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Human hepatic gene expression 
signature of non-alcoholic fatty 
liver disease progression, a meta-
analysis
Maria Ryaboshapkina1 & Mårten Hammar2

Non-alcoholic fatty liver disease (NAFLD) is a wide-spread chronic liver condition that places patients 
at risk of developing cardiovascular diseases and may progress to cirrhosis or hepatocellular carcinoma 
if untreated. Challenges in clinical and basic research are caused by poor understanding of NAFLD 
mechanisms. The purpose of current study is to describe molecular changes occurring in human 
liver during NAFLD progression by defining a reproducible gene expression signature. We conduct a 
systematic meta-analysis of published human gene expression studies on liver biopsies and bariatric 
surgery samples of NAFLD patients. We relate gene expression levels with histology scores using 
regression models and identify a set of genes showing consistent-sign associations with NAFLD 
progression that are replicated in at least three independent studies. The analysis reveals genes that 
have not been previously characterized in the context of NAFLD such as HORMAD2 and LINC01554. 
In addition, we highlight biomarker opportunities for risk stratification and known drugs that could be 
used as tool compounds to study NAFLD in model systems. We identify gaps in current knowledge of 
molecular mechanisms of NAFLD progression and discuss ways to address them. Finally, we provide an 
extensive data supplement containing meta-analysis results in a computer-readable format.

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in industrialized countries 
and a frequent comorbidity of type 2 diabetes and obesity1. NAFLD is often used as an umbrella term for condi-
tions ranging from simple steatosis (SS; accumulation of fat in the liver without inflammation) to advanced cir-
rhosis. Non-alcoholic steatohepatitis (NASH) is regarded either as an independent disease or as a stage succeeding 
SS in NAFLD progression. NASH is associated with particularly poor long-term prognosis2. Some patients with 
SS never develop NASH or cirrhosis. The progression to end-stage liver disease can take decades3, but outcomes 
for individual patients are tragic. NASH is the second most common and the most rapidly increasing cause of 
hepatocellular carcinoma (HCC) in patients awaiting liver transplant in the USA4,5. Furthermore, NAFLD is a 
risk factor for cardiovascular disease, chronic kidney disease, extrahepatic cancers and endocrinal disorders6.

NAFLD can progress without clinical manifestations for many years. The symptoms can be unspecific (for 
example, fatigue, elevated liver injury markers). The diagnosis is typically established though liver biopsy and 
exclusion of other causes of liver disease. The treatment is centered on management of comorbidities (life style 
modification, weight loss, antidiabetic medication)7. Presently, no drugs are approved by the American agency for 
Food and Drug Administration (FDA) for treatment of NAFLD. Safe and effective medication and noninvasive 
biomarkers that could distinguish patients at risk of progression to advanced disease are urgently needed8. The 
challenges in clinical practice are closely related to issues in basic research. The molecular mechanisms of NAFLD 
progression are poorly understood. The patient population is very heterogeneous. Small numbers of patients in 
many human studies limit the power to detect associations. As a consequence, basic research on NAFLD progres-
sion is plagued by sporadic observations, point-wise hypothesis testing and extensive use of animal models, which 
may not capture all relevant aspects of disease dynamics in humans9.
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A reproducible gene expression (mRNA) signature of NAFLD progression could improve our understanding 
of the disease and help to identify candidate biomarkers or drug targets. The aim of our study is to obtain such 
signature in adult human liver. Longitudinal liver biopsies are hard to obtain because of ethical reasons and risk 
of complications. Histological manifestations such as inflammation or fibrosis reflect the severity of NAFLD. 
Ordering patients in a cross-sectional study by a given histology score from none to mild to severe results in a 
pseudo time course of disease progression. Hence, genes associated with severity of histological manifestations 
build up the signature of NAFLD progression. This is the main idea behind the design of our study. We perform 
a systematic meta-analysis of microarray experiments on liver tissue of NAFLD patients. We relate mRNA levels 
to histological features using regression models, identify associations that are replicated in at least 3 independent 
cohorts and combine genes associated with distinct histology scores into the final signature (presented in heat-
maps in the Results section).

Materials
Gene expression data sets.  We searched Gene Expression Omnibus (GEO)10, ArrayExpress11 and 
Sequence Read Archive12 for studies on NAFLD progression in humans and selected GSE4845213, GSE6126014, 
GSE8963215, GSE5904516, GSE4954117, GSE1565318 and GSE3381419. The studies had at least 15 liver biopsies or 
samples from bariatric surgery patients. NAFLD was established histologically. Each study either included sam-
ples from different stages of NAFLD or contained publicly available individual-patient level information on his-
tology traits, liver injury markers or diabetes-related traits. Histological characteristics for patients in GSE61260 
were obtained from the corresponding methylation experiment GSE6125814. We also identified data sets with 
histologically scored fibrosis in chronic hepatitis C (GSE3325820, GSE3365021 and GSE1153622), chronic hepatitis 
B (GSE8404423), and fibrosis in chronic mixed viral or parasitic infection (GSE6137624). Three data sets covered 
progression from normal liver to viral hepatitis-induced HCC (GSE676425, GSE5423826 and GSE1432327) and 
acted as surrogate material for progression towards NAFLD-induced HCC. Preprocessed gene expression data 
and sample annotation were obtained from GEO (Series Matrix). Preprocessed data had been quality controlled, 
background corrected and normalized by the authors of the respective original publications. These data were 
ready-to-use for downstream analyses. For example, biological samples in GSE48452 were prepared and mRNA 
extraction was performed according to the standard manufacturers protocols for HuGene 1.1 ST arrays13. Ahrens 
et al.13 normalized the arrays with RMA method using R package oligo (from sample description on GEO). 
We mapped internal microarray platform identifiers to NCBI Gene identifiers (Entrez IDs) using annotation 
included in the data sets and HUGO gene nomenclature committee data28. Entrez IDs were subsequently used to 
integrate results of regression and co-expression analyses between experiments.

Targets of marketed and clinical trial drugs.  Mechanism-of-action human protein targets of marketed 
and clinical trial drugs were retrieved from ChEMBL version 2229. UniProt identifiers were mapped to Entrez 
IDs and gene symbols using complete human proteome information downloaded from UniProt website on 
28.12.201630.

Data for identification of candidate biomarkers.  Genes encoding predicted secreted proteins and pro-
teins with preferential expression in liver (categories ‘Tissue enriched’ and ‘Tissue enhanced’) were identified in 
Human Protein Atlas data available at www.proteinatlas.org on 29.12.201631.

Genes with genetic evidence for NAFLD.  We focused on genes that had been reviewed by Wood et al.32 
as well as MBOAT733 and MERTK34 associated with NAFLD severity.

Methods
We provided a detailed explanation of properties of the data and the statistical basis behind the approach in 
Supplementary Methods. Here, we outlined key features of the analysis and described methods for visualization 
of results.

Regression analysis.  mRNA expression was measured as normalized log2-scale fluorescence on a probe set, 
i.e., a cluster of sequences targeting a given gene. A gene could be represented by a single or multiple probe sets 
depending on microarray design. Individual data sets quantified histological features differently (e.g., percent of 
steatosis in GSE89632 vs steatosis score in GSE61260) and were assayed on unrelated platforms (see Table S7 in 
Supplementary Methods). Merging data sets and obtaining pooled estimates was inappropriate. Every data set 
was analysed separately. Each probe set was tested for association with disease severity, histology and biomarker 
traits using linear or logistic regression as summarized in Table S1 in Supplementary Data. Models were adjusted 
for the most likely sources of variation (e.g., BMI) when the information was publicly available and sample size 
permitted estimation of a multivariate model. Two-sided p-values below 0.05 were considered significant (H0: 
regression coefficient for mRNA level = 0). Regression coefficients and p-values were rough (limited sample size 
and linear regression as a simplified model for scores) and had different quantitative interpretation (linear vs 
logistic regression, covariate structure). We extracted information with compatible meaning for all models: pres-
ence/absence and sign of association. All models tested null hypotheses of no association between mRNA and 
a given aspect of NAFLD progression. All outcome variables were encoded so that low values indicated mild 
disease and high values indicated severe disease. Sign of regression coefficients always showed direction of asso-
ciation, i.e., increase or decrease of mRNA levels with NAFLD progression. Sign error was the least probable error 
type in our analysis settings (Supplementary Methods, section ‘Robustness of regression analysis with respect to 
null hypothesis test of no association and estimated direction of regression slope’).

http://www.proteinatlas.org
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Derivation of NAFLD progression signature.  Replication in independent studies was used to control 
false positive discoveries (Supplementary Methods, section ‘The role of replication in independent studies’) as 
an alternative to Benjamin-Hochberg correction for multiple testing within a single experiment. Genes, whose 
mRNA levels showed consistent-sign associations with a trait in at least three independent data sets, were consid-
ered high confidence observations and formed the NAFLD progression signature (marked as ‘main’ in Table S1 in 
Supplementary Data). The criterion for replication in 3 studies was motivated by data availability (state December 
2016) but sufficient to fulfill its purpose (see Supplementary Methods, section ‘The role of replication in inde-
pendent studies’). Associations with other traits, which did not live up to the ‘high confidence’ definition, did 
not directly contribute to the signature and were not used as selection criteria for the genes. Such associations 
provided additional supportive evidence and were used for visual examination of results (marked as ‘negative 
control’ and ‘sanity check’ in Table S1 in Supplementary Data, explained in dedicated sections of Supplementary 
Methods). If associations between a gene and a trait (e.g., fibrosis) were detected on multiple probe sets, all asso-
ciations were required to have consistent sign (within-study replication).

Clustering.  All associations for a given gene were organized in a fingerprint with 5 possible values: not 
assayed on microarray platform (either no probe sets targeting a given gene or probe sets with ambiguous map-
ping to two or more genes), no significant association, association with inconsistent sign for different probe sets, 

Figure 1.  Association profiles between mRNA levels of genes with genetic evidence with NAFLD and 
histological and biochemical characteristics of the patients. Associations are clustered along x-axis based on 
their similarity across genes. Associations are separated into three blocks based on disease etiology: NAFLD, 
other etiologies (viral, parasitic or mixed etiology liver disease), progression towards HCC (abbreviated as 
HCC). Genes are clustered along y-axis according to similarity of associations of their mRNA levels with 
histology scores and biochemical traits in NAFLD. Presence or absence of a significant association and sign of 
each association are colour-coded.

http://S1
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positive or negative association. Complete-linkage hierarchical agglomerative clustering (default hclust imple-
mentation in ref.35) was based on modified Hamming distance. Distance (D) between fingerprints was defined as:

= − ∑
∗

=D
weight

N
1

2
i
N

1

where i was the ith position in the fingerprint and N denoted the total number of associations. Weight could 
take three values. Weight equaled 1 if both genes were not assayed in an experiment or had no associations with 
trait or inconsistent-sign associations with a trait. Weight equaled 2 if both genes had same-sign associations with 
a trait. Weight was zero in all other cases.

Meta-network construction.  We constructed co-expression networks from NAFLD data sets GSE48452, 
GSE61260, GSE49541, GSE89632 and GSE33814. GSE59045 and GSE15653 had 15 and 18 samples respectively 
and were too small to be included in this analysis. In each data set, Spearman correlation coefficients were com-
puted for all pairs of probe sets representing genes in NAFLD progression signature and genes with genetic 
evidence for NAFLD. Gene level correlations were obtained by averaging correlation coefficients across all 
pairs of probe set for a pair of genes. For example, gene A was represented by probe sets a1 and a2 and gene 
B by probe set b in study X. Then, correlation between A and B in X was mean correlation between (a1 and b) 
and (a2 and b). Threshold >=0.53 on absolute scale was chosen as the smallest cut-off value that resulted in 
approximate scale-free topology in 4 out of 5 individual networks (model fit for ‘scale-freeness’ with R2 >= 0.8, 
pickHardThreshold method in WGCNA package36, details in Supplementary Methods, section ‘Notes on the 
meta-network’). Correlations reproduced in >=3 of 5 individual networks constituted the meta-network. 
Meta-network construction was motivated by heterogeneity of biological material and suboptimal sample size37.

Software.  All analyses were performed in R version 3.2.535. Data sets and sample annotation were retrieved 
using GEOquery package38. Networks were created using igraph package39. Figures were produced with ggplot240 
and ggnetwork41 packages.

Data availability statement.  All data sets analysed in the current study are available from Gene Expression 
Omnibus (https://www.ncbi.nlm.nih.gov/geo/). All data generated during this study and data behind the figures 
are included in this published article and its Supplementary Data.

Results
Genes with genetic evidence for NAFLD.  Genetic evidence refers to NAFLD-associated single nucleo-
tide polymorphisms (SNP), i.e., point variants of genomic DNA in immediate vicinity of a given gene or within 
the gene. Genes with genetic evidence can predispose a patient to develop NAFLD or contribute to disease pro-
gression when the patient has at least one copy of risk allele of the SNP. Such genes represent ‘weak spots’ in 
liver biology and form a special category of interest for our analysis because studying their mRNA expression in 
NAFLD (regression analysis) and relationships to the signature genes (meta-network) might provide additional 
insights into NAFLD biology.

The patients in each study represented random samples from the underlying population. Genotypes of 
patients were unknown. mRNA expression was not allele-specific. Hence, we did not expect a consistent associa-
tion pattern in all studies. We detected three fairly well defined gene communities by association profile (Fig. 1). 
Genes related to lipid metabolism FDFT1, PNPLA3, SREBF1 and TM6SF2 clustered together with TMPRSS6, 
NR1I2 (also known as PXR), SAMM50, HFE and PEMT. Their increasing mRNA levels related to increase in liver 
injury markers, worsening of steatosis and inflammation as well as decrease in intrahepatic levels of arachidonic 
and docosahexaenoic acids in GSE89632. An opposite-sign relationship was observed for IL1A, IL1B, IL6, KLF6, 
PPARGC1A, SERPINE1, STAT3 and TCF7L2. Decreasing expression of ABCB11, CD14, ENPP1, MTHFR and 
SLC27A5 accompanied fibrosis progression in GSE49541 and/or GSE48452. Decreasing mRNA levels of AGTR1, 
GCKR, GCLC, CD14, CYP2E1, NR1I2, PPARA, PNPLA3 and TM6SF2 and increasing expression of PARVB 
were associated with progression from normal liver to HCC (high confidence observations).

Signature of NAFLD progression.  In total, 218 genes showed high confidence associations with at least 
one histology aspect of NAFLD progression (Figs 2 and 3). The signature genes were unlikely to represent chance 
findings (Table 1, details of permutation experiment in Supplementary Methods, section ‘The role of replication 
in independent studies’). Genes associated with fibrosis severity in NAFLD tended to have same-sign associa-
tions with fibrosis in hepatitis B but not in hepatitis C (Fig. 3, same-colour columns in GSE84044 and GSE61376 
versus predominantly white columns in GSE33650 and GSE33258). We observed no clear separation between 
gene sets related to distinct aspects of liver histology. The associations were often complemented with supportive 
same-sign evidence for related traits. For example, elevated mRNA levels of SPP1 (osteopontin) were associated 
with increasing NAS and inflammation (high confidence observations) as well as with increasing degree of SS in 
two studies and higher odds of NASH over SS in two studies (Fig. 2). Inflammation and SS were components of 
NAS score42.

The analysis confirmed 98 genes that were highlighted in the original publications in the context of NAFLD, 
hepatitis with other etiologies or progression to HCC (Table S3 in Supplementary Data). Some prominent exam-
ples included UBD (ubiquitin D), GPC3 (glypican 3, a gene investigated as diagnostic marker and drug target for 
HCC43), genes involved in collagen life cycle or associated with risk of cirrhosis44: CD24, COL1A2 and COL3A1, 
CXCL6, DCN, EHF, FAP, LUM, PCOLCE2 and SOX9. ACLY, a key enzyme responsible for the synthesis of acetyl 
coenzyme A, has been described by Ahrens et al. as a candidate epigenetic driver of NAFLD13. AKR1B10, an 
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enzyme converting aldehydes to alcohol and whereby carrying out a detoxication function, has been identified 
through differential expression between steatohepatitis and SS patients by Starmann et al.19 and by Ahrendt et al.15 
Starmann et al. extensively studied expression of AKR1B10 in hepatocytes and suggested it as a promising bio-
marker of NASH and progression to HCC. GNMT has been identified through differential expression between 
patients with mild and advanced NAFLD-induced fibrosis by Moylan et al.17. The enzyme catalyses synthesis of 
sarcosine from glycine and plays a role in liver detoxication. Gnmt knock-out mice are experimental hepatitis 
models45.

By contrast, the signature contained multiple genes with poorly studied biological function in liver such as 
CBLN3, CERCAM, ERICH5, GRTP1, HORMAD2, LINC01554, MANBAL, MOXD1, MYO19, LRRC57, SEL1L3 
and SLC44A3. Increasing expression of SEL1L3 was associated with severity of fibrosis in NAFLD. An intron 

Figure 2.  Human NAFLD progression signature (part 1). Figure shows genes with high confidence associations 
(consistent-sign associations replicated in 3 independent studies) with multiple histological traits, odds of 
NASH versus SS, NAS score or degree of SS. Genes can also display consistent-sign associations with related 
histological traits. Genes and associations are organized along x and y axes by the same principle as in Fig. 1.
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variant rs959903 in SEL1L3 has been reported in association with ballooning severity46. Decreasing expression 
of LINC01554 (also known as C5orf27 or FLJ38821) was associated with advancing fibrosis in NAFLD patients. 
The transcript ENST00000436592.5 corresponding to LINC01554 is polyadenylated according to GENCODE 
consortium polyadenylation data47. LINC01554 could be reliably measured with microarray and polyA+ proto-
col. LINC01554 is preferentially expressed in liver according to GTEx consortium data (http://www.gtexportal.
org/home/)48. LINC01554 has been previously described in relation to survival of esophageal cancer patients49. 
HORMAD2 is preferentially expressed in testis and liver31. The gene is related to cancer50 and has genetic asso-
ciations with immune diseases such as IgA nephropathy51 and inflammatory bowel disease52. These genetic 

Figure 3.  Human NAFLD progression signature (part 2). Figure shows genes with high confidence associations 
(consistent-sign associations replicated in 3 independent studies) with progression of NAFLD-induced fibrosis. 
Genes can also display consistent-sign associations with related histological traits. Genes and associations are 
organized along x and y axes by the same principle as in Fig. 1.

http://www.gtexportal.org/home/
http://www.gtexportal.org/home/
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associations were identified through GWAS Catalog53. In our meta-analysis, expression of HORMAD2 decreased 
with advancing fibrosis in NAFLD.

NAFLD progression meta-network.  Among 218 genes in the NAFLD progression signature and 62 genes 
with genetic evidence, 131 (46.8%) genes had reproducible correlations with each other that satisfied criteria 
for meta-network construction (Table S4 in Supplementary Data). Genes that clustered together based on their 
associations with histological traits tended to be correlated. Genes with genetic evidence for NAFLD tended to 
be co-expressed (communities 1, 3 and 5 in Fig. 4). Genes in the NAFLD progression signature were arranged in 
three well-formed co-expression modules (2, 4 and 6) and a number of smaller disconnected components. Ten 
genes with highest number of connections were COL1A2 (25 direct network neighbours), LUM, UBD, DTL, 
FAT1, MOXD1, CENPK, MRAS, SEL1L3 and TOP2A (12 direct neighbours).

Drug targets.  Among genes with genetic evidence for NAFLD and genes in the progression signature, 21 
genes were targeted by marketed and clinical trial drugs (Table 2). Obeticholic acid54 and angiotensin II antag-
onists55 are actively investigated in liver disease. Digitoxin has been investigated as anti-inflammatory agent in 
patients with cystic fibrosis and achieved a noticeable but not statistically significant reduction in inflammation 
markers56. Acetazoleamide can cause liver injury and is associated with increased death risk in chronic liver dis-
ease patients57. Carbonic anhydrase CA12 is one of the targets of acetazoleamide and is expressed at low levels in 
healthy liver31. In our analysis, elevated expression of CA12 was associated with increased steatosis and NAS (high 
confidence observations). Sulphonamide diuretics have been used to study the link between activity of carbonic 
anhydrases and hepatic lipogenesis58. As illustrated by these examples, known drugs could be used to perturb 
models such as microphysiological systems or liver of animal models, gain mechanistic understanding of NAFLD 
and identify points of therapeutic intervention.

Candidate biomarkers for risk stratification.  We identified four genes that could be evaluated as bio-
markers to identify patients at risk of progression to severe NAFLD. The genes participated in the 218-gene 
NAFLD progression signature, encoded secreted plasma proteins and were preferentially expressed in liver 
(unlikely non-disease-specific and non-source-organ-specific fluctuations in biomarker levels). Decreasing 
mRNA levels of CYP2C19 and APOF were associated with advancing fibrosis in NAFLD (3 studies out of 3). 
APOF showed a high confidence association with inflammation and CYP2C19 with NAS score. Lower expres-
sion of PZP and FCN2 related to higher odds of NASH over SS in three independent studies. APOF, PZP, FCN2 
and CYP2C19 were not highlighted by the authors of original publications13–19 as biomarker opportunities in 
NAFLD. Plasma APOF concentration has been suggested as fibrosis biomarker in hepatitis C59. An intergenic 
SNP rs6487679 located near PZP has been reported in association with NAFLD risk as well as elevated alanine 
aminotransferase60 and aspartate aminotransferase levels in NAFLD patients46.

Signature of NAFLD progression versus clinical outcome.  Genes associated with mortality or major 
complications in NAFLD patients could help to identify pathways for therapeutic intervention and stratify 
patients in need of close supervision by a physician. We were unable to locate studies investigating relationship 
between mRNA expression in liver on a genome-wide scale (as opposed to profiling of a small preselected set of 
genes) and long-term outcome in patients with NAFLD. The 218-gene NAFLD progression signature had little 
overlap with signatures predicting survival of patients with other liver diseases.

Dominguez et al. assayed hepatic expression of eleven members of CXC chemokine family in patients with 
severe alcoholic hepatitis and found that CXCL3, CXCL5, CXCL6 and IL18 predicted short-term mortality and 
related to neutrophil infiltration and portal vein hypertension61. The 218-gene signature contained 3 mem-
bers of CXC chemokine family (CXCL6, CXCL9 and CXCL12) and transcription activator STAT1 that could 
modulate recruitment of neutrophils. Increasing expression of these genes was associated with worsening of 
NAFLD-induced fibrosis (high confidence observation).

Hoshida et al. published a 186-gene signature derived from liver tissue surrounding tumour and predicting 
mortality and liver decompensation in HCC patients62 and validated a 32-gene subset of this signature in NASH 
patients undergoing bariatric surgery63. We found only two genes shared between the 218-gene and 186-gene 
signatures. Increasing expression of CCL19 and RNASE1 was associated with advancing fibrosis in NAFLD. Both 
genes were linked to bad prognosis in HCC patients (Supplementary Table 2 in ref.62). Among genes with genetic 
evidence for NAFLD, SREBF2 and GCKR participated in the 186-gene signature and were linked to good out-
come (Supplementary Table 2 in ref.62). A 122-gene hepatic stellate cell signature recently reported by the same 
group in association with multiple clinical outcomes in HCC and cirrhosis patients64 also showed a two-gene 
overlap: GUCY1A3 and KDELR3.

Category

Consistent-sign association in 3 independent studies with …

…at least 1 
trait (any)

… multiple 
traits

… odds of 
NASH vs SS … NAS

… degree 
of SS

... fibrosis severity 
in NAFLD

N genes in NAFLD-progression signature 218 57 32 18 7 104

N genes in 1,000 random permutations, median (95% CI) 3 (0–14) 0 (0–0) 0 (0–4) 0 (0–5) 0 (0–4) 0 (0–9)

Table 1.  Number of signature genes compared to number of chance findings in random permutations of the data.

http://S4
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Discussion
We derived a hepatic gene expression (mRNA) signature of NAFLD progression in adult humans through sys-
tematic meta-analysis of publicly available experiments. The signature consisted of genes whose mRNA levels 
had reproducible consistent-sign associations with histological traits. The main strength of our study is that we 
put each observation into a broad biological context (from frequently emphasized traits like fibrosis and odds 
of NASH over SS, to less studied NAS and progression to HCC). The replication-based approach enabled us to 
identify novel genes, showing potentially subtle but reproducible associations with NAFLD severity that may be 
non-obvious in conventional case-control design like differential expression. To the best of our knowledge, such 
high-resolution analysis has not been previously performed in NAFLD.

The limitations of our study were imposed by the scarcity of available data. The signature should be validated 
in independent studies with true longitudinal design and larger sample size. The signature could be expanded to 
incorporate genes associated with ballooning, insulin resistance and other comorbidity-related traits as suitable 
data become available. The statistical analysis was specifically adapted to handle unrelated microarray platforms, 
limited sample size per data set and distinct quantification systems for histology in individual data sets. Presence/
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absence and sign of associations represented information with compatible meaning for all models and, combined 
with criterion for replication, could be extracted with low risk of false positives (demonstrated in Supplementary 
Methods, Tables S8 and S9). The obvious limitation is lack of quantitative estimates. While we can state that 
mRNA expression of a given gene increases or decreases with increasing NAFLD severity, it remains an open 
question whether or not such relationship is strong enough for a specific application. Such questions need to be 
addressed in follow-up experiments and constitute directions of future work. For example, mRNA expression of 
APOF decreased with worsening of NAFLD-induced fibrosis. To learn whether APOF can discriminate between 
e.g., periportal fibrosis and bridging fibrosis, APOF should be measured on protein level with an appropriate assay 
in blood of NAFLD patients with the corresponding stages of fibrosis.

Drug(s) Phase
Therapeutic 
application

UniProt ID of 
target protein(s)

Corresponding 
gene(s)

Obeticholic acid
Marketed Primary biliary 

cholangitis Q96RI1 NR1H4
Ursodiol

Pioglitazone

Marketed Antidiabetic P37231 PPARGRosiglitazone

Troglitazone

Metreleptin Marketed Dyslipidemia P48357 LEPR

Clofibrate

Marketed Dyslipidemia Q07869 PPARAFenofibrate

Gemfibrozil

Carvedilol

Marketed Heart failure P13945 ADRB3Epinephrine

Labetalol

Deslanoside

Marketed Heart failure P05023 
P54710

ATP1A1 
FXYD2Digitoxin

Digoxin

Irbesartan

Marketed Hypertension P30556 AGTR1Losartan

Valsartan

Isosorbide dinitrate

Marketed Vasodilators Q02108 GUCY1A3Nitroglycerin

Riociguat

Gavilimomab Phase 3 Graft versus host disease P35613 BSG

RA-18C3 Phase 2 Antiinflammatory P01583 IL1A

Canakinumab
Marketed Antiinflammatory P01584 IL1B

Rilonacept

Balsalazide

Marketed Antiinflammatory P37231 PPARGOlsalazine

Mesalazine

Adalimumab

Marketed Antiinflammatory P01375 TNFEtanercept

Infliximab

Siltuximab Marketed Multicentric Castleman’s 
disease P05231 IL6

Capecitabine

Marketed Cancer P04818 TYMSFloxuridine

Pemetrexed

Daunorubicin
Marketed Cancer P11388 TOP2A

Etoposide

Arsenic trioxide 
(TRISENOX) Marketed Cancer Q16881 TXNRD1

Acetazolamide
Marketed Diuretic O43570 CA12

Ethoxzolamide

Nabilone Marketed Neuropathic pain P21554 CNR1

Ocriplasmin Marketed
Vitreomacular P24043 LAMA2

Adhesion Q16787 LAMA3

Table 2.  Marketed and clinical trial drugs targeting protein products of genes in the 218-gene NAFLD 
progression signature or genes with genetic evidence for NAFLD. The drugs are ordered by their therapeutic 
application.

http://S8
http://S9
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The 218-gene signature represents a shortlist of genes affected during NAFLD progression. Elucidation of the 
role of individual genes represents a direction of future work. The signature may incorporate a) potential drivers 
of NAFLD progression, b) genes affected during NAFLD progression but not actively driving it (down-stream 
events), and c) genes changing as a compensatory reaction in response to liver damage. Potential driver genes 
may be identified using other omics data types (e.g., methylation), tool compounds or knock-out experiments. 
Also, key molecular players in NAFLD may be related to mortality or major complications in NAFLD patients. 
We anticipate that studies on NAFLD patients, in which omics data are set in the context of phenotype (histolog-
ical features, blood biomarkers etc.) and survival for the same patients, could improve our understanding of the 
disease.

The 218-gene NAFLD progression signature could be used to inform the choice of animal models and help to 
resolve issues in translational research. Hepatic gene expression (mRNA) profile of orthologue genes in a model 
organism under a given dietary intervention would mirror the human signature. Evaluation of similarities in gene 
expression profiles would complement assessment of similarities in symptoms and histological manifestations of 
NAFLD between humans and a given animal model.

In conclusion, NAFLD progression in human liver could be characterized by a small set of genes displaying 
reproducible consistent-sign associations with histological traits. This gene expression signature could be used a 
starting point to address current knowledge gaps on NAFLD progression.
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