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Posttranslational histone modifications play important roles in
regulating chromatin-based nuclear processes. Histone H2AK119
ubiquitination (H2Aub) is a prevalent modification and has been
primarily linked to gene silencing. However, the underlying mecha-
nism remains largely obscure. Here we report the identification of
RSF1 (remodeling and spacing factor 1), a subunit of the RSF complex,
as a H2Aub binding protein, which mediates the gene-silencing
function of this histone modification. RSF1 associates specifically
with H2Aub, but not H2Bub nucleosomes, through a previously
uncharacterized and obligatory region designated as ubiquitinated
H2A binding domain. In human and mouse cells, genes regulated by
RSF1 overlap significantly with those controlled by RNF2/Ring1B,
the subunit of Polycomb repressive complex 1 (PRC1) which cata-
lyzes the ubiquitination of H2AK119. About 82% of H2Aub-enriched
genes, including the classic PRC1 target Hox genes, are bound by
RSF1 around their transcription start sites. Depletion of H2Aub
levels by Ring1B knockout results in a significant reduction of RSF1
binding. In contrast, RSF1 knockout does not affect RNF2/Ring1B
or H2Aub levels but leads to derepression of H2Aub target genes,
accompanied by changes in H2Aub chromatin organization and
release of linker histone H1. The action of RSF1 in H2Aub-mediated
gene silencing is further demonstrated by chromatin-based in vitro
transcription. Finally, RSF1 and Ring1 act cooperatively to regulate
mesodermal cell specification and gastrulation during Xenopus
early embryonic development. Taken together, these data iden-
tify RSF1 as a H2Aub reader that contributes to H2Aub-mediated
gene silencing by maintaining a stable nucleosome pattern at
promoter regions.
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In eukaryotic cells, genomic DNA is organized into a chromatin
structure by association with histone and nonhistone proteins

(1). Posttranslational histone modifications, such as acetylation,
methylation, phosphorylation, ubiquitination, and sumoylation,
play important roles in modulating chromatin dynamics and in
controlling chromatin-based nuclear processes (2, 3). Histone H2A
ubiquitination is a prevalent modification, occurring on 10% of total
cellular H2A (4). Although ubiquitination has been observed on
H2A residues lysine (K) 129 and K15, ubiquitination predominately
occurs on H2AK119 (abbreviated as H2Aub) (4–6). We previously
reported that Polycomb protein complex 1 (PRC1), a fundamental
developmental regulator, acts as the ubiquitin ligase for H2AK119,
linking this modification to PRC1-mediated silencing of key
developmental genes and the essential roles of PRC1 in cell
lineage commitment, stem cell identity, tumorigenesis, and ge-
nomic imprinting (7–10). However, the mechanisms of how this

modification is recognized and how it elicits downstream effects
remain largely unidentified.
Spatially, H2Aub is situated in nucleosomes in the vicinity

where linker histone H1 binds. H2Aub slightly facilitates linker
histone binding (11), whereas deubiquitination of H2Aub leads
to H1 dissociation, accompanied by gene activation (12). H2Aub
has also been shown to interfere with the recruitment of FACT
(facilitates chromatin transcription), thus blocking transcription
elongation (13). In addition, H2Aub blocks the subsequent
methylation of H3K4 di- and trimethylation through a novel
transhistone code pathway (14). The loss of these gene-activation
histone marks is proposed as one of the mechanism leading to
transcription repression.
Using nucleosomes assembled with H2A ubiquitinated by

PRC1 in vitro, Kalb et al. (15) identified PRC2 and PRC1 as the
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major factors interacting H2Aub. The interaction with PRC2
may occur through the ubiquitin interacting motif of Jarid2, an
auxiliary PRC2 subunit critical for its function in embryonic stem
cells (ESCs) (16, 17). The recruitment of PRC2 enhances local
H3K27me3, preventing H3K27 acetylation and gene activation
(15, 17–19). PRC1 may interact with H2Aub through Rybp, an
auxiliary subunit for PRC1 variant (20). Therefore, H2Aub,
PRC1, and PRC2 seem to form a feedback control loop to en-
hance the repressive states of chromatin conformation. However,
it remains unclear how they elicit local chromatin conformation
changes, leading to gene silencing. Using a ubiquitin affinity col-
umn, Richly et al. (21) identified zuotin-related factor (ZRF1) as a
H2Aub-binding protein. However, ZRF1 activates rather than
represses transcription, and it appears to do so by competitive
binding to H2Aub with PRC1, facilitating removal of the H2Aub
mark. This latter observation suggests that ZRF1 may function in
special circumstances, such as during ESC differentiation.
In this study, by using differential binding to H2A and H2Aub

nucleosomes, the stable isotope labeling of amino acids in cell
culture (SILAC) technique, and quantitative mass spectrometry,
we identified a H2Aub-binding protein, previously identified as
the remodeling and spacing factor 1 (RSF1) (22–24). RSF1 is a
subunit of the RSF complex, which can remodel the chromatin
structure and generate regularly spaced nucleosome arrays (22–
24). Our studies show that RSF1 reads H2Aub nucleosomes
through a previously uncharacterized region, which we designated
as the ubiquitinated H2A binding (UAB) domain. Our studies
further demonstrate that RSF1 is required both for H2Aub target
gene silencing and for maintaining the stable nucleosome patterns
at promoter regions. The role of RSF1 in the PRC1-H2Aub axis is
further supported by the observation that RSF1 and Ring1, a
Xenopus PRC1 subunit which mediates H2Aub, regulate in con-
cert mesodermal cell specification and gastrulation during Xen-
opus embryogenesis. Therefore, our studies show that RSF1 plays
a critical role in mediating the gene-silencing function of H2Aub.

Results
Identification of RSF1 as a H2Aub Nucleosome-Associated Protein.
To identify H2Aub binding proteins, we purified ubiquitinated
mononucleosomes via anti-HA immunoprecipitation (IP) from a
HeLa cell line stably overexpressing HA-tagged ubiquitin (25).
Since the level of ubiquitinated H2B (H2Bub) is low (∼0.1%) in
mammalian cells, we deemed the IP fraction as H2Aub-enriched
nucleosomes; the flow-through (FT) contained low levels of H2Aub
from endogenous ubiquitin and was referred as the H2Aub-
depleted nucleosomes (Fig. 1A). Equal amounts of H2Aub-
enriched and -depleted nucleosomes, as judged by Coomassie
brilliant blue (CBB) -stained core histones, were then analyzed
by SDS/PAGE and silver staining. Several polypeptides were
present only in H2Aub-enriched nucleosomes, whereas only one
polypeptide was enriched in H2Aub-depleted nucleosomes (Fig. 1A,
arrowheads). Immunoblot with the HA-antibody revealed that only
one ubiquitinated polypeptide at the position corresponding to
H2Aub. The band was present only in the H2Aub-enriched, but not
H2Aub-depleted nucleosomes even after prolonged exposure (Fig.
1B). These results suggest that the other enriched polypeptides as-
sociated with H2Aub nucleosomes were not ubiquitinated them-
selves, but rather represent H2Aub-binding or -interacting proteins.
To reveal the identity of these H2Aub-binding proteins, we

used the SILAC technique (26). We cultured the stable HA-
ubiquitin expressing HeLa cell line in a medium containing
13C labeled L-lysine (termed H, for heavy isotope) and isolated
H2Aub-enriched mononucleosomes. We then mixed these nu-
cleosomes with equal amounts of H2Aub-depleted nucleosomes
prepared from the same cell line cultured in normal 12C medium
(termed L, for light isotope). In parallel, we performed studies
using mononucleosomes that were reversely labeled. Mass
spectrometry-based quantitative proteomics analysis identified

polypeptides that were differentially enriched in H2Aub-enriched
or -depleted nucleosomes (Table S1). RSF1 (22–24) and Msx2-
interacting protein SPEN (27, 28) were the leading candidates that
were significantly enriched in the H2Aub-containing nucleosomes
(Table S1). In this study, we focused on the RSF1 protein.
Log2 fold-change in RSF1 abundance, as quantified by the

intensity of the RSF1 unique fragment (Fig. S1), confirmed that
RSF1 level was higher in H2Aub-enriched nucleosomes, inde-
pendent of the heavy or light lysine label (Fig. 1C). Immunoblot
analysis also corroborated that RSF1 was enriched in H2Aub-
containing nucleosomes and depleted in the FT of anti-HA IP
(Fig. 1D). RSF1 is a subunit of the chromatin remodeling RSF
complex, which also contains the SNF2H subunit (22–24). We
then examined the distribution of SNF2H. SNF2H was detected
at higher levels in H2Aub-enriched nucleosomes, although low
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Fig. 1. RSF1 preferentially associates with H2Aub-enriched nucleosomes in
HeLa cells expressing HA-ubiquitin. (A) Silver staining of a protein gel con-
taining equal amounts of H2Aub-enriched or -depleted mononucleosomes
reveals polypeptides enriched specifically within each group of nucleosomes
(arrowheads). Different staining times were used for core histones and the
rest of the proteins. (B) Anti-HA immunoblot of a protein gel containing an
aliquot of the above samples shows that a single protein corresponding to
the H2Aub position containing HA-ubiquitin (arrowhead). (C) RSF1 is
enriched in the H2Aub-enriched nucleosomes in the SILAC assays, shown by
log2-fold enrichment of RSF1 abundance, quantified by the intensity of a
RSF1 unique peptide (Fig. S1), in H2Aub-enriched (+ub) or -depleted (−ub)
nucleosomes. H and L represent heavy and light lysine labeling, respectively.
(D) Immunoblot analyses of proteins contained in the flow-through (Ft) or
the eluate (E) of anti-HA IP of H2Aub-containing nucleosomes show that
RSF1 is enriched in the H2Aub nucleosomes, along with SNF2H, another
component of the RSF complex. In, input. Antibodies used are indicated
at the left.
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levels of SNF2H were also present in the FT fraction (Fig. 1D).
These data reveal that RSF1 preferentially associates with H2Aub-
enriched nucleosomes and may function together with SNF2H on
H2Aub nucleosomes.

RSF1 Binds to H2Aub Nucleosomes Through a Previously Uncharacterized
Region in Vitro and in the Cell. RSF1 is a 1,441-aa protein containing
two tandem WHIM domains (amino acids 97–148 and 149–182), a
PHD finger (amino acids 893–939), an annotated bromo adjacent
homology domain (amino acids 914–968), and a CDC45 domain
(amino acids 1,092–1,171) (Fig. 2A). Recombinant proteins of full-
length RSF1 and serial fragments were recovered by tandem his-
and CL7-affinity purification from bacteria cell extracts (29) (Fig.
2B, Top) and used for an in vitro pull-down assay to determine the
physical interaction between RSF1 and H2Aub nucleosomes. While

full-length RSF1 pulled down H2Aub nucleosomes, only fragment 7
(amino acids 770–807) was able to do so among all of the fragments
tested (Fig. 2B, Middle). We designated the region as the
UAB domain.
To confirm that H2A ubiquitination in nucleosomes was in-

deed crucial for RSF1/UAB binding, we incubated H2Aub-
containing nucleosomes with recombinant USP16, a histone
H2A-specific deubiquitinase that completely removed the ubiq-
uitin moiety from H2Aub in these nucleosomes (25) (Fig. S2A).
Treatment with USP16 resulted in failure of RSF1 or UAB to
pull down nucleosomes (Fig. 2B, Bottom), despite the presence
of other histone modifications (12, 14, 15). This result indicated
that H2Aub was required for RSF1/UAB to interact with nucle-
osomes. Previous studies revealed that RSF1 could interact with
histones in vitro, possibly due to the nonspecific electrostatic
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from the same cell lines. Transcription start site (TSS) plus 10-kb upstream and transcription termination site (TTS) plus 10-kb downstream are shown. (G) Venn
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interaction (23). Our studies confirmed that the UAB domain
pulled down each individual core histone but not the unrelated
immunity protein 7 (Im7) (Fig. S2B). As UAB pulled down only
H2Aub, but not nonubiquitinated nucleosomes, we suggest that
the formation of nucleosomes provides the selectivity for
RSF1 to interact only with H2Aub nucleosomes.
Since H2Aub nucleosomes purified by anti-HA IP may con-

tain H2A ubiquitinated at K119 and K129 (4, 6), we further
extended the study by using reconstituted nucleosomes that were
subjected to in vitro ubiquitination by the PRC1 complex (7, 30).
The UAB motif pulled down only nucleosomes treated with
PRC1, but not the original reconstituted nucleosomes (Fig. 2C),
indicating that the UAB domain indeed interacts with ubiquiti-
nated H2AK119 nucleosomes. In contrast to H2Aub nucleo-
somes, UAB was unable to pull down ubiquitinated H2B (H2Bub)
nucleosomes (prepared from a yeast stain expressing human H2B)
(31) (Fig. 2D). These data show that RSF2 interacted specifically
with H2Aub nucleosomes.
To determine whether the UAB domain is required for RSF1

to interact with H2Aub nucleosomes in the cell, we prepared
mononucleosomes from 293T cells transfected with Flag-tagged
RSF1 or a mutated (MT) RSF1 in which the UAB domain was
in-frame deleted (Fig. 2E). Anti-Flag IP showed that wild-type,
but not the mutant form of RSF1, pulled down H2Aub-containing
nucleosomes (Fig. 2E). This result demonstrated an obligatory
role of the UAB domain in the interaction between RSF1 and
H2Aub nucleosomes in the cell.

Binding Profile of RSF1 Correlates with Those of H2Aub and Ring1B.
Because RSF1 binds to H2Aub nucleosomes, we expect that
RSF1 would associate with genes that are marked by H2Aub. We
therefore examined the binding profile of RSF1 in mouse ESCs
by chromatin IP followed with whole-genome sequencing (ChIP-
seq). As commercially available RSF1 antibodies do not work for
ChIP-seq, we introduced a Flag-HA dual tag into the C terminus
of endogenous RSF1 gene locus using CRISPR/Cas9-mediated
genome editing (32). ChIP-seq analyses revealed that RSF1
preferentially bound to transcription start sites (TSSs), regard-
less of whether IgG was used as controls for ChIP in the same
cell lines (Fig. 2F) or the Flag antibody was used as controls for
ChIP in parental ESCs (Fig. S3A). RSF1 binding profiles cor-
related closely to H2Aub marks (33, 34) (Fig. 2F), and also
overlapped significantly with that of Ring1B, the subunit of
PRC1 which catalyzes H2Aub, and PRC2 which collaborates
with PRC1 to repress gene expression (Fig. 2F, Fig. S3B, and
Dataset S1). Reduction of H2Aub levels by Ring1B knockout
(KO) in mouse ESCs (generated by using the CRISPR/Cas9
system) resulted in a significant decrease in RSF1 binding, sug-
gesting that binding of RSF1 to chromatin, at least partially, de-
pends on H2Aub level (Fig. 2F and Fig. S3A). Strikingly, about
82% of H2Aub sites were bound by RSF1 (Fig. 2G), including the
classic PRC1 target genes HoxB8, HoxB7, andHoxC6 (Fig. 3C and
Fig. S3C). Interestingly, only about 21% of RSF1 binding sites
were marked by H2Aub (Fig. 2G). These results implied that
while RSF1 might regulate H2Aub-mediated gene silencing, it
also likely has functions independent of H2Aub.

RSF1 and RNF2/Ring1B Modulate the Expression of a Large Cohort of
Common Targets in Human and Mouse Cells. To determine whether
binding of RSF1 to H2Aub nucleosomes mediates H2Aub-
associated gene repression (7, 33, 35), we compared changes in
gene expression by RNA-sequencing in HeLa cells with siRNA
knockdown (KD) of either RSF1 or RNF2, the human homolog
of mouse Ring1B, which catalyzes H2Aub. Consistent with pre-
vious reports (7, 30), RNF2 KD was associated with a consid-
erable decrease of H2Aub level (Fig. S4A). RSF1 KD affected
neither RNF2 nor H2Aub levels (Fig. S4A). Significant changes
in expression of 62 and 108 genes were identified in RNF2 KD

and RSF1 KD HeLa cells, respectively (Fig. 3A and Dataset S2)
(genes selected by q value ≤ 0.05 compared with wild-type).
Notably, 36 genes were affected both by RNF2 KD and RSF1
KD. This number represents 58% of genes affected by RNF2 KD
and 33.3% of genes affected by RSF1 KD (Fig. 3A). Importantly,
virtually all of these genes exhibited changes in expression in the
same direction (Fig. S4B). The RNA-seq data were supported by
qRT-PCR of selected targets. RNF2 KD resulted in up-regulation
of SPP1, DKK1, KCNMA1, FBXO2, SOCS1, KLF2 expression and
down-regulation of BMF and GREM1 expression. RSF1 KD
resulted in similar changes in the expression of these targets (Fig.
S4D). Furthermore, KD of SNF2H—the other component of the
chromatin remodeling RSF complex (Fig. S4C)—led to similar
changes in expression of these genes (Fig. S4D). The high per-
centage of overlapping genes affected by RSF1 KD or RNF2 KD
indicates that RSF1 or the RSF complex and RNF2 regulate the
expression of many common targets and that RSF1 or RSF
complex might participate in H2Aub-mediated gene repression.
We next extended the study to mouse ESCs. Along with

Ring1B KO, we also generated RSF1 KO ESCs by using the
CRISPR/Cas9 system (32). As anticipated, Ring1B KO resulted
in a dramatic reduction of H2Aub level but did not affect
RSF1 level (Fig. S4E). Conversely, RSF1 KO did not affect
Ring1B or H2Aub levels (Fig. S4E). RNA-seq analyses revealed
that 1,510 genes exhibited significant changes in expression in
RSF1 KO mouse ESCs (Fig. 3B and Dataset S3). Based on
previous studies (35), we identified 1,744 genes that exhibited
significant changes in expression in response to Ring1B KO (Fig.
3B and Dataset S3). Among these genes, 232 were affected both
by RSF1 KO and Ring1B KO (Fig. 3B), and 162 of them
exhibited changes in the same direction (Fig. S4F). A higher
overlapping rate was observed on H2Aub-bound genes: for ex-
ample, from 15.3 to 25.8% of RSF1 KO affected genes and from
13.3 to 20.6% of Ring1B KO affected genes (Fig. S4G and
Dataset S3). The substantial overlap of genes affected by RSF1
KO and Ring1B KO again suggested that RSF1 and Ring1B very
likely function in the same pathway to regulate gene expression.
The majority of Hox genes, including the known PRC1 target

genes HoxB8, HoxB7, and HoxC6, were marked by H2Aub and
repressed in pluripotent mouse ESCs (33, 36). As revealed by
RNA-seq, these genes were derepressed after RSF1 KO (Fig. 3
C and D and Fig. S3C). In general, genes with low expression
levels also showed high H2Aub levels and substantial RSF1
binding at the TSS, and these genes exhibited significant up-
regulation in response to RSF1 KO (Fig. 3E). In contrast, very
low levels of H2Aub and RSF1 binding were detected at TSSs
of highly expressed genes. These genes did not change their
levels of expression in response to RSF1 KO (Fig. 3E). These
results support our hypothesis that binding of RSF1 to H2Aub
is required for H2Aub-mediated gene silencing.

RSF1 Represses Transcription Activation from H2Aub Chromatin in
Vitro. To substantiate the role of RSF1 in H2Aub target gene
repression, we reconstituted a chromatin template containing
control H2A or semisynthetic H2Aub (37) (Fig. 4A) and tested
the effects of RSF1 on gene activation using an in vitro tran-
scription assay. As shown in Fig. 4B, the naked DNA template
and chromatin templates each exhibited transcription stimula-
tion by Gal4-VP16. Chromatin transcription was significantly up-
regulated (>10-fold) by the inclusion of acetyl-CoA and p300, a
histone acetyltransferase. Inclusion of purified RSF1 with the
H2A chromatin template had no effect on this transcription
activation. However, inclusion of RSF1 with H2Aub chromatin
down-regulated Gal4-VP16/p300-mediated transcription activa-
tion dramatically (>8-fold) (Fig. 4B). This experiment provides
direct evidence that RSF1 participates in repressing H2Aub target
gene activation.

E7952 | www.pnas.org/cgi/doi/10.1073/pnas.1711158114 Zhang et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.1711158114.sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.1711158114.sd02.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.1711158114.sd03.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.1711158114.sd03.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.1711158114.sd03.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF3
www.pnas.org/cgi/doi/10.1073/pnas.1711158114


RSF1 Is Required for Maintaining the Pattern and Stability of H2Aub
Nucleosomes at Promoter Regions. To understand the mechanism
by which RSF1 mediates H2Aub target gene silencing, we ex-
amined nucleosome organization around the TSS on H2Aub-
containing chromatin in control and RSF1 KO mouse ESCs. For
comparison, we also determined the organization of nucleo-
somes for all genes. RSF1 KO did not affect nucleosome array
organization for all genes around the TSS (Fig. 5A). However,
we found substantial changes of H2Aub nucleosome organiza-
tion around the TSS upon RSF1 KO (Fig. 5A). Particularly, the
spacing of the third, fourth, and sixth nucleosomes were signifi-
cantly shortened. We inferred that the RSF1 or RSF complex is
required for preserving the normal H2Aub nucleosome patterns
at promoter regions.
The intensity of H2Aub-containing nucleosomes was higher

than total nucleosomes (Fig. S5A), suggesting that H2Aub nucleo-
somes are normally more stable than nonubiquitinated nucleo-
somes. To determine whether RSF1 contributes to the stability

of these H2Aub nucleosomes, we compared the stability of
H2Aub nucleosomes in control and RSF1 KO cells. When RSF1
was knocked out, the intensity of H2Aub nucleosomes was re-
duced dramatically (Fig. 5B), whereas the overall intensity of
nucleosomes was not altered (Fig. S5B). This result indicates
that RSF1 is required for maintaining the stability of H2Aub
nucleosomes. To provide experimental evidence for this obser-
vation, we established RSF1 KO lines in HeLa cells that stably
overexpress HA-ubiquitin (25). Consistent with our previous
RSF1 KD experiments in HeLa cells (Fig. S4 A and C), RSF1
KO did not affect the level of H2Aub in these cells (Fig. 5D).
However, H2Aub-containing nucleosomes isolated from RSF1
KO cells by anti-HA IP were less stable than those from the pa-
rental HeLa cells, as evidenced by increased H3 and H4 dissoci-
ation in lower salt (Fig. 5C). These data indicate that RSF1 indeed
contributes to the elevated stability of H2Aub nucleosomes.
Linker histone has long been implicated in nucleosome stability
and H2Aub target gene repression (11, 12). Interestingly, when
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H2Aub nucleosomes isolated from the HA-ubiquitin–over-
expressing HeLa cells were examined with immunoblots, we found
that RSF1 KO resulted in the dissociation of linker histone
H1 from H2Aub nucleosomes (Fig. 5D). These results establish
RSF1 as a factor which functions downstream of H2Aub but
upstream of linker histones to maintain the stability of H2Aub
nucleosomes.

RSF1 Collaborates with PRC1 Subunit Ring1 to Regulate Mesodermal
Specification During Early Xenopus Embryogenesis. As RSF1 par-
ticipates in H2Aub-mediated gene repression, we anticipate that
RSF1 and PRC1 regulate similar physiological processes. We thus
turned to the Xenopus model system to investigate the functions
of endogenous RSF1 and PRC1 during early embryogenesis.
Xenopus RSF1, and Ring homologs Ring1 and RNF2, were all
expressed highly and widely during early developmental stages
(Fig. S6). Antisense morpholino oligos (MOs) that blocked
mRNA splicing of these genes were used to interfere with the
production of these proteins. Injection of either RSF1-MO or
Ring1-MO into early frog embryos induced severe gastrulation
defects, with tadpoles often displaying shortened body axis and
failure in blastopore closure (Fig. 6A). In contrast, injection of
RNF2-MO led to a milder phenotype of bent axis and malfor-
mation of the head (Fig. 6A). The axial defects induced by KD of
Ring1 or RSF1 were MO dose-dependent (Fig. 6B), so that more
severe defects were observed with higher doses of the MOs (Fig.
6B). Ring1 and RSF1 seemed to act cooperatively such that a
combination of low doses of Ring1-MO and RSF1-MO resulted
in an embryonic phenotype that mimicked or surpassed that with
the high doses of individual MOs (Fig. 6B). When examined at
late gastrula stages, both RSF1 and Ring1 MOs induced a delay
in blastopore closure, whereas RNF2 morphant embryos dis-
played normal blastopore morphology (Fig. 6C). In situ hybrid-
ization revealed that the pan-mesodermal marker Brachyury
(Bra), the dorsal mesodermal marker Chordin (Chd), and the
ventrolateral mesodermal marker (Wnt8) were all reduced in
RSF1 and Ring1 morphant embryos, but appeared normal in
RNF2 morphant embryos (Fig. 6D). These results reveal that
RSF1 acted together with Ring1 to regulate mesodermal cell fate
specification during Xenopus gastrulation. The results also sug-
gest that Ring1 might play a more critical role than RNF2 in
early Xenopus development. This observation is similar to the
situation in mouse and human cells where Ring1B/RNF2 is more

critical than Ring1A/Ring1 (7, 35). To support this inter-
pretation, antibodies specific for Xenopus Ring1A/RNF2 will be
needed to verify the effectiveness of individual protein KD.

Discussion
H2Aub is a prevalent histone modification which has been pri-
marily linked to PRC1-mediated gene silencing. Here we iden-
tified RSF1 as a binding protein of this modification. The
binding region is delineated to a previously uncharacterized re-
gion, which we termed the UAB domain. The UAB domain
specifically recognizes H2Aub nucleosomes but not H2Bub and
nonubiquitinated nucleosomes (Fig. 2). How does the UAB
domain specifically recognize the H2Aub nucleosomes? Analy-
ses of the UAB sequence reveals two potential function seg-
ments. The central portion of the UAB domain adopts an
α-helical conformation and contains two sets of four conserved
aliphatic residues that overlapped by two residues (an α-helix has
3.6 residues per turn) facing the same side of the α-helix (Fig.
S7). This sequence arrangement resembles the mechanism used
by ubiquitin interacting domain to recognize ubiquitinated pro-
teins (38, 39). The N terminus of the UAB domain contains four
vertebrate-specific highly conserved arginine residues that can
potentially interact with the nucleosome acidic patch through an
arginine anchoring mechanism (Fig. S7). Such a sequence feature
has been structurally observed in the ubiquitination-dependent
recruitment domain of 53BP1 (40, 41) and the Sgf11 subunit of
the SAGA complex (42). Therefore, it is likely that the N- and
central portion of the UAB domain interacts with H2Aub nucle-
osomes additively or synergistically, whereas an individual domain
would have a much weaker binding affinity. Experimental evi-
dence is needed to support this model. The identification of the
UAB domain, which recognizes H2Aub nucleosomes, may lead to
the identification of protein readers for other ubiquitinated nu-
cleosomes. It may also provide the foundation for interference of
this interaction.
Not only RSF1 recognizes H2Aub specifically; it is also re-

quired for H2Aub-medaited gene silencing. Genes affected by
RSF1 KO or KD overlap significantly with genes affected by
Ring1B or RNF2 KO or KD. RSF1 KO in mouse ESCs cause
significant changes of H2Aub chromatin organization (Fig. 5 A
and B and Fig. S5). The RSF1 complex was initially identified as
a factor that initiates transcription together with FACT on chro-
matin templates (22). Subsequently, the RSF complex is shown to
generate regularly spaced nucleosomes from irregularly spaced
nucleosomes (23). However, aside from the evidence that RSF1
helps load proteins onto centromeres and at the sites of DNA
damage (43–46), the function of RSF1 on chromatin in general
remains largely unknown. Our preliminary studies of in vitro
transcription revealed that the presence of RSF1 represses tran-
scription activation of H2Aub-containing chromatin, but not
chromatin-containing H2A. Furthermore, our studies reveal that
the recruitment of RSF1 or the RSF complex to H2Aub nucle-
osomes results in local compacted structures by incorporating
linker histone H1 (Fig. 5D), leading to gene repression. It re-
mains to be determined as to how RSF1 or the RSF1 complex, in
coordination with linker histone H1 or additional cellular pro-
teins, remodels H2Aub chromatin conformation to establish stable
nucleosome arrays, leading to gene repression. Whether there is a
direct causal relationship among nucleosome pattern, nucleosome
stability, and H1 binding remains to be determined.
Ubiquitinated H2A is the most abundant ubiquitin conjugate

in cells and is produced by the PRC1 ubiquitin ligase activity (7).
PRC1 can also compact chromatin by physical association with
nucleosome arrays, independent of its H2A ubiquitin ligase ac-
tivity (47–50). However, in this situation, cells will need many
more PRC1 molecules to reach equivalent repressive effects.
Therefore, H2Aub provides an efficient way for PRC1 to silence
gene expression. Recently, Pengelly et al. (51) generated flies

A B

H2A chromatin 

H2Aub chromatin 

DNA template

1     2    3     4

Gal4-VP16 
p300/AcCoA

RSF1

-     +     +     +
-     -      +     +
-     -      -      +Relaxed 

Supercoiled
H

2A H
2A

ub
1   2   3   4

Fig. 4. RSF1 represses transcription activation from H2Aub nucleosome-
containing chromatin in vitro. (A) Supercoiling assay of reconstituted chro-
matin template. The purified supercoiled plasmids (lane 1) were relaxed
to closed circular templates using topoisomerase I (lane 2). After protease
digestion and phenol-chloroform extraction, the relaxed plasmids (lane 2)
were mixed with histone/ACF/Nap1 in the presence of topoisomerase I to
reconstitute chromatin template that restore DNA supercoiling. DNA was
then purified and changes in linking number were demonstrated (lanes
3 and 4). (B) In vitro transcription assay on naked DNA and on chromatin
templates reconstituted with H2A or semisynthetic H2Aub. GAL4-VP16 and
p300/AcCoA activate transcription. RSF1 inhibits transcription activation on
H2Aub chromatin template, but has no effect on transcription activation on
H2A chromatin.

E7954 | www.pnas.org/cgi/doi/10.1073/pnas.1711158114 Zhang et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711158114/-/DCSupplemental/pnas.201711158SI.pdf?targetid=nameddest=SF5
www.pnas.org/cgi/doi/10.1073/pnas.1711158114


with point mutations either in Sce (the Drosophila homolog of
Ring) to abolish its E3 ligase activity or in the H2A ubiquitina-
tion site to prevent its ubiquitination. Both the Sce and H2A
mutant embryos show overall normal morphology and maintain
the repression ofHox genes; however, their development is arrested
at the end of embryogenesis, suggesting that H2A ubiquitination
by PRC1 may be required for late, but not early, embryogenesis.
Alternatively, other epigenetic mechanisms may compensate for
the function of H2A ubiquitination (see below).
In mouse ESCs, H2Aub appears to be critical for repression of

Hox and other PRC1 target genes and for the maintenance of
ESC identity, as Ring1B defective of E3 ligase activity cannot
rescue ESCs with double KO of Ring1A /Ring1B, two mouse

homologs of Drosophila Sce (35). Furthermore, expression of
this mutant form of Ring1B results in redistribution of Ring1B
and H3K27me3 into gene bodies, while reducing their signals
around the promoter regions. This mutation does not change
early gene expression and helps sustain embryonic development
into E15.5, five days longer than Ring1B KO mice that die at
E10.5. However, the Ring1B mutant embryos cannot develop to
term and show edema and exencephaly (52). These results thus
imply maintenance of gene silencing in the absence of H2Aub
may result from a distinct mechanism that employs H3K27me3 in
the gene body. Such mechanism may not be precise or efficient for
sustaining a proper regulation of gene expression, leading to
embryonic lethality during mouse development.
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Our studies here reveal an important role of RSF1 as a reader
of H2Aub and show that both PRC1 and RSF1 are required to
repress a large body of common targets in mouse ESCs (Fig. 3B).
In Xenopus, KD of RSF1, Ring1, or both affects embryogenesis.
These two proteins cooperate to regulate gastrulation and meso-
dermal cell specification (Fig. 6). These studies, together with
studies on the H2A ubiquitin ligase and deubiquitinase, establish
the important role of H2A ubiquitination in PRC1-mediated re-
pression in higher metazoans and argue the importance of RSF1
in the PRC1–H2Aub axis (7, 25, 34, 53).
In conclusion, based on the biochemical, chromatin structure,

gene-expression regulation, and embryological studies, we propose
a model for RSF1 in histone H2Aub-mediated gene silencing (Fig.
5E). RSF1 binds to H2Aub nucleosomes to organize stable nu-
cleosome patterns around TSSs. This results in a chromatin con-
formation that is refractory to nucleosome remodeling, thereby
leading to repression of H2Aub target gene expression.

Materials and Methods
Cell Culture. HeLa cell lines stably overexpressing HA-ubiquitin was cultured
as described previously (25). Briefly, cells were cultured in DMEM (HyClone)
supplemented with 10% FBS (HyClone) and 1% ampicillin-streptomycin
(HyClone). SILAC labeling was performed as per the manufacturer’s in-
structions (Cat#: MS10031; Invitrogen). Briefly, cells were grown in DMEM
culture media containing heavy isotope (13C) -labeled lysine for six cell
doublings to ensure >95% 13C incorporation. The yeast strain expressing
human H2B was cultured in Trp minus medium at 30 °C with gentle shaking
until OD600 reach 0.5 (31). Mouse ESCs were cultured in DMEM (high glucose,

MT-10-013; Gibco) supplemented with 50 unit/mL penicillin and streptomycin
(15070-063; Life technologies), 15%murine ESC defined FBS (SH30070.03E; Thermo
Scientific), 2 mM L-glutamine (25-005-CI; Cellgro), 1 mM sodium pyruvate (11360-
070; Gibco), 1× nonessential amino acids (25-025-CI, 100× stock; Cellgro), 1× nu-
cleoside (ES-008-D, 100× stock; Millipore), 0.007% β-mercaptoethanol (O3446I;
Fisher), and 1,000 unit/mL mLIF (ESGRO; Millipore) on irradiated mouse embry-
onic fibroblasts (PMEF-NL; Millipore) or 0.1% gelatin-coated plates (34).

Chromatin Reconstitution and in Vitro Transcription Assay. The pG5ML plasmid
containing Gal4 binding sites upstream of the adenovirus major late pro-
moter fused to a G-less cassette was used for chromatin assembly. A standard
assembly reaction contained relaxed plasmid DNA (0.35 μg), recombinant
histones (0.32 μg), recombinant ATP-using chromatin assembly and remodel-
ing factor (ACF, 60 ng), recombinant NAP1 (2 μg), and topoisomerase I (2 ng).
To demonstrate successful nucleosome reconstitution, supercoiling assays were
performed. The products of assembly reactions were deproteinized and ana-
lyzed by agarose gel electrophoresis and subsequent ethidium bromide
staining (54). Transcription assays were performed using Gal4-VP16 (20 ng),
p300 (20 ng), and acetyl-CoA (10 μM), as reported previously (54), except that
RSF1 purified from Escherichia coli (Fig. 2B) was added together with Gal4-
VP16. Radiolabeled RNA product was phenol-chloroform–extracted, ethanol-
precipitated, analyzed by 5% UREA-PAGE, and visualized by autoradiography.
Quantification was conducted by phosphorImager analysis.

Xenopus Manipulation. Xenopus embryos were obtained as described pre-
viously (25). Splicing-blocking antisense MOs were injected into both cells of
two-cell stage embryos at 20- to 50-ng doses, as indicated in the figures. The
morphology of the resulting embryos was observed at gastrula and tadpole
stages. For in situ hybridization, 20–25 ng of MOs was coinjected with 0.2 ng
RNA encoding the lineage tracer nuclear β-galactosidase (β-Gal) into the
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25ng Ring1-MO

Fig. 6. RSF1 collaborates with Ring1 to regulate mesodermal specification during early Xenopus embryogenesis. (A) Both RSF1 and Ring1 regulate Xenopus
gastrulation. Injection of RSF1-MO (20 ng) and Ring1-MO (50 ng) induced similar gastrulation defects in Xenopus tadpoles, with embryos displaying short axis
and open blastopore. In contrast, RNF2-MO induced a milder phenotype of bent axis and head defects. (B) RSF1-MO and Ring1-MO act cooperatively to induce
gastrulation defects. A combination of low doses of Ring1-MO and RSF1-MO resulted in an embryonic phenotype that mimicked or surpassed that with the high
doses of individual MOs. (C) At late gastrula stages, RSF1-MO and Ring1-MO cause delay in blastopore closure. Combination of low doses of RSF1-MO and Ring1-
MO induced similar gastrulation defects as that when higher doses of individual MOs were used. RNF2-MO did not have obvious effects on blastopore closure.
(D) In situ hybridization demonstrated that KD of RSF1 or Ring1 reduced mesodermal markers in a similar fashion. The pan-mesodermal gene Brachyury (Bra),
the dorsal mesodermal marker Chordin (Chd), and the ventrolateral mesodermal marker Wnt8 were all reduced upon RSF1 or Ring1 KD. KD of RNF2 did not alter
expression of these mesodermal markers. The embryos were injected with the MOs and the lineage tracer encoding nuclear β-Gal into the marginal zone of one
cell at the two-cell stage, and the injected region was revealed by staining with the β-Gal substrate Red-Gal.
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marginal zone of one cell of two-cell–stage embryos. The embryos were
collected at gastrula stages, stained with the β-Gal substrate Red-Gal, and
subjected to in situ hybridization, as described. The sequences of the MOs
are as the following: RSF1-MO: CCTCCTCACCTGCCCCGGTCTCTTC; Ring1-MO:
ATGCCCAGAAAAACACTGACCCACT; and RNF2-MO: GATTTACCTGTGGTG-
TCCTCTGCAG. All animal protocols adhere to the National Institutes of Health
Guide for Care and Use of Laboratory Animals (55) and were approved by the
University of Alabama Institutional Animal Care and Use Committee.

Methods for Nucleosome isolation and reconstitution, Mass spectrometry
identification and analysis, RSF1 expression and nucleosome pull-down assay,

KD, KO, and knockin experiments, RNA-seq, ChIP-seq and data analyses, and
nucleosome mapping can be found in SI Materials and Methods.
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