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Preface

The 4D Nucleome Network aims to develop and apply approaches to map the structure and 

dynamics of the human and mouse genomes in space and time with the goal of gaining deeper 

mechanistic understanding of how the nucleus is organized and functions. The project will develop 

and benchmark experimental and computational approaches for measuring genome conformation 

and nuclear organization, and investigate how these contribute to gene regulation and other 
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genome functions. Validated experimental approaches will be combined with biophysical 

modeling to generate quantitative models of spatial genome organization in different biological 

states, both in cell populations and in single cells.

The human genome contains over 20,000 of genes, and a larger number of regulatory 

elements. Large-scale studies over the last decade have cataloged these components of our 

genome and the cell types in which they are active. The ENCODE, Roadmap Epigenome, 

International Human Epigenome Project, EpiGeneSys (http://www.epigenesys.eu/en/) and 

FANTOM projects1–4 annotated thousands of genes and millions of candidate regulatory 

elements. However, our understanding of the mechanisms by which they exert regulatory 

effects on specific target genes across distances of kilobases to in some cases megabases, is 

decidedly incomplete.

The spatial folding of chromosomes and their organization in the nucleus have profound 

impact on gene expression. For example, spatial proximity is necessary for enhancers to 

modulate transcription of target genes (e.g.5–7), and clustering of chromatin near the nuclear 

lamina is correlated with gene silencing and replication timing8,9. Meanwhile, genome-wide 

association studies have identified large numbers of disease-associated loci, and the majority 

of them are located in distal, potentially regulatory, noncoding regions (e.g.10). In cancer 

cells genomic rearrangements frequently occur and these are at least in part guided by the 

3D organization of the nucleus11,12. These results emphasize the importance of distal 

elements for gene regulation and suggest an exciting opportunity to uncover fundamental 

mechanisms of disease through the mapping of long-range chromatin interactions and 3D 

genome organization. Therefore, to determine how the genome operates, we need to 

understand not only the linear encoding of information along chromosomes, but also its 3-

dimensional organization and its dynamics across time, i.e. the “4D nucleome”. 

Concomitantly, we must pursue deeper knowledge of the biophysical and molecular factors 

that determine genome organization, and how this organization contributes to gene 

regulation and other nuclear activities. Here we outline the goals and strategies of the 4D 

Nucleome (4DN) Network. This Network builds on other consortia and efforts focusing on 

(epi-) genome analysis outlined above and adds the spatial and time dimensions to explore 

how the genome is organized inside cells and how this relates to genome function.

The nucleus is not a homogeneous organelle, but consists of distinct nuclear structures and 

non-chromatin bodies as well as defined chromosomal regions, such as centromeres, 

telomeres and insulator bodies, recognized to cluster with each other and other genomic 

regions to define distinct nuclear compartments13,14. Examples of nuclear structures include 

the nuclear periphery and the heterochromatic compartment, while examples of nuclear 

bodies include nucleoli, nuclear speckles, paraspeckles, and Cajal and PML bodies. 

Chromosome conformation capture (3C) approaches15,16 have yielded additional insights by 

characterizing chromatin folding genome-wide at kilobase-resolution6,17,18. These studies 

show that the genome is compartmentalized in active and inactive spatial compartments at 

the scale of the nucleus, and within each compartment folding of chromatin fibers brings 

together loci and regulatory elements that are otherwise separated by large genomic 

distances. CTCF, the cohesin complex, and other DNA binding proteins as well as RNAs 

Dekker et al. Page 2

Nature. Author manuscript; available in PMC 2017 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.epigenesys.eu/en/


play roles in organizing chromatin domains and long-range interactions between DNA 

loci18–24. These studies point to the genome being intricately organized within the nucleus, 

with this organization playing a critical role in gene regulation and activity.

The past decade witnessed significant innovation in chromosome and nuclear structure 

analysis. Genomic approaches for mapping chromatin interactions, such as 3C, 4C, 5C, Hi-

C, and ChIA-PET16, are yielding genome-wide chromatin interaction maps at unprecedented 

resolution. Live cell and super-resolution microscopic approaches, combined with 

application of new ways (e.g. CRISPR/Cas9 –based systems) to visualize loci and sub-

nuclear structures are beginning to provide detailed views of the organization and dynamics 

of chromatin inside (living) cells25–31. There has also been tremendous progress in 

analyzing chromosome structural data, producing structural models for chromosome 

folding32,33. However, despite this progress, a comprehensive understanding of the 4D 

nucleome is still lacking. This is partly due to the fact that different experimental cell 

systems and approaches are used, which together with the absence of shared benchmarks for 

assay performance have led to observations that cannot be directly compared. Additionally, 

we currently have limited ability to integrate different datatypes (e.g. chromatin interaction 

data and imaging-based distance measurements) and lack approaches that can measure and 

account for cell-to-cell variability in chromosome and nuclear organization. Finally, we lack 

mechanistic insights into the relationships between chromosome conformation and nuclear 

processes including transcription, DNA replication, and chromosome segregation. These 

major gaps can be addressed by a highly synergistic, multidisciplinary and integrated 

approach in which groups with different expertise and knowledge, ranging from imaging and 

genomics to computer science and physics, work closely together to study common cell 

systems using complementary methods.

Goals and strategy of the project

The 4DN Network aims to develop a set of approaches to map the structures and dynamics 

of the genome and to relate these features to its biological activities. The Network aims to 

generate quantitative models of nuclear organization in diverse cell types and conditions, 

including in single cells. Overall, we anticipate that these efforts will lead to new 

mechanistic insights into how the genome is organized, maintained, expressed, and 

replicated, in both normal and disease states.

The 4DN Network will 1) develop, benchmark, validate, and standardize a wide array of 

technologies to probe the 4D nucleome; 2) integrate, analyze, and model datasets obtained 

with these technologies to obtain a comprehensive view of the 4DN; and 3) investigate the 

functional role of various structural features of chromosome organization in transcription, 

DNA replication and other nuclear processes. These three main components are illustrated in 

Fig. 1.

To achieve these objectives, we defined following key steps. First, a set of common cell lines 

will be studied to enable direct cross-validation of data obtained with different methods 

(Table 1). Important criteria include a stable, haplotype-phased and normal karyotype, ease 

of growth, ease of genome editing, and suitability for (live-cell) imaging. Further, given that 
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cell populations are characterized by cell-to-cell variation in their biological state (e.g. cell 

cycle stage), it will be important to employ clonal cell populations that can be synchronized, 

activated, induced or differentiated in a controlled manner.

Second, standards for data formats and quality will be established so that data can be shared 

broadly. This includes defining metrics for reproducibility and assessment of the sensitivity, 

specificity, resolution and precision with which aspects of the 4D nucleome can be 

measured.

Third, computational and analytical tools will be developed to analyze individual datasets 

and to integrate, compare and cross-validate data obtained with different technologies. 

Importantly, they will allow for the integration of the diverse datasets necessary to build 

comprehensive models of the 4D nucleome.

Fourth, genetic, biochemical and biophysical approaches will be developed to measure and 

perturb the roles of DNA sequences and trans-acting factors (proteins, RNA) in the 

formation of local and global aspects of the 4D nucleome and their impact on transcription 

and other nuclear functions.

Fifth, a common vocabulary will be developed to describe nuclear features and biophysically 

derived principles guiding chromosome folding. This is important because currently 

different structural descriptions and interpretations have been put forward to describe 

features detected by different technologies, or even by the same methods. We need better 

and more precise descriptions of the underlying reality of structural features that make up 

the 4D nucleome, e.g. loops and domains, and develop a consistent terminology as these 

features are detected by different technologies. This can be achieved by integrated analysis 

of data obtained with the wide range of technologies employed and under development by 

the Network.

A major goal is to compare and integrate the wealth of information that is anticipated to be 

generated by the Network. This will allow both benchmarking of experimental and 

computational approaches and better interpretation of what each data type (e.g. chromosome 

conformation capture data on the one hand and imaging on the other hand) reveals about the 

structure, dynamics and cell-to-cell variation in folding of chromosomes. The Network will 

analyze a small set of common cell lines (Table 1), and select a set of loci, to be studied by 

all participating groups. A joint analysis group with members from across the Network will 

integrate and analyze this diverse set data to produce benchmarks for each methodology and 

provide an integrated view of the 4D nucleome. Such a first modeling of the 4D nucleome 

can produce models that represents the folded state of chromosome and how this is dynamic 

in real time, variable between cells, and how it relates to gene regulation.

Finally, to facilitate rapid dissemination of data to the larger scientific community, a shared 

database and a public 4DN data browser will be established which includes all data, detailed 

protocols, engineered cell lines, and reagents used across the Network.
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Structure of the 4DN Network

The 4DN Network encompasses several related efforts (http://www.4dnucleome.org/). First, 

six Centers make up the Nuclear Organization and Function Interdisciplinary Consortium 

(NOFIC). These Centers will develop genomic and imaging technologies, and implement 

computational models for understanding the 4D nucleome. NOFIC centers will work 

together with other components of the Network to benchmark experimental and 

computational tools, and to identify the most appropriate repertoire of methods to study the 

4D nucleome. These studies will be combined with structural and functional validation of 

observations and models. Ultimately, the NOFIC aims to deliver integrated approaches that 

can be used towards generating a first draft of a model of the 4D nucleome.

Second, ongoing technology development is addressed by the 4DN Network in three ways. 

(i) New genomic interaction technologies will be developed to study the 4D nucleome at the 

single cell level, to probe the roles of RNA in chromatin architecture, and to engineer new 

chromatin interactions. (ii) New imaging and labeling methods are developed to visualize 

the genome at high resolution, in live cells as well as in tissues, and in relation to genome 

activity. Chromatin dynamics will be assayed at high resolution over time scales of seconds 

(e.g. mitotic compaction) to minutes (transcription) to hours (cell cycle) to days 

(differentiation). (iii) New methods will be developed to probe the DNA, RNA and protein 

composition of subnuclear structures such as the nuclear envelope and the nucleolus.

Third, a Data Coordination and Integration Center (DCIC; http://dcic.4dnucleome.org/) 

stores all data generated by the Network, and coordinates data analysis. The DCIC will 

maintain a web portal to share data and models with the Network and the larger scientific 

community. A separate Organizational Hub coordinates communication across the Network 

and organizes Network meetings. Finally, a 4DN Network Outreach/Education Working 

Group works to increase the visibility of the 4DN Network and its associated resources, and 

foster interactions and collaborations with the larger biomedical community.

Research Plans

Genomic technologies to reveal the 4D nucleome

3C technologies have been developed to examine long-range interactions across the 

genome15,16. Genome-wide 3C technologies, e.g. Hi-C, have revealed patterns of 

interactions that define genome structures at various resolutions, including loops and 

topologically associating domains (TADs)17,18,34,35. TADs can be hundreds of kilobases in 

size, often containing several genes and multiple enhancers, at least some of which appear to 

interact by looping mechanisms. The ChIA-PET method provides finer resolution to detect 

structures defined by architectural proteins such as CTCF and cohesin, as well as enhancer-

promoter interactions associated with RNAPII and other TFs6. Furthermore, genome-wide 

mapping at base pair resolution to detect haplotype specific interactions are in progress, 

which will enable the connection of chromatin topology to the vast genetic information 

regarding complex traits and diseases. The Network will continue to develop 3C-based 

technologies, including genome-wide methods that enable exploration of higher-order 
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(beyond pairwise) DNA contacts, detection of chromatin interactions in (thousands of) 

individual cells36, and mapping of RNA-DNA interactions (Table 2).

A limitation of current 3C methods is that they depend on a single cross-linker, 

formaldehyde, which has known biases in the type of residues it can cross-link. Because of 

the nature of formaldehyde, which is known to polymerize and crosslink molecules across a 

large range of distances, this approach lacks precise distance information. The Network will 

explore bivalent photo-activated cross-linkers that are separated by linkers of defined length 

and flexibility. Other strategies entirely eliminate the use of cross-linkers, e.g. GAM37.

Imaging the 4D genome

4DN investigators will develop and integrate imaging platforms that enable visualizing 

dynamics, interactions, and structural organization of the nucleus at unprecedented temporal 

and spatial resolutions (Table 3). Each of these approaches has unique and complementary 

abilities for probing different aspects of genome organization. In particular, platforms 

enabling live cell imaging allow the dynamics of select chromatin regions and nuclear 

features to be studied in real time (seconds to hours).

Standard and high-throughput fluorescent in situ hybridization (FISH) using oligonucleotide 

probes or guide RNA-mediated recruitment of fluorescently labeled dCas9 (“CASFISH”31) 

in fixed cells will be exploited to image genomic interactions over different spatial distances 

in different cell types and states. These imaging tools will play an important role in 

benchmarking, validating and complementing data obtained with genomic and proteomic 

mapping technologies. CRISPR/dCas9 FISH in live cells29,30,38 and other live cell imaging 

approaches (Table 3) will be employed to assay the dynamic behavior of particular 

chromatin regions and/or nuclear structures in real time.

New technologies will be developed to label DNA, RNA, and protein that occur in proximity 

of specific nuclear bodies. These technologies include HRP-labeled antibodies in TSA-SEQ 

(Box 1), APEX (ascorbate peroxidase39) and Killer Red40. Genome-editing technologies 

will also be applied to tag a subset of key genomic loci, loops, TADs and potentially newly 

discovered structures to help visualize these moieties and document their interactions with 

other nuclear regions in live cells.

Super resolution microscopy, single-molecule tracking techniques and multiplex fluorescent/

chemical tags will be applied in living cells to determine the dynamic interactions, diffusion 

and motion of fluorescently labeled proteins, ncRNAs and genomic loci (Table 3). These live 

cell imaging approaches are expected to provide information regarding search mechanism, 

binding and residence time of DNA and protein interactions and will also be used to validate 

and complement genomic methods used by the Network.

Soft X-ray Tomography (SXT41) will be used to visualize the 3D organization of chromatin 

in nuclei of cells in the native state (cryo-immobilized). SXT will be used to directly 

measure chromatin compaction, e.g. in relation to sub-nuclear position, at different stages of 

cell differentiation and in different cell types. Correlated microscopy approaches will be 

used to augment ultrastructural data with molecular localization information. Cryogenic 
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Fluorescence Tomography (CFT42) will be used to precisely locate molecules in 3D 

reconstructions of intact, native state cells imaged using Soft X-ray Tomography.

Members of the Network will develop new Electron Microscopy (EM) technologies that 

enable the local and global structural organization of chromatin to be visualized as a 

continuum from nucleosome to Mbp scale in both interphase and mitotic cells. One such 

method, ChromEM, will be combined with new genetic tags and nanoparticle labeling 

technologies to develop the EM equivalent of ‘multi-color’ fluorescence.

The development of automated imaging analysis pipelines and data standards will be 

important to extract the maximum structural information possible from these datasets. 

Further development of software for analyzing, annotating, and archiving imaging data, 

together with implementation of new approaches for correlating imaging and genomics 

datasets are major goals of the 4DN Network (see below).

Nuclear bodies and non-chromatin structures

The nucleus consists of distinct nuclear structures, such as the nuclear lamina and nuclear 

pores, chromatin-associated bodies such nucleoli that are initiated at specific genomic loci, 

as well as non-chromatin bodies such as nuclear speckles, and PML bodies43,44. Increasing 

evidence indicates that specific genomic regions associate with these structures, suggesting 

that these chromosomal associations may have a functional role in regulating genome 

function8,45,46.

Goals of the 4DN Network further include development of new mapping methodologies to 

measure the genome-wide molecular interaction frequency and cytological distance of 

chromosome loci to major nuclear compartments, including the nuclear lamina, nuclear 

pores, nuclear speckles, nucleoli, and pericentric heterochromatin (Table 2). Concurrently, 

new and improved technologies will be developed, including localized APEX (ascorbate 

peroxidase)-mediated protein biotinylation47, fractionation by cryomilling, and RNA 

Antisense Purification (RAP48,49), to catalog and measure the protein and RNA components 

of these nuclear compartments, as well as both optogenetic and degron-based approaches to 

alter or disrupt sub-nuclear bodies and compartments. Functional mapping approaches based 

on Repli-Seq9 and TRIP (thousands of reporters integrated in parallel50) will provide 

genome-wide correlations of DNA replication timing and chromosome position effects on 

transcription and RNA processing that can be correlated with these structural maps (Table 

2). New imaging approaches will be developed to correlate chromosome and nuclear 

compartment dynamics with changes in DNA replication timing, transcriptional activation, 

and other functional states (Table 3). Computational analyses of these genome mapping data 

from several cell types will be aimed at identifying possible cis and trans determinants of 

nuclear compartmentalization.

Modeling the 4D Nucleome

In parallel with the emergence of increasingly powerful experimental methods has been the 

development of computational approaches for modeling the spatial organization of the 

genome. There are at least two major computational approaches for modeling genome 

architecture on the basis of experimental data: data-driven and de novo approaches33 (Figure 
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2). Data-driven approaches directly use experimental data (Hi-C, imaging etc.) to produce an 

ensemble of conformations that best match an experimentally observed set of contact 

probabilities and distances51,52. De novo modeling, on the other hand, produces ensembles 

of conformations that result from known or hypothesized physical or biological processes, 

and tests whether these ensembles are consistent with features of experimental contact 

frequency maps and imaging data (e.g. 19,53). Such de novo models can suggest specific 

molecular mechanisms and principles of chromosome organization, and can be predictive of 

chromosome dynamics thus going far beyond the experimental data33.

There are several challenges and promises of current modeling approaches. The first is in a 

wide diversity of technologies that capture complementary aspects of genome organization: 

contact frequencies, distances, proximities to various nuclear bodies, etc. Relationships 

between these data can be complicated: e.g. contact frequency is distinct from an average 

spatial distance, possibly creating a seemingly paradoxical relationship between Hi-C and 

FISH 54). Current modeling approaches, however, can systematically integrate a variety of 

data to generate comprehensive structural and dynamic models of the 4D nucleome. Such 

models can be validated against data not used for model selection, e.g. predicting dynamics 

from static data and testing using live imaging.

Second, most current genomic methods yield data from ensembles of thousands to millions 

of cells, obscuring structural heterogeneity that exists among single cells. A number of 

groups within the Network are developing methods for generating data from large numbers 

of single cells, which will present new computational challenges for integrating with current 

modeling approaches36. It is possible that some of these methods will yield functional data 

on these same single cells (i.e. Hi-C and RNA-seq, from each of many single cells), which 

would represent a significant opportunity for directly relating structure to function.

Third, most current models ignore the fact that mammalian cells are diploid, i.e. they do not 

distinguish or separately model homologous chromosomes, which will be particularly 

important for modeling based on single-cell data. The haplotype-resolution of the genomes 

of the common cell types chosen by the consortium will aid in this goal.

Fourth, contemporary approaches for modeling genome architecture are typically static 

rather than dynamic, reflecting the static nature of available Hi-C data and the majority of 

imaging data. As we are increasingly able to visualize (via direct imaging) or infer (via 

single cell or bulk Hi-C analyses of time series) chromatin dynamics, e.g. in differentiation, 

and cell cycle progression, it will be essential that these observations can be integrated into 

computational models. Two classes of modeling approaches can tackle dynamics differently. 

Data-driven modeling can use Hi-C data obtained for different time points (e.g. stages of 

differentiation or cell cycles) to build conformational ensembles for each point and then 

hypothesize about possible mechanisms that led to observed reorganizations. De-novo 

modeling, in turn, can test whether a particular mechanism that needs to be stipulated first, 

could lead to observed temporal changes in Hi-C data. Polymer models can further show 

whether observed temporal reorganizations (through differentiation or cell cycle) can reflect 

slow equilibration process of generally non-equilibrium chromosomes. Moreover, 

mechanistic de novo models can be further validated by dynamic data from live-cell imaging 
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experiments, e.g. by examining mean-squared displacements of different chromosomal loci 

vs, time in experiment and simulations 55.

Fifth, new data and future models should help to connect genome architecture and other 

aspects of genome function, e.g. by suggesting molecular mechanisms of how transcription 

factor binding or epigenetic modifications can lead to formation of active/inactive chromatin 

compartments56. The inferred mechanisms could generate testable predictions of sequence-

structure-function relationships, i.e. how nuclear architecture relates to nuclear function. 

Availability of temporal Hi-C, functional data, and models of chromatin organization and 

dynamics can allow identifying causality if certain functional characteristics at earlier time 

points are predictive of later chromosomal states, or vice versa. Such associations and 

inferred causations can then be further tested experimentally.

Perturbation and manipulation of the 4D nucleome to relate structure to function

A critical and overarching goal is to determine how genome structure and chromatin 

conformation modulate genome function in health and disease. To this end the 4DN 

Network will explore experimental approaches to manipulate and perturb different features 

of the 4D nucleome. First, using CRISPR/Cas9 technologies DNA elements involved in 

specific chromatin structures, e.g. domain boundaries or chromatin loops, can be altered, re-

located or deleted57,58. Second, defined chromatin structures such as chromatin loops will be 

engineered de novo by targeting proteins that can (inducibly) dimerize with their partner 

looping proteins (e.g.7). Third, other CRISPR/Cas9 approaches will be used to target 

enzymes (e.g. histone modifying enzymes, structural proteins) or ncRNAs to specific sites in 

the genome. Fourth, several groups will perturb nuclear compartmentalization by developing 

methods for “rewiring” chromosome regions to different nuclear compartments, either by 

integrating specific DNA sequences that are capable of autonomous targeting the locus to 

different nuclear compartments or by tethering certain proteins to these loci to accomplish 

similar re-positioning. Fifth, cell lines will be generated for conditional/temporal ablation of 

nuclear bodies or candidate chromosome architectural proteins (such as CTCF and cohesin) 

or RNAs. Sixth, additional methods will be developed to nucleate nuclear bodies at specific 

chromosomal loci. Finally, biophysical approaches will be developed to micro-mechanically 

perturb cell nuclei and chromosomes followed by direct imaging of specific loci59. Although 

it remains challenging to establish direct cause-and-effect relationships, analysis of the 

effects of any of these perturbations on processes such as gene expression and DNA 

replication can provide deeper mechanistic insights into the roles of chromosome structure 

and nuclear organization in regulating the genome.

Data sharing and standards

The Network will develop guidelines for data formats, metadata (descriptions of how the 

data was acquired), standards, quality control measures, and other key data-related issues. 

Another goal is to make this data rapidly accessible, both within the Network and the entire 

scientific community. These efforts will be of particular importance for new technologies for 

which standards for sharing data and assessing data quality have not yet been established. 

Such standards will greatly enhance the usefulness of the datasets for the broader scientific 

community beyond those who generate the data.
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For sequencing-based technologies, data format standards to represent sequences and 

alignments have long been present (e.g. fastq, bam/sam). However, common formats to 

represent three-dimensional interactions are yet to be developed. These formats need to 

account for large data sizes and the constraints imposed by different computer architectures. 

For Hi-C data, for example, the genome-wide contact probability map is an N^2 matrix, 

where N is the spatial resolution (for 10kb resolution, N=300,000), with most of the entries 

being empty. There are multiple ways to represent such sparse matrices, appropriate for 

different analysis and storage approaches. For imaging technologies, the situation is even 

more challenging, as the types of microscopes employed are highly variable, and the data 

formats and analysis tools are often manufacturer-dependent. Standards to unify data and 

metadata from different manufacturers, such as the Open Microscopy Environment (https://

www.openmicroscopy.org/site), are under development. These standards also need to 

accommodate the rapid developments in super-resolution microscopy.

A related issue is to define a set of appropriate metadata fields and minimum metadata 

requirements such that sufficient and useful details are available to other investigators 

outside the Network. While not all information can be captured about an experiment, 

collecting pertinent information will increase the reproducibility of experiments and the 

likelihood that the data will be re-used by other investigators. The 4DN Network has 

established formal working groups, including the 4DN Data Analysis Group, Omics Data 

Standards Group and Imaging Data Standards Group, which will define these 4DN standards 

and data analysis protocols.

Developing a set of measures for assessing data quality and determining appropriate 

thresholds will be important for ensuring high-quality 4DN data. An important measure of 

data quality and reliability of new technologies is the reproducibility of results between 

repeated experiments. Reproducibility can be assessed at multiple levels: broadly speaking, 

technical reproducibility measures how well a technique performs for the same starting 

material, whereas biological reproducibility should also capture all other variations 

including heterogeneity among samples. The 4DN Analysis Group will compute and make 

available quality control measures and provide recommendations on expected quality 

standard thresholds so that investigators can make decisions regarding the utility of specific 

datasets for addressing their specific questions.

Finally, to ensure rapid dissemination of findings made by the 4DN Network with the larger 

scientific community the Network has adopted a transparent and open publication policy 

where all work supported by the Network is submitted to a public preprint server such as 

BioRxiv before submission to a peer reviewed journal.

Outlook

After determining the complete DNA sequence of the human genome and subsequent 

mapping of most genes and potential regulatory elements, we are now in a position that can 

be considered the third phase of the human genome project. In this phase, which builds upon 

and extends other epigenome mapping efforts mentioned above, the spatial organization of 

the genome is elucidated and its functional implications revealed. This requires a wide array 
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of technologies from the fields of imaging, genomics, genetic engineering, biophysics, 

computational biology and mathematical modeling. The 4DN Network, as presented here, 

provides a mechanism to address this uniquely interdisciplinary challenge. Further, the 

policy of openness and transparency both within the Network and with the broader scientific 

community, and the public sharing of all methods, data and models will ensure rapid 

dissemination of new knowledge, further enhancing the potential impact of the work. This 

will also require fostering collaborations and establishing connections to other related efforts 

around the world, e.g. the initiative to start a European 4DN project (https://www.

4dnucleome.eu), that are currently under development. Together these integrated studies 

promise to allow moving from a one-dimensional representation of the genome as a long 

DNA sequence to a spatially and dynamically organized three dimensional structure of the 

living and functional genome inside cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The 4D Nucleome project
The project encompasses three components: First, experimental mapping approaches are 

employed to measure a range of aspects of the spatial organization of the genome including 

chromatin loops, domains, nuclear bodies etc. Second, computational and modeling 

approaches are used to interpret experimental observations and build (dynamic) spatial 

models of the nucleus. Third, perturbation experiments, e.g. using CRISPR/cas9-mediated 

genome engineering, are used for functional validation. In these studies chromatin structures 

are altered, e.g. removing chromatin loops, creating novel loops at defined positions or 

tethering regulatory components in selected regions in order to test their architectural 

function. These perturbation studies can be complemented with functional studies, e.g. 

analysis of gene expression to assess the functional implications of chromatin folding. 

(Picture of cell nucleus was provided by Hanhui Ma and Thoru Pederson).
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Figure 2. Modeling the 4D genome
Data obtained with imaging and chromosome conformation capture based assays can be 

used for building spatial and dynamic models of chromosomes using two main approaches. 

In the data-driven approach, experimental data are used directly to generate ensembles of 

conformations that reproduce the experimental observations. In the de novo approach, 

ensembles of conformations are built according to known or hypothesized physical or 

biological processes. Models are then selected based on their agreement with experimental 

data.
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Table 1

Common cell lines used by the 4DN network. Tier 1 cells are used for all studies, while Tier 2 cell lines are 

used for specific projects.

Tier 1 Description Availability

H1-ESC (WA01) Human embryonic stem cells (male) WiCell

hTert-HFF hTert-immortalized human foreskin fibroblasts (male) Dekker lab

IMR90 Primary lung fibroblasts (female) ATCC

GM12878 EBV-immortalized B-lymphocytes (female) Coriell

Tier 2 Description Availability

F121-9 Mouse Cast-129 F1 hybrid embryonic stem cells (female) Gilbert lab, FSU

F123 Mouse Cast-129 F1 hybrid embryonic stem cells (male) Jaenisch lab, MIT

JM8.N4 Mouse C57BL/6N inbred embryonic stem cells (male) KOMP/UCDavis

H9-ESC (WA09) Human embryonic stem cells (female) WiCell

hTert-RPE hTert-immortalized retina pigmented epithelium (female) ATCC

K562 Chronic myelogenous leukemia (female) ATCC

HEK293 Human embryonic kidney (likely female) ATCC

U-2 OS Osteosarcoma cells (female) ATCC

HAP1 Haploid derivative of chronic myelogenous leukemia (CML) cell line KBM-7 (male) van Steensel lab, NKI

WTC-11 iPSC (male) Conklin lab, Gladstone/UCSF
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Table 2

Genomic technologies currently in use or in development in the 4DN network. UD = under development.

Assay Name Assay Abbreviation. Key features

Chromosome Conformation Capture All methods use proximity ligation to measure interacting 
genomic loci

3C 15,60 Interactions between specific genomic loci, including 
genome-wide studies

4C 61 Genome-wide interactions of a specific genomic locus

5C 62 Many loci against many loci

Hi-C 17 Genome wide map of all interactions in the nucleus

Single Cell Hi-C 36 Hi-C variant that enables mapping contacts within single 
cells

Combinatorial single-cell 
Hi-C 63

Single cell Hi-C variant using split-pool barcoding to map 
single cells

In situ Hi-C 63 Hi-C variant that performs digestion and ligation in intact 
nuclei

DNase Hi-C 64 Hi-C variant that digests chromatin using DNase

Micro-C 65, 66 Hi-C variant that digests chromatin using micococcal 
nuclease

Capture Hi-C 67,68 Hi-C variant that incorporates selection of targeted genomic 
loci

TCC 69 A variant of Hi-C using bead-coupling of complexes

Distance Hi-C UD Variant of Hi-C using photo-activated crosslinkers to 
measure the distance between interacting DNA regions.

COLA 70 A variant of Hi-C using frequent restriction cutters to map 
>2 simultaneous DNA interactions

Chromatin Interaction Analysis by paired-
end-tag sequencing

ChIA-PET 6,71 Genome-wide map of interactions bound to a specific 
protein.

Genome Architecture Mapping GAM 37 A cryosectioning method to map colocalized DNA regions 
in a ligation-independent manner.

Split-pool barcoding of RNA and DNA SPRITE A ligation-independent method to barcode interacting RNA 
and DNA. Enables mapping of higher-order contacts.

RNA interaction with chromatin by paired-
end-tag sequencing

RICh-PET UD Genome-wide mapping for all ncRNA-chromatin 
interactions.

Chromatin IP aided RICh-PET ChIP RICh-PETUD Genome-wide mapping for 3-way interactions involving 
ncRNA, DNA loci, and protein factors.

DNA Adenine Methyltrans-ferase 
Identification

DamID and Single-Cell 
DamID 72,8

Genome-wide mapping of molecular contact frequency of 
DNA locus to a Dam methylase fusion protein: will be used 
to measure DNA proximity to different nuclear 
compartments

Tyramide Signal Amplification-Seq TSA-Seq UD Genome-wide mapping of estimated mean cytological 
distance (in microns) of DNA locus to a nuclear 
compartment.

Replication Labeling-Seq Repli-Seq 73,74 Genome-wide mapping of timing of DNA replication

Thousands of Reporters Integrated in 
Parallel

TRIP 50 Genome-wide mapping of chromosome position effects on 
transcription and post-transcriptional processing

RNA Antisense Purification RAP 48,49, 75,76 Mapping of DNA regions, RNA species, and proteins that 
are in proximity to a specific noncoding RNA in the 
nucleus.
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Table 3

Imaging technologies currently in use or in development in the 4DN network

Application Method (PMID) Label/Stain/Dye Feature

Visualizing DNA and 
RNA sequences

3D DNA and RNA FISH 77, seqFISH 78, 
MERFISH 79,80

Fl-labeled oligo and BAC probes Fixed cells, single and multiple 
target DNA and RNA detection

HIPMap 81 Fl-labeled probes High throughput FISH and 
automated microscopy in fixed 
cells

Cas-FISH 31,82), CRISPRainbow (29), Cas 
live cell imaging 30,38

Fl-labeled dCas9 and guide 
RNAs (gRNAs) to label genomic 
loci; gRNAs can contain stem 
loop bound by fl-labeled coat 
proteins

Live and fixed cells-gRNAs 
against repetitive targets and/or 
collections of gRNAs that cover 
unique sequences

Track first, identify later 83 Bar coded fl-labeled oligos and 
fl-dCas9

Combination of SeqFISH and 
Cas9 live cell imaging

MS2, PP7, mSpinach, aptamers 84,85 Fl-fusions that bind tagged RNA 
sequences

Live and fixed cells: 
transcription

ParS, LacO or TetO labeled genomic 
loci 86,87

Visualized by Fl-labeled ParB, 
lac or tet repressor proteins

Live and fixed cells: genomic 
tags

High Resolution 
Ultrastructur e and 
3D organization

Transmission EM, SBEM, multiple-tilt 88 

and serial section EM tomography 89
Heavy metals, colloidal nano 
gold, inorganic and organic 
probes and tags, ChromEM, 
ALEXA 633, Fluoronanogold, 
Time-STAMP-YFP-MiniSOG

High resolution ultrastructure of 
macromolecules in situ ranging 
from 2D transverse projections 
through 70–250 nm sections to 
reconstruction of large 3D 
volumes (250 to >500nm thick)

Multi-Color EM 90, ChromEMT (under 
development)

Orthogonal correlated light and 
EM probes and DAB conjugates

Local ultrastructure and global 
3D organization of chromatin as 
a continuum at nucleosome 
resolutions and megabase scales

X-Ray Tomography 41 Quantitative linear absorption 
coefficient (LAC) generated 
contrast that reflects the 
bioorganic composition of 
unlabeled DNA, RNA and 
proteins

Mesoscale resolution (20–50 
nm) in intact, unprocessed cells

Correlated SIM and X-Ray 
Tomography 42

Fl-labeled probes Visualize ultrastructure and 
interactions of selectively 
labeled chromatin and protein 
simultaneously

Visualizing spatial 
and dynamic 3D 
nuclear organization

Wide-field, Confocal/Multiphoton Fl probes: Fl protein, SNAP and 
Halo genomic tags, Alexa and 
Cy dyes, atto488, Suntag, SH2, 
Quantum dots, Janelia fluor 
dyes 100

Live and fixed cells: Diffraction 
limited (>250 nm)

Super resolution: 3D SIM, PALM, 
STORM 91, STED, adaptive optics 92, 
tcPALM, 28, SAIM 93

Fl probes, photoactivatable and 
photoswitchable proteins; caged 
organic fluorophores 100 and 
organic fluorophores in thiol 
buffer coupled to SNAP, Halo, 
nanobodies or FISH oligos.

Super-resolution imaging of 
nuclear organization in live and 
fixed cells (ca. 10–20 nm).

Lattice Light Sheet (LLS), LLS-
PAINT 94,95

Fl-labeled probes Live cell: 3D dynamics and 
nuclear organization

Single molecule imaging and 
tracking 96–99

Fl-labeled and photoactivatable 
probes, ArrayG

Live cell: Binding and search 
dynamics: residence time, search 
time, search mechanism

Abbreviations: Fl, fluorescent, BAC, bacterial artificial chromosome, FISH, Fluorescent in situ hybridization; seqFISH, sequential live and fixed 
FISH; MERFISH, multiplexed error robust fluorescence in situ hybridization; HIPMap, High-throughput imaging position mapping; CasFISH, 

Nature. Author manuscript; available in PMC 2017 September 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dekker et al. Page 21

CRISPR associated protein 9 FISH, CRISPRainbow, multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs; MS2 and PP7, 
bacteriophage RNA stem loop motifs; SBEM, serial block face scanning EM; SIM, Structured Illumination Microscopy, PALM, Photoactivated 
Localization Microscopy; STORM, stochastic optical reconstruction microscopy; STED, Stimulated emission depletion; tcPALM, time-correlated 
PALM; SAIM, Scanning Angle Interference Microscopy
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