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Abstract

It is commonplace to encounter nonstationary or heterogeneous data, of which the underlying 

generating process changes over time or across data sets (the data sets may have different 

experimental conditions or data collection conditions). Such a distribution shift feature presents 

both challenges and opportunities for causal discovery. In this paper we develop a principled 

framework for causal discovery from such data, called Constraint-based causal Discovery from 

Nonstationary/heterogeneous Data (CD-NOD), which addresses two important questions. First, we 

propose an enhanced constraint-based procedure to detect variables whose local mechanisms 

change and recover the skeleton of the causal structure over observed variables. Second, we 

present a way to determine causal orientations by making use of independence changes in the data 

distribution implied by the underlying causal model, benefiting from information carried by 

changing distributions. Experimental results on various synthetic and real-world data sets are 

presented to demonstrate the efficacy of our methods.

1 Introduction

In many fields of empirical sciences and engineering, one aims to find causal knowledge for 

various purposes. As it is often difficult if not impossible to carry out randomized 

experiments, inferring causal relations from purely observational data, known as the task of 

causal discovery, has drawn much attention in several fields, e.g. computer science, 

economics, and neuroscience. With the rapid accumulation of huge volumes of data of 

various types, causal discovery is facing exciting opportunities but also great challenges.

One feature such data often exhibit is distribution shift. Distribution shift may occur across 

data sets, which be obtained under different interventions or have different data collection 

conditions, or over time, as featured by nonstationary data. For an example of the former 

kind, consider the problem of remote sensing image classification, which aims to derive land 

use and land cover information through the process of interpreting and classifying remote 

sensing imagery. The data collected in different areas and at different times usually have 

different distributions due to different physical factors related to ground, vegetation, 

illumination conditions, etc. As an example of the latter kind, fMRI recordings are usually 
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nonstationary: the causal connections in the brain may change with stimuli, tasks, attention 

of the subject, etc. More specifically, it is believed that one of the basic properties of the 

neural connections is their time-dependence [Havlicek et al., 2011]. To these situations many 

existing approaches to causal discovery fail to apply, as they assume a fixed causal model 

and hence a fixed joint distribution underlying the observed data.

In this paper we assume that the underlying causal structure is a directed acyclic graph 

(DAG), but the mechanisms or parameters associated with the causal structure, or in other 

words the causal model, may change across data sets or over time (we allow mechanisms to 

change in such a way that some causal links in the structure become vanish over some time 

periods or domains). We aim to develop a principled framework to model such situations as 

well as practical methods, called Constraint-based causal Discovery from Nonstationary/

heterogeneous Data (CD-NOD), to address the following questions:

• How to efficiently identify which variables have nonstationary local causal 

mechanisms and recover the skeleton of the causal structure over the observed 

variables?

• How to take advantage of the information carried by distribution shifts for the 

purpose of identifying causal direction?

This paper is organized as follows. In Section 2 we define and motivate the problem in more 

detail and review related work. Section 3 proposes an enhanced constraint-based method for 

recovering the skeleton of the causal structure over the observed variables and identify those 

variables whose generating processes are nonstationary. Section 4 develops a method for 

determining some causal directions by exploiting nonstationarity. It makes use of the 

property that in a causal system, causal modules change independently if there is no 

confounder, which can be seen as a generalization of the invariance property of causal 

mechanisms. Moreover, we show that invariance of causal mechanisms can be readily 

checked by performing conditional independence test. The above two sections together give 

the procedure of CD-NOD. Section 5.1 reports experimental results tested on both synthetic 

and real-world data sets.

2 Problem Definition and Related Work

Suppose that we are working with a set of observed variables  and the underlying 

causal structure over V is represented by a DAG G. For each Vi, let PAi denote the set of 

parents of Vi in G. Suppose at each time point or in each domain, the joint probability 

distribution of V factorizes according to . We call each P(Vi | PAi) 

a causal module. If there are distribution shifts (i.e., P(V) changes over time or across 

domains), at least some causal modules P(Vk | PAk),  must change. We call those 

causal modules changing causal modules. Their changes may be due to changes of the 

involved functional models, causal strengths, noise levels, etc. We assume that those 

quantities that change over time or cross domains can be written as functions of a time or 

domain index, and denote by C such an index. The values of C can be immediately seen 

from the given time series or multiple data sets.
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If the changes in some modules are related, one can treat the situation as if there exists some 

unobserved quantity (confounder) which influences those modules simultaneously and, as a 

consequence, the conditional independence relationships in the distribution-shifted data will 

be different from those implied by the true causal structure. Therefore, standard constraint-

based algorithms such as the PC and SGS algorithms [Spirtes et al., 2001] may not be able 

to reveal the true causal structure. As an illustration, suppose that the observed data were 

generated according to Fig. 1(a), where g(C), a function of C, is involved in the generating 

processes for both V2 and V4; the conditional independence graph for the observed data then 

contains spurious connections V1 – V4 and V2 – V4, as shown in Fig. 1(b), because there is 

only one conditional independence relationship, V3 ╨ V1 | V2· Moreover, when one fits a 

fixed functional causal model (e.g., the linear, non-Gaussian model [Shimizu et al., 2006], 

the additive noise model [Hoyer et al., 2009; Zhang and Hyvärinen, 2009a], or the post-

nonlinear causal model [Zhang and Chan, 2006; Zhang and Hyvärinen, 2009b]) to 

distribution-shifted data, the estimated noise may not be independent from the cause any 

more. Consequently, in general the approach based on constrained functional causal models 

cannot infer the correct causal structure either.

To tackle the issue of changing causal models, one may try to find causal models on sliding 

windows [Calhoun et al., 2014] (for nonstationary data) or in different domains (for data 

from multiple domains) separately, and then compare them. Improved versions include the 

online changepoint detection method [Adams and Mackay, 2007], the online undirected 

graph learning [Talih and Hengartner, 2005], the locally stationary structure tracker 

algorithm [Kummerfeld and Danks, 2013], and the regime aware learning algorithm to learn 

a sequence of Bayesian networks (BNs) that model a system with regime changes 

[Bendtsen, 2016]. Such methods may suffer from high estimation variance due to sample 

scarcity, large type II errors, and a large number of statistical tests. Some methods aim to 

estimate the time-varying causal model by making use of certain types of smoothness of the 

change [Huang et al., 2015], but they do not explicitly locate the changing causal modules. 

Several methods aim to model time-varying time-delayed causal relations [Xing et al., 2010; 

Song et al., 2009], which can be reduced to online parameter learning because the direction 

of the causal relations is given (i.e., the past influences the future). Compared to them, 

learning changing instantaneous causal relations, with which we are concerned in this paper, 

is generally more difficult. Moreover, most of these methods assume linear causal models, 

limiting their applicability to complex problems with nonlinear causal relations.

In contrast, we will develop a nonparametric and computationally efficient causal discovery 

procedure to discover the causal skeleton and orientations from all data points 

simultaneously. We term this procedure Constraint-based causal Discovery from 

Nonstationary/heterogeneous Data (CD-NOD). By analyzing all available data, it efficiently 

identifies nonstationary causal modules and recovers the causal skeleton. We will also show 

that distribution shifts actually contain useful information for the purpose of determining 

causal directions and develop practical algorithms accordingly.
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3 CD-NOD Phase 1: Changing Causal Module Detection and Causal 

Skeleton Estimation

3.1 Assumptions

As already mentioned, we allow changes in causal modules and some of the changes to be 

related, which may be explained by positing particular types of unobserved confounders. 

Intuitively, such confounders may refer to some high-level background variables. For 

instance, for fMRI data, they may be the subject’s attention or some unmeasured 

background stimuli; for the stock market, they may be related to economic policies. Thus we 

do not assume causal sufficiency for the set of observed variables. However, we assume that 

the confounders, if any, can be written as smooth functions of time or domain index. It 

follows that at each time or in each domain, the values of these confounders are fixed. We 

call this a pseudo causal sufficiency assumption.

We assume that the observed data are independently but not identically distributed. As a 

consequence, in this paper we will focus on instantaneous or contemporaneous causal 

relations; the strength (or model, or even existence) of the causal relations is allowed to 

change over time or across data sets. We did not explicitly consider time-delayed causal 

relations and in particular did not engage autoregressive models. However, we note that it is 

natural to generalize our framework to incorporate time-delayed causal relations in time 

series, just in the way that constraint-based causal discovery was adapted to handle time-

series data (see, e.g., [Chu and Glymour, 2008]).

Denote by  the set of such confounders (which may be empty). We further assume 

that for each Vi the local causal process for Vi can be represented by the following structural 

equation model (SEM):

(1)

where  denotes the set of confounders that influence Vi (it is an empty set 

if there is no confounder behind Vi and any other variable), θi(C) denotes the effective 

parameters in the model that are also assumed to be functions of C, and εi is a disturbance 

term that is independent of C and has a non-zero variance (i.e., the model is not 

deterministic). We also assume that the εi’s are mutually independent.

In this paper we treat C as a random variable, and so there is a joint distribution over 

. We assume that this distribution is Markov and faithful to 

the graph resulting from the following additions to G (which, recall, is the causal structure 

over V): add  to G, and for each i, add an arrow from each 

variable in gi(C) to Vi and add an arrow from θi(C) to Vi. We refer to this augmented graph 

as Gaug. Obviously G is simply the induced subgraph of Gaug over V.
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3.2 Detecting Changing Modules and Recovering Causal Skeleton

In this section we propose a method to detect variables whose causal modules change and 

infer the skeleton of G. The basic idea is simple: we use the (observed) variable C as a 

surrogate for the unobserved , or in other words, we take C to 

capture C-specific information.1 We now show that given the assumptions in 3.1, we can 

apply conditional independence tests to V ∪ {C} to detect variables with changing modules 

and recover the skeleton of G. We considered C as a surrogate variable (it itself is not a 

causal variable, it is always available, and confounders and changing parameters are its 

functions): by adding only C to the variable set V, the skeleton of G and the changing causal 

modules can be estimated as if  were known. This is achieved by 

Algorithm 1 and supported by Theorem 1.

The procedure given in Algorithm 1 outputs an undirected graph, UC, that contains C as well 

as V. In Step 2, whether a variable Vi has a changing module is decided by whether Vi and 

C are independent conditional on some subset of other variables. The justification for one 

side of this decision is trivial. If Vi’s module does not change, that means P(Vi | PAi) 

remains the same for every value of C, and so Vi ⫫ C | PAi. Thus, if Vi and C are not 

independent conditional on any subset of other variables, Vi’s module changes with C, 

which is represented by an edge between Vi and C. Conversely, we assume that if Vi’s 

module changes, which entails that Vi and C are not independent given PAi, then Vi and C 
are not independent given any other subset of V\{Vi}. If this assumption does not hold, then 

we only claim to detect some (but not necessarily all) variables with changing modules.

Algorithm 1

Detection of Changing Modules and Recovery of Causal Skeleton.

1 Build a complete undirected graph UC on the variable set V ∪ {C}.

2 (Detection of changing modules) For each i, test for the marginal and conditional independence between 
Vi and C. If they are independent given a subset of {Vk | k ≠ i}, remove the edge between Vi and C in UC.

3 (Recovery of causal skeleton) For every i ≠ j, test for the marginal and conditional independence between 
Vi and Vj. If they are independent given a subset of {Vk | k ≠ i, k ≠ j}∪ {C}, remove the edge between Vi 
and Vj in UC.

Step 3 aims to discover the skeleton of the causal structure over V. Its (asymptotic) 

correctness is justified by the following theorem:

Theorem 1—Given the assumptions made in Section 3.1, for every Vi.,Vj ∈ V, Vi and Vj 

are not adjacent in G if and only if they are independent conditional on some subset of {Vk| 

k ≠ i, k ≠ j} ∪ {C}.

1Recall that C may simply be time. Thus in this paper we take time to be a special random variable which follows a uniform 
distribution over the considered time period, with the corresponding data points evenly sampled at a certain sampling frequency. We 
realize that this view of time will invite philosophical questions, but for the purpose of this paper, we will set those questions aside. 
One can regard this stipulation as purely a formal device without substantial implications on time per se.
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Basic idea of the proof: For a complete proof see [Zhang et al., 2015]. The “only if” 

direction is proven by making use of the weak union property of conditional independence 

repeatedly, the fact that all gl(c) and θm(C) are deterministic functions of C, some 

implications of the SEMs Eq. 1, the assumptions in Section 3.1, and the properties of mutual 

information given in [Madiman, 2008]. The “if” direction is shown based on the faithfulness 

assumption on Gaug and the fact that  is a deterministic function 

of C.

In the above procedure, it is crucial to use a general, nonparametric conditional 

independence test, for how variables depend on C is unknown and usually very nonlinear. In 

this work, we use the kernel-based conditional independence test (KCI-test [Zhang et al., 
2011]) to capture the dependence on C in a nonparametric way. By contrast, if we use, for 

example, tests of vanishing partial correlations, as is widely used in the neuroscience 

community, the proposed method will not work well.

4 CD-NOD Phase 2: Nonstationarity Helps Determine Causal Direction

We now show that using the additional variable C as a surrogate not only allows us to infer 

the skeleton of the causal structure, but also facilitates the determination of some causal 

directions. Let us call those variables that are adjacent to C in the output of Algorithm 1 “C-

specific variables”, which are actually the effects of nonstationary causal modules. For each 

C-specific variable Vk, it is possible to determine the direction of every edge incident to Vk, 

or in other words, it is possible to infer PAk. Let Vl be any variable adjacent to Vk in the 

output of Algorithm 1. There are two possible cases to consider:

1. Vl is not adjacent to C. Then C – Vk – Vl forms an unshielded triple. For 

practical purposes, we can take the direction between C and Vk as C → Vk 

(though we do not claim C to be a cause in any substantial sense). Then we can 

use the standard orientation rules for unshielded triples to orient the edge 

between Vk and Vl [Spirtes et al., 2001; Pearl, 2000]. There are two possible 

situations:

a. If Vl and C are independent given a set of variables excluding Vk, then 

the triple is a V-structure, and we have Vk ←Vl.

b. Otherwise, if Vl and C are independent given a set of variables 

including Vk, then the triple is not a V-structure, and we have Vk → Vl.

2. Vl is also adjacent to C This case is more complex than Case 1, but it is still 

possible to identify the causal direction between Vk and Vl, based on the 

principle that P (cause) and P (effect | cause) change independently; a 

heuristic method is given in Section 4.2.

The procedure in Case 1 contains the methods proposed in [Hoover, 1990; Tian and Pearl, 

2001] for causal discovery from changes as special cases, which may also be interpreted as 

special cases of the principle underlying the method for Case 2: if one of P (cause) and P 
(effect | cause) changes while the other remains invariant, they are clearly 

independent.
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4.1 Independent Changes of Causal Modules as Generalization of Invariance

There exist methods for causal discovery from changes of multiple data sets [Hoover, 1990; 

Tian and Pearl, 2001; Peters et al., 2016] by exploiting the property of invariance of causal 

mechanisms. They used linear models to represent causal mechanism and, as a consequence, 

the invariance of causal mechanisms can be assessed by checking whether the involved 

parameters change across data sets or not. Actually, Situation 1.b above provides a 

nonparametric way to achieve this in light of nonparametric conditional independence test. 

For any variable Vi and a set of variables S, the conditional distribution P(Vi | S) is invariant 

across different values of C if and only if

This is exactly the condition under which V1 ⫫ C | S. In words, testing for invariance (or 

homogeneity) of the conditional distribution is naturally achieved by performing conditional 

independence test on Vi and C given the variable S, for which there exist off-the-shelf 

algorithms and implementations. When S is the empty set, this reduces to the test of 

marginal independence between Vi and C, or the test of homogeneity of P(Vi).

In Situation 1.a, we have the invariance of P (cause) when the causal mechanism, 

represented by P (effect | cause), changes, which is complementary to the invariance 

of causal mechanisms. Naturally, both invariance properties above are particular cases of the 

principle of independent changes of causal modules underlying the method for Case 2: if 

one of P (cause) and P (effect | cause) changes while the other remains invariant, 

they are clearly independent. Usually there is no reason why only one of them could change, 

so the above invariance properties are rather restrictive. The property of independent 
changes holds in rather generic situations, e.g., when there is no confounder behind cause 

and effect, or even when there are confounders but the confounders are independent from 

C. Below we will propose an algorithm for causal direction determination based on 

independent changes.

4.2 Inference of the Causal Direction between Variables with Changing Modules

We now develop a heuristic method to deal with Case 2 above. For simplicity, let us start 

with the two-variable case: suppose V1 and V2 are adjacent and are both adjacent to C. We 

aim to identify the causal direction between them, which, without loss of generality, we 

assume to be V1 → V2.

Fig. 2(a) shows the case where the involved changing parameters, θ1 (C) and θ2(C) are 

independent, i.e., P(V1;θ1) and P(V2 | V1; θ2) change independently. (We dropped the 

argument C in θ1 and θ2 to simplify notations.)

For the reverse direction, one can decompose the joint distribution of (V1, V2) according to

(2)
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where  and  are assumed to be sufficient for the corresponding distribution modules 

P(V2) and P(V1|V2). Generally speaking,  and  are not independent, because they are 

determined jointly by both θ1 and θ2. We assume that this is the case, and identify the 

direction between V1 and V2 based on this assumption.

Now we face two problems. First, how can we compare the dependence between θ1 and θ2 

and that between  and ? Second, in our nonparametric setting, we do not really have such 

parameters. How can we compare the dependence based on the given data?

The total contribution (in a way analogous to causal effect; see [Janzing et al., 2013]) from 

 and  to (V1, V2) can be measured with mutual information:

(3)

where the 2nd and 3rd equalities hold because of the chain rule, the 4th equality because of 

the relation  implied by the sufficiency of  for V2, and the 5th equality because 

the sufficiency of  for  implies .

Since  and  are dependent, their individual contributions to (V1, V2) are redundant. 

Below we calculate the individual contributions. The contribution from  to V2 is 

. The contribution from  to V1 has been derived in [Janzing et al., 2013]: 

, where  is an independent copy of  (it has the 

same marginal distribution as  but does not depend on ). As a consequence, the 

dependence (or redundancy) in the contributions from  and  is
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(4)

 is always non-negative because it is a Kullback-Leibler divergence. One can verify 

that if , which implies , we have 

 leading to . 

(Proving the converse is non-trivial, involving some constraint on .)

 provides a way to measure the dependence between  and . Regarding the second 

problem mentioned above, since we do not have parametric models, we propose to estimate 

 from the data by:

(5)

where 〈·〉 denotes the sample average,  is the empirical estimate of P(V1|V2) on all 

data points, and  denotes the sample average of , which is the estimate of 

P(V1|V2) at each time (or in each domain). In our implementation, we used kernel density 

estimation (KDE) on all data points to estimate , and used KDE on sliding windows 

(or in each domain) to estimate . We take the direction for which  is smaller to be 

the causal direction.

If there is a confounder g1(C) underlying V1 and V2, as shown in Fig. 2(b), we conjecture 

that the above approach still works if the influences from g1(C) are not very strong, for the 

following reason: for the correct direction,  measures the influence from the confounder; 

for the wrong direction, it measures the influence from the confounder and the dependence 

in the “parameters” caused by the wrong causal direction. A future line of research is to seek 

a more rigorous theoretical justification of this method. When there are more than two 

variables which are connected to C and inter-connected, we try all possible causal structures 

and choose the one that minimizes the total  value, i.e., .

5 Experimental Results

We have applied proposed approaches to a variety of synthetic and real-world data sets. We 

learned the causal structure by the enhanced constraint-based method (Algorithm 1), and 

compared it with the SGS algorithm [Spirtes et al., 2001], a constraint-based causal 
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discovery method; for both, we used kernel-based conditional independence test (KCI) 

[Zhang et al., 2011] with SGS search [Spirtes et al., 1993]. Furthermore, we applied the 

approaches proposed in Section 4 for further causal direction determination.

5.1 Simulations

A Toy Example—We generated synthetic data according to the SEMs specified in Fig. 3. 

More specifically, the noise variance of V1, and the causal modules of V4, V5 and V6 are 

time varying, governed by a sinusoid function of t; for V1 and V4, the time-varying 

component a(t) is multiplicative, and for V5 and V6, theirs are additive. We tried different 

periods (w = 5, 10, 20, 30) on the time-varying component a, as well as different sample 

sizes (N = 600, 1000). The fixed causal mechanisms  and g4 are randomly chosen 

from sinusoid functions, polynomial functions, or hyperbolic tangent functions of Vi’s 

directed causes, and we set w′ = 200 to ensure the independence between a and b. In each 

setting, we ran 50 trials. We tested the generated data with proposed enhanced constraint-

based method (Algorithm 1, set C to be the time information) and the original constraint-

based method. Furthermore, we determined the causal directions by both approaches 

proposed in Section 4.

Fig. 4 shows the False Positive (FP) rate and the False Negative (FN) rate of the discovered 

causal skeletons with significance level 0.05. It is obvious that compared to the original 

method, our method effectively reduces the number of spurious edges (represented by FP 

rate) due to the nonstationarity; specifically, the spurious edges V1 – V4, V1 – V5 and V4 – 

V5. With the enhanced one, the FN rate only has a slight increase at a small sample size, and 

keeps the same when N is large. As w increases, both FP and FN stay stable, with a little bit 

variation; as N increases, the FN rates are reduced with both methods. In addition, with the 

enhanced constraint-based method we identified those variables, V1, V4, V5 and V6, which 

have nonstationary causal modules. Furthermore, we successfully identified causal 

directions by the procedure given in Section 4; specifically, V5 → V6 is identified by the 

criterion in Section 4.2 with 93.2% accuracy, since a and b change independently, and other 

causal directions are determined by the procedure given in Case 1. In this simulation, the 

whole causal DAG is correctly identified. However, with the original method, we only 

identified two causal directions: 5 → 6 and 2 → 6, and there are spurious edges V1 – V4, 

V1 – V5 and V4 – V5.

5.2 Real Data

fMRI Hippocampus—This fMRI Hippocampus dataset [Poldrack and Laumann, 2015] 

contains signals from six separate brain regions: perirhinal cortex (PRC), parahippocampal 

cortex (PHC), entorhinal cortex (ERC), subiculum (Sub), CA1, and CA3/Dentate Gyrus 

(CA3) in the resting states on the same person in 64 successive days. We are interested in 

investigating causal connections between these six regions in the resting states. We used the 

anatomical connections, for which see [Chris and Neil, 2008], because in theory a direct 

causal connection between two areas should not exist if there is no anatomical connection 

between them.
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We applied our enhanced constraint-based method on 10 successive days separately, with 

time information T as an additional variable in the system. We assumed that the underlying 

causal graph is acyclic, although the anatomical structure gives cycles. We found that our 

method effectively reduces the FP rate, from 62.9% to 17.1%, compared to the original 

constraint-based method with SGS search and KCI-test. Here we regard those connections 

that do not exist in the anatomical structure as spurious; however, with the lack of ground 

truth, we are not able to compare the FN rate. We found that the causal structure varies 

across days, but the connections between CA1 and CA3, and between CA1 and SUB are 

robust, which coincides with the current findings in neuroscience [Song et al., 2015]. In 

addition, on most data sets the causal graphs we derived are acyclic, which validates the use 

of constraint-based method. Furthermore, we applied the procedure in Section 4 to infer 

causal direction. We successfully recovered the following causal directions: CA3 → CA1, 

CA1 → Sub, Sub → ERC, ERC → CA1 and PRC → BRC, and the accuracy of direction 

determination is 85.7%.

Breast Tumor Dataset—The breast tumor dataset is from the UCI Machine Learning 

Depository [Blake and Merz, 1998]. It contains subjects with benign tumor and malignant 

tumor, 569 subjects each. Ten real-valued features are computed for each cell nucleus, and 

each feature has three measures: the mean, standard error (SE), and largest value, resulting 

in 30 features in total. We concatenated the data from benign and malignant subjects and set 

the additional variable C to be the indicator of the disease (1 for “benign”, and 2 for 

“malignant”). With our enhanced constraint-based method, we identified the causal 

connections between features, and we found that only 11 features are directly affected by the 

tumor type; the 11 features are mean radius, SE of radius, mean perimeter, SE of concave 

points, worst symmetry, SE of symmetry, worst radius, worst area, mean symmetry, SE of 

fractal dimension, and mean texture. We then identified the causal orientations between a set 

of features. Moreover, the features adjacent to C produced the best classification 

performance: we trained SVM with these 11 features, subsets of these 11 features, random 

subsets of all features, and all 30 features, and used 10-fold cross-validation (CV) error to 

assess the classification accuracy. These 11 features give the CV error 0.0246, while the 3 

features used in [Street et al., 1993] give 0.0791, and the whole 30 features give 0.0264.

6 Conclusion and Discussions

We have proposed CD-NOD, a framework for causal discovery from nonstationary/

heterogeneous data, where causal modules may change over time or across data sets. We 

assume a pseudo causal sufficiency condition, which states that all confounders can be 

written as smooth functions of time or the domain index. CD-NOD consists of (1) an 

enhanced constraint-based method for locating variables with changing generating 

mechanisms and estimating the skeleton of the causal structure, and (2) a method for causal 

direction determination that takes advantage of changing distributions.

In future work, we aim to answer the following questions. 1. What if the causal direction 

also changes? Can we develop a general approach to detect all causal direction changes? 2. 

To fully determine the causal structure, one might need to combine the proposed framework 

with other approaches, such as those based on restricted functional causal models. How can 
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this be efficiently accomplished? 3. The issue of distribution shift may decrease the power of 

statistical (conditional) independence tests. How can we alleviate this effect?
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Figure 1. 
An illustration on how ignoring changes in the causal model may lead to spurious 

connections by the constraint-based method, (a) The true causal graph (including 

confounder g(C)). (b) The estimated conditional independence graph on the observed data in 

the asymptotic case.

Zhang et al. Page 14

IJCAI (U S). Author manuscript; available in PMC 2017 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Two possible situations where V1 → V2 and both V1 and V2 are adjacent to C. (a) θ1(C) ⫫ 
θ2(C). (b) In addition to the changing parameters, there is a confounder g1(C) underlying V1 

and V2.
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Figure 3. 
The SEMs according to which we generated the simulated data. The noise variance to V1, 

and the causal modules of V4 and V5 are time- varying, governed by a; the causal module of 

V6 are time-varying, governed by b. We tried different periods w, and different sample sizes 

N.
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Figure 4. 
The estimated FP rate and FN rate with w = {5, 10, 20, 30} and N = {600, 1000} by both 

our enhanced constraint-based method and the original SGS method.
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