding genomic predictions (R2

CV in
SI Appendix, Tables S3 and S4). Finally, to account for varia-
tions in accuracy, we learned an optimal similarity for match-
ing observed and predicted values for each feature set, leading
to consistent improvements over naive combination of predic-
tors (SI Appendix, Figs. S26 and S28). To assess the matching
performance, we considered the following tasks. Given an indi-
vidual’s WGS data, we sought to identify that individual out of
N suspects whose phenotypes were observed, a problem that
we refer to as select at N (sN ). In a second scenario, we eval-
uated whether deidentified WGS samples of N individuals could
be matched to their N phenotypic sets (i.e., images and demo-
graphic information). This scenario corresponds to the reiden-
tification of genomic databases. We refer to this challenge as
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Fig. 6. Overview of the experimental approach. A DNA sample and a vari-
ety of phenotypes are collected for each individual. We used predictive mod-
eling to derive a common embedding for phenotypes and the genomic sam-
ple as detailed in SI Appendix, Table S14. The concordance between genomic
and phenotypic embeddings are used to match an individual’s phenotypic
profile to the DNA sample.

match at N (mN ). Fig. 7A presents a schematic of sN and mN .
In contrast to sN , where a genome is paired to the most sim-
ilar phenotypic profile, for mN , each genome was paired to
one and only one phenotypic set in a globally optimal manner.
That is, we treated mN as a bipartite graph matching problem
and maximized the expected number of correct pairs (6, 43).
Table 2 shows sN and mN accuracy across feature sets and pool
sizes averaged over all possible lineups per CV fold. To fur-
ther assess the reidentification performance beyond basic demo-
graphic information, we include results stratified by gender (SI
Appendix, Fig. S29); the largest ethnicity groups, AFR and EUR
(SI Appendix, Fig. S30); and gender/ethnicity (SI Appendix, Fig.
S31). Corresponding receiver operating characteristic curves are
provided in SI Appendix, Figs. S26 and S27. We considered three
sets of information: (i) 3D face; (ii) demographic variables such
as age, self-reported gender, and ethnicity; and (iii) additional
traits like voice, height, weight, and BMI. We found that 3D face
alone is most informative, with an s10 of 58% (m, 42%; f, 43%;
AFR, 32%; EUR, 35%). Ethnicity was second, achieving an s10
of 50% (m, 48%; f, 52%). Voice had an s10 of 42% (m, 27%;
f, 31%; AFR, 29%; EUR, 25%), whereas age, gender, and
height/weight/BMI yielded sN of 20% (m, 19%; f, 20%; AFR,
20%; EUR, 20%), 21% (AFR, 20%; EUR, 20%), and 27% (m,
17%; f, 18%; AFR, 23%; EUR, 24%), respectively. Finally, we
integrated these variables to obtain an s10 of 74% (m, 65%; f,
65%; AFR, 44%; EUR, 50%). For the full model, m10 was 83%
(m, 72%; f, 70%; AFR, 47%; EUR, 57%), compared with 64%
(m, 44%; f, 46%; AFR, 33%; EUR, 34%) for 3D face alone.

We evaluated the scenario that tests the probability of includ-
ing the true individual in a 10-person subset of a random 100-
person pool chosen from our cohort. Fig. 7B presents our ability
to ensure that an individual is in the top M from a pool of size
N >M . We ranked the correct individual in the top M =10 of

A B

Fig. 7. Ranking individuals. (A) Schematic representation of the difference
between select (best option chosen independently) and match (jointly opti-
mal edge set chosen). Select corresponds to picking an individual out of a
group of N individuals based on a genomic sample. Match corresponds to
jointly matching a group of individuals to their genomes. (B) Ranking per-
formance. The empirical probability that the true subject is ranked in the
top M as a function of the pool size N.

Table 2. Top one accuracy in match and select

Reidentification accuracy in select and match averaged over all possible
lineups formed for each CV fold of different pool sizes from 2 to 50 using
the various phenotype sets listed in SI Appendix, Table S14.

N =100 88% of the time, showing the ability to enrich for per-
sons of interest.

Discussion
We have presented predictive models for facial structure, voice,
eye color, skin color, height, weight, and BMI from common
genetic variation and have developed a model for estimating age
from WGS data. Despite limitations in statistical power due to
the small sample size of 1,061 individuals, predictions are sound.
Although individually, each predictive model provided limited
information about an individual’s identity, we have derived an
optimal similarity measure from multiple prediction models that
enabled matching between genomes and phenotypic profiles with
good accuracy. Over time, predictions will get more precise,
and, thus, the results of this work will be of greater consider-
ation in the current discussion on genome privacy protection.
Although precision will be gained from larger GWAS contribut-
ing common variants, our simulation results indicate that high
values of R2 are required to significantly improve identifica-
tion (SI Appendix, Figs. S33 and S34). These values will likely
be obtained by improved phenotyping (e.g., imaging) or from
sequencing studies contributing low-frequency variants that have
larger effects (44) and discriminate interregional admixture on a
finer level (45). Precision will also improve from integration of
other experimental sources. For example, age prediction from
DNA methylation (46) would be expected to improve perfor-
mance over a purely genome-based approach.

Today, HIPAA does not consider genome sequences as iden-
tifying information that has to be removed under the Safe
Harbor Method for deidentification. Based on an assessment
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of current risks, the latest revision of the Common Rule
(01/19/2017; https://www.hhs.gov/ohrp/regulations-and-policy/
regulations/finalized-revisions-common-rule) excludes proposed
restrictions on the sharing of genomics data. Here, we show that
phenotypic prediction from WGS data can enable reidentification
without any further information being shared. If conducted for
unethical purposes, this approach could compromise the privacy
of individuals who contributed their genomes into a database. In
stratified analyses, we see that risk of reidentification correlates
with variability of the cohort. Although sharing of genomic data
is invaluable for research, our results suggest that genomes cannot
be considered fully deidentifiable and should be shared by using
appropriate levels of security and due diligence.

Our results may also be discussed in the context of genomic
forensic sciences. Forensic applications include postmortem
identification (47) and the association and identification of
DNA from biological evidence (15, 48) for intelligence and law
enforcement agencies. In the United States, an average of ∼35%
of homicides remain unsolved (49). For crimes such as these,
DNA evidence (e.g., a spot of blood at a crime scene) may
be available (50). In many cases, the perpetrator’s DNA is not
included in a database such as the Combined DNA Index Sys-
tem (51). As the field of genomics matures, forensics may adopt
approaches similar to this work to complement other types of
evidence. Matching DNA evidence to a more commonly avail-
able phenotypic set, such as facial images and basic demographic
information, would serve to aid cases where conventional DNA
testing, database search, and familial testing (52) fails. Today,
forensic genomics relies heavily on PCR analyses—in particular,
the study of short tandem repeats and characterization of the Y
chromosome and mitochondrial DNA haplotypes. The current
WGS workflow requires 100 ng of DNA. However, materials
for forensic analyses may be extremely limited, thus confining a
broader application of WGS. In these cases, the protocol would
need additional cycles of amplification or even whole-genome
amplification to achieve sufficient DNA for analysis. In addition,
the forensics field is subject to regulations that differ between
states and countries.

Materials and Methods
We use the following two-step approach to measure similarity between
a deidentified genome g∈G and a set of identified phenotypic measure-
ments derived from an image and demographic information p∈P (Fig.
6) (see SI Appendix for details). First, we find a mapping of phenotypes,
ψP : P→ EP , and a mapping of genomes, φP : G→ EP , into a common
D-dimensional embedding-space EP ∈ RD. As mappings, we use a combi-
nation of PC analysis and predictive modeling. Second, we learn an optimal
similarity δP : EP ×EP → R that allows comparison of mapped phenotypes
ψP (p) and genomes φP (g).

Learning Embeddings. For any given phenotype, we have defined suit-
able embeddings. Phenotypes that are a single number, such as height,
weight, or age, are simply represented by their phenotype value. For high-
dimensional phenotypes, such as images or voice samples, we have defined
embeddings to capture a maximum amount of information relevant for
matching. For example, facial images provide information on the shape and
the color of the face. Additionally, a facial image may provide information
about sex, ancestry, and the age of the person. Consequently, we embedded
images into a set of PC dimensions that capture shape and color informa-
tion, and additional dimensions for sex, ancestry, and age. Having defined
an embedding, we learned ψP : P→ EP and φP : G→ EP to map phe-
notypes and genomes into this embedding. In the case of facial images, ψP
is given by face shape and color PC projection of the image and regression
models that had been trained to predict sex, age, and ancestry from the
image. φP is given by extracting sex and ancestry from the genome, as well
as regression models for facial PCs and age. For a list of the embeddings
used for different phenotypes, see SI Appendix, Table S14.

Learning a Similarity Function. Having obtained the embedding functions, we
learn an optimal similarity, δP , that takes embedded phenotype ψP (p) and
genotype φP (g) and outputs a similarity. As a naive similarity δcosine

P , we took
the cosine between the vector valued ψP (p) and φP (g). However, because
not all dimensions of EP can be expected to yield equal amounts of infor-
mation for judging similarity between phenotypes and genomes, we learned
optimally weighted similarity functions δP to improve reidentification.

δP (ψP (p), φP (g)) =

D∑
d=1

wd
∣∣ψP(p)d − φP(g)d

∣∣ , [1]

where the weights wd , which reflect the importance of d-th dimension of
EP , have been trained using a maximum entropy model (53).
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