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Summary

The peptide microarray immunoassay simultaneously screens sample serum against thousands of 

peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling 

immunogenic regions of pathogens (e.g. envelope proteins of a virus) are an important high 

throughput tool for querying and mapping antibody binding. Because of the assay’s many steps, 

from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In 

addition, subjects may produce different antibody profiles in response to an identical vaccine 

stimulus or infection, due to variability among subjects’ immune systems. We present a robust 

Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the 

probability of antibody response for each subject/peptide combination. Heavy-tailed error 

distributions accommodate outliers and extreme responses, and tailored random effect terms 

automatically incorporate technical effects prevalent in the assay. We apply our model to two 

vaccine trial datasets to demonstrate model performance. Our approach enjoys high sensitivity and 

specificity when detecting vaccine induced antibody responses. A simulation study shows an 

adaptive thresholding classification method has appropriate false discovery rate control with high 

sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that 

pepBayes clearly separates responses from non-responses.
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1. Introduction

The peptide microarray immunoassay simultaneously screens serum samples against 

thousands of peptides. Peptide microarrays have been applied to identify antibody epitopes, 

develop diagnostic tests, and determine antibody response to treatments. In a vaccine study, 
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peptide microarrays can detect changes in antibody profiles and quantify the immunogenic 

properties of a vaccine regimen (Neuman de Vegvar et al., 2003). Lin et al. (2009) employ a 

peptide tiling array to map linear epitopes for milk allergens, and in a similar vein Shreffer et 

al. (2004) use a peptide tiling array to map linear peanut allergen epitopes.

Techniques for analyzing peptide microarray data vary among studies. For example Lin et al. 

(2009) use the median and median absolute deviation (MAD) of a large pool of control spots 

to form a z score for each observation, and the z scores are thresholded to determine positive 

calls. The rapmad method developed in Renard et al. (2011) normalizes probe responses 

with a set of control peptides, then applies a two component normal mixture model to 

classify peptides into null and response distributions. Nahtman et al. (2007) use a linear 

mixed model to estimate technical and biological effects and subsequently input normalized 

responses into Significance Analysis of Microarrays (Tusher et al., 2001). Gaseitsiwe et al. 

(2010) apply a linear model to remove technical effects and use the intensity distribution of 

control peptides to define a threshold to remove spots with no detectable response. Imholte 

et al. (2013) introduce the pepStat method, which models slide effects and secondary 

antibody binding in a linear model with heavy-tailed errors, and demonstrate the presence of 

replicable subject-specific binding effects associated with the fluorochrome-labeled 

secondary antibody.

Available methods for analyzing peptide microarrays suffer from unrealistic modeling 

assumptions, or do not perform subject-specific inference on a per-peptide basis. Careful 

protocol can reduce variability due to experimental procedures, but slide imperfections, non-

specific secondary antibody reactivity, differences in sample concentration, and other factors 

can generate outliers and experimental noise that violate assumptions of normality. 

Furthermore, among a large library of peptides and a tremendous variety of possible 

antibodies, an assumption of constant error variance across a wide variety of peptide 

sequences is untenable. Within-slide technical replicates are often used to assess slide 

integrity, but replicates are typically summarized into a mean or median statistic discarding 

information about replicate variability. Moreover, normalization techniques based on linear 

mixed effects models such as in Nahtman et al. (2007) become computationally intractable 

with off-the-shelf software as the number of slides grows. Methods developed for cDNA 

microarrays seem promising, but are either not specialized to accommodate secondary 

antibody technical effects or are not suited for performing inference on a per-subject/peptide 

basis.

Variability among immune system responses raises further considerations when modeling 

peptide microarray responses. The human adaptive immune system relies on the random 

recombination of genes in order to produce an effective response against an unlimited 

variety of antigens (Market and Papavasiliou, 2003). As such, different subjects produce 

different antibody responses toward an identical stimulus (i.e. antigen exposure). An 

important goal of inference, then, is to determine whether each subject generated a response 

to the antigen and how these responses differ across subjects.

We introduce a robust Bayesian hierarchical model, pepBayes, to perform inference on a 

per-subject/peptide basis for two common peptide microarray experimental designs, which 

Imholte and Gottardo Page 2

Biometrics. Author manuscript; available in PMC 2017 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



we refer to as paired and unpaired designs. The paired design draws samples from each 

subject before and after administering a treatment. An unpaired design compares samples 

drawn from a population of interest and a control population. Non-conjugate error and 

random effect distributions are specially suited to accommodate technical effects and 

extreme observations associated with peptide microarray data. Technical effects are 

explicitly modeled alongside biological effects, eliminating the typical separation between 

normalization and analysis. Section 2 explains the model and prior distribution of 

parameters. In Section 3 we apply pepBayes and pepStat to two vaccine trial data sets and 

compare their sensitivity and specificity with visual summaries and a receiver operating 

characteristic analysis. A simulation study demonstrates high sensitivity and appropriate 

false discovery rate (FDR) control with an adaptive thresholding technique. We conclude 

with a discussion of current limitations and possible extensions of the model.

2. PepBayes Models

A peptide microarray slide is a rectangular grid of probes, where each probe is a spot 

comprising numerous identical copies of a single peptide (Figure 1). A peptide is 

represented on several probe replicates to help verify slide integrity and improve estimation. 

Peptide sequences are typically drawn from the linear amino acid sequence of a protein of 

interest in an overlapping fashion, in what is known as a tiling array. Several proteins may be 

tiled, possibly including different subtypes of the same protein. Slides are incubated with 

sample solution, and primary antibodies in the sample bind to various peptides within 

probes. A solution of fluorescent-labeled secondary antibody is then applied, marking bound 

primary antibodies for scanning. The observed fluorescence intensity for a probe is a proxy 

for the amount of bound primary antibody from sample solution.

Prior to modeling, probe measurements should be corrected for background fluorescence to 

reduce undesirable spatial heterogeneity. We chose the normexp method described in Ritchie 

et al. (2007), which models observed foreground intensity as a sum of observed background 

intensity, normal residual background, and an exponential signal S. The expected value of S 
given the observed intensities serves as a strictly positive estimate of a probe’s signal. The 

normexp method was found to have low bias recovering control quantities compared with 

other methods. Compared with other background correction methods, normexp with an 

additional offset parameter achieved lower false discovery rates when used prior to other 

algorithms detecting differential expression.

Estimated foreground intensity values were log2-transformed to stabilize variance across the 

range of intensity values. The pepBayes method accommodates two experimental designs 

commonly applied in peptide microarray studies. We first describe the paired data method, 

where each subject has a pre and post-treatment measurement. We also develop an unpaired 

data method, where we compare antibody binding in a population of interest against a 

control population.

2.1 Paired data

We let N denote the number of subjects. With P we denote the number of unique peptide 

sequences among the measurement probes. For p = 1,…, P we let np denote the number of 
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probe replicates for peptide p on each slide. The r-th probe measurement of peptide p from 

subject i at time t is yiptr, for i = 1, … , N , p = 1, … , P , t = 0, 1, and r = 1, … , np. We 

model a probe response yiptr as

(1)

(2)

A parameter ßp0 represents the average baseline intensity of peptide p for a typical pre-

treatment subject. The strictly positive effect ßp1 captures the average intensity increase from 

treatment response. Subjects responding against peptide p generate new antibodies due to 

treatment, and thus have higher average post-treatment probe intensities. Random effects 

αip0 and αip1 represent a subject’s particular preexisting antibodies and antibody response to 

treatment.

Terms μit are slide level effects that represent aggregated influences of experimental batch 

effects (e.g. slide manufacture, laboratory environment, slide handling, and sample 

preparation) and subject effects (e.g. immune system response). Subject measurements are 

usually not replicated across slides, so that interactions between slide effects and peptide 

effects are confounded with subject-specific antibody reactions. Batch effects in microarray 

experiments have received wide acknowledgement (Leek et al., 2010; Nahtman et al., 2007; 

Chen et al., 2011). Because peptides are processed in parallel within the same plate, the 

additive structure of slide effects μ and peptide effects β assumes that peptides within a plate 

experience a similar effect due to the same batch perturbation. Examining replicated placebo 

subjects in RV144, we find that an additive slide effect structure (Web Appendix A) 

approximately holds and usefully explains variability in the data.

A latent binary indicator parameter γip determines the location and covariance structure of 

probe responses. The parameters γip have prior distribution Bernoulli(ωp), with ωp denoting 

the probability a subject responds against peptide p. When γip = 0 or 1, subject i is called a 

non-responder or responder against peptide p, respectively. A non-responder for a peptide 

produces no new antibodies against that peptide, so secondary antibody effect αip0 is shared 

between pre and post-treatment responses. Sharing αip0 induces positive correlation between 

pre and post-treatment measurements among non-responders. When γip equals one, the 

post-treatment intensity has a new random effect αip1. A responder produces new antibodies 

against that peptide, and αip1 models a new subject-specific deviation. The new term αip1 is 

independent of baseline effect αip0, diminishing pre and post-treatment correlation.

Outlying observations are common in microarray data, due to effects such as probe 

imperfections. Low levels of replication make outlier deletion dubious, so pepBayes uses t-
distributed residual errors to accommodate extreme observations (Lange et al., 1989). We 

denote a p-dimensional multivariate t-distribution with location parameter a, positive 
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definite covariance matrix Σ, and degrees of freedom ν > 2 as MVT(a, Σ, ν), having density 

function

Our parameterization standardizes the covariance to be Σ for all values of ν > 2. The 

vectorized residual errors εip0, εip1 have independent multivariate t-distributions 

 and . The degrees-of-freedom 

parameter νε has a shifted Gamma prior distribution, .

2.1.1 Mixture indicator and random effect parameters for paired data—The joint 

prior distribution of (γip, αip1) is a mixture of discrete and continuous distributions. First, 

π(γip = 0, αip1 = 0) = 1 – ωp. The parameter γip = 1 with probability ωp, and given γip = 1 

the responder random effect αip1 is tνα-distributed with location zero and scale parameter 

. Secondary antibody binding effects αip0 are tνα-distributed as well, with location zero 

and a scale parameter . A heavy tailed distribution on secondary and primary antibody 

binding effects accommodates strong responses occasionally observed in these data. The 

parameter να also has a prior distribution shifted Gamma prior distribution 

.

2.2 Unpaired data

A second method is developed to compare antibody profiles between a control population 

and a population of interest. Parameters and responses associated with the control population 

and population of interest are labeled with subscripts c, t respectively. For control subjects j 
= 1, …,Nc and subjects of interest i = 1, … ,Nt we model probe responses as

(3)

(4)

In this setting, no direct contrast exists between samples for each subject. Instead, the 

control population helps estimate the average baseline binding effect βp0 and precision 

parameters. As with paired data the residuals have multivariate t-distributions 

, . Again βp1 is constrained to be 

strictly positive. The unpaired method detects whether a subject in the population of interest 

has a stronger antibody response against a given peptide than the control population.
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A focus on stronger responses is based on antibody production in the humoral immune 

system. Antibodies are developed in B-cells as a response to antigen stimulation, leading to 

a specific antibody response to a given antigen (Thompson, 2015; Janeway et al., 2001). A 

suitable control population therefore depends on the population of interest. Generally, 

control subjects either have not encountered an antigen common to the population of interest 

(e.g. infectious diseases), or demonstrably have not developed antibodies known to define 

the population of interest (e.g. food allergies, autoimmune disorders). Framed as such, the 

unpaired method covers numerous biologically relevant cases. In the first case the control 

population will not have produced specific responses against the peptide library due to lack 

of antigen exposure. For example, the unpaired method is suitable for comparing antibody 

profiles of HIV infected subjects with a population of uninfected control subjects. An 

alternate example is the study of food allergy epitopes, where allergic subjects are compared 

with a non-allergic control population known to lack an antibody-induced inflammatory 

response. The unpaired pepBayes model would not be suitable to study populations of 

interest expected to have lower than average antibody responses.

2.2.1 Mixture indicator and random effect parameters for unpaired data—The 

parame-ter ωp now denotes the proportion of subjects generating stronger antibody binding 

than the control population against peptide p. Subject-level antibody binding effects αjp,c are 

tvα-distributed with center zero and scale parameter . The joint prior distribution of (γip, 

αip,t) is a mixture of discrete and continuous distributions with π(γip = 0) = 1 – ωp. Given 

γip, the random effect αip,t is tvα-distributed with location zero, and scale parameter  or 

 when γip equals zero or one, respectively.

2.3 Mixture proportion hierarchy

A hierarchical prior on the response probability ωp allows peptides with similar sequences to 

share information about their response rates. In our application, the peptide library tiles 

seven amino acid sequences for human immunodeficiency virus (HIV) envelope protein 

glycoprotein-160 (gp160). The surface of an HIV virion is studded with gp160 molecules. 

Antibodies targeting gp160 have shown neutralization potential, and vaccines eliciting 

strong responses against gp160 could generate a protective response (Overbaugh and Morris, 

2012).

HIV mutates rapidly, resulting in wide genetic diversity among viral variants. Variants of 

HIV are grouped into clades by genetic similarity, so that two strains within the same clade 

share more common sequence than two strains from different clades. The seven amino acid 

sequences in our peptide library are consensus sequences covering seven HIV clades, to 

measure antibody responses against a breadth of HIV strains. The seven sequences are 

aligned to the standard HIV sequence HXB2. The HXB2 sequence is a common reference 

sequence in HIV functional and structural studies. Each peptide is assigned a position value 

according to where the central amino acid aligns against the HXB2 sequence (Figure 1). We 

define u = pos(p), where pos is a function mapping a peptide’s index to its position value. 

For p such that pos(p) = u we let ωp have a beta distribution with shape parameters (au, bu). 

Parameters (au, bu) have exponential prior distributions with fixed rates (λa, λb), 
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respectively. Setting (λa, λb) to (10.0, 1.0) results in a prior favoring low response rates. In 

the event that a peptide library has no such grouping, (au, bu) may be fixed. Fixed prior 

values such as (au, bu) = (.125, 1.125) tend to favor low response rates ωp.

2.4 Location and precision parameter hierarchy

Without constraints, the likelihood is not identified between β0 and μ. To stabilize estimation 

slide effects μ are constrained to sum to zero. A degenerate normal prior on μ enforces this 

constraint. Further details regarding this prior may be found in Web Appendix B. We let 

, while m0 ~ Normal  and . The 

average treatment response βp1 has a normal distribution, truncated to be strictly positive, 

. A strictly positive effect reflects the belief that treatment 

response will only increase antibody binding. Hyperparameters for βp1 have distributions m1 

~ Normal  and .

Residual precision υεp has a gamma prior distribution with shape Sε and rate λε, while υαp0 

and υαp1 have gamma priors with shape Sα and λα. The hyperparameters Sα and Sε have 

exponential distributions with rate rs while λα and λε have exponential distributions with 

rate rλ . For estimation we fix rs and rλ to a large number such as 100, which sets a prior 

favoring very low precision.

2.5 Model fitting and response classification

The quantity of interest for pepBayes is the posterior probability of binding (PPB), which is 

the posterior probability that γip equals one. We implement two algorithms for fitting the 

pepBayes models: an Expectation Conditional Maximization algorithm (Meng and Rubin, 

1993) whose E-step is conducted with Monte Carlo methods (Wei and Tanner, 1990), and a 

Markov Chain Monte Carlo (MCMC) algorithm to sample the posterior distribution. Moves 

within the MCMC algorithm are a typical combination of variable-at-a-time Metropolis-

Hastings updates and Gibbs samples. Further details regarding the ECM algorithm are 

available in Web Appendix C. The two methods generate slightly different PPB estimates, 

which we denote as

where θ̂ is a posterior maximum. After calculating response probabilities, we classify 

subjects’ response statuses against each peptide. The high throughput, exploratory nature of 

the peptide microarray assay lends itself to a classification method that controls the false 

discovery rate (FDR) q. Following the adaptive thresholding technique in Newton et al. 

(2004), we sort τ̂ip in descending order (τ(1), τ(2), … , τ(NP)) and find an index
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With a detection threshold c(q, y) = τ̂ (K(q,y)), we classify subject i as a responder against 

pep-tide p when τ̂ip exceeds c(q, y). The two fitting methods complement each other’s 

strengths. The EM algorithm is much faster than MCMC for a large number of slides, but 

access to the full posterior distribution allows for a variety of posterior summaries. Our 

results also indicate that marginal PPBs τ̂ip have slightly better classification properties.

3. Results

We run pepBayes on peptide microarray experiments conducted with plasma samples drawn 

from two HIV vaccine efficacy trials. Each was a placebo-controlled, randomized, double-

blind trial. The first study, referred to as RV144, was a community-based trial testing a 

regimen of four priming injections of a recombinant canarypox vector vaccine containing 

env, gag, and pol genes (ALVAC-HIV) in addition to two booster injections of a recombinant 

glycoprotein 120 (gp120) subunit vaccine (AIDSVAX B/E) in Thailand (Rerks-Ngarm et al., 

2009). The second study, referred to as Vax003, tested a vaccine regimen comprising seven 

injections of AIDSVAX B/E among intravenous drug users in Bangkok, Thailand 

(Pitisuttithum et al., 2006). Peptide microarray assays were conducted on 100 subjects 

sampled from RV144, 80 of whom received experimental vaccine and 20 of whom received 

placebo. The Vax003 data set contains 90 vaccinated subjects. Assays were conducted on 

samples drawn from each subject before and after treatment.

3.1 Assays

Peptides were chosen to cover consensus amino acid sequences of HIV-1 glycoprotein 160 

(gp160) in group M and subtypes A, B, C, D, CRF 01AE, and CRF AG. Peptides were 15 

amino acids in length, overlapping by 12, and a total of 1423 unique peptides covered the 

seven sequences. PepStar peptide microarrays were produced by JPT Peptide Technologies 

GmbH, and each peptide was printed in triplicate to verify slide integrity and data quality. 

Briefly, slides were incubated with diluted sample plasma and then incubated with a dilution 

of anti-Ig Cy5 secondary antibody, with washes between steps. Slides were scanned using an 

Axon Genepix 4300 Scanner. Further details regarding materials, slide manufacture, and 

assay protocol may be found in Gottardo et al. (2013).

3.2 HIV data set model output

The structure of the RV144 data set allows us study the performance of pepBayes. The 

surface protein gp160 is composed of two sub-proteins gp120 and gp41. Because the RV144 

trial vaccine contained only a gp120 insert, no response is expected against peptides drawn 

from gp41. Placebo subjects also should not generate new specific antibody responses. With 

combined insert and placebo information, we can evaluate the false positive rate of our 

classification algorithm. Vax003 also did not contain a gp41 insert and we may similarly 

evaluate model output. We apply pepBayes to these data and evaluate the model output from 

MCMC posterior samples.

Figure 2 plots the proportion of placebo or treatment RV144 subjects classified as 

responders against each peptide’s position in HXB2 (FDR = .05). Among treatment subjects, 

we observe four regions of strong antibody response in variable loops V2 and V3, the C 
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terminus of gp120, and a region prior to V1. Notably, very low levels of binding are 

observed among gp41 peptides and also among placebo subjects, indicating that pepBayes 

enjoys high specificity. Figure 3 shows results from applying the unpaired pepBayes method 

to the RV144 data set, instead using pre-treatment samples as a control population. The same 

four regions of strong binding are identified, but have slightly lower estimated response 

rates. Overall, the unpaired method also has lower levels of background calls across gp120 

and gp41, but has a slightly elevated false positive rate among placebo subjects in regions of 

strong vaccine response.

Figure 4 plots the proportion of Vax003 subjects classified as responders against each 

peptide’s position in HXB2. Vax003 shares the same four regions of strong response as seen 

in RV144, but responses against the V2 loop, the region prior to V1, and the C-terminus are 

more abundant. Very low levels of binding are called in gp41, indicating high specificity. We 

also observe elevated levels of binding throughout gp120. The nature of this binding is 

uncertain, but could be related to non-specific binding from antibodies generated in response 

to vaccine treatment.

3.3 Simulation results

We evaluate the characteristics of our classification method with a simulation study. Data 

were simulated from the paired model taking parameter values inspired by peptide 

microarray data. Ten percent of peptides had a non-zero probability of subject response. For 

such a peptide, subject responses were Bernoulli distributed with a probability drawn from a 

Beta (1.5, 1.5) distribution. The number of subjects was fixed to 30, for 500 peptides. Slide 

effects were drawn from a Gaussian distribution with σ 2 and then mean centered. Peptide 

baseline effects βp0 had a Normal(4, 1) distribution while response effects βp1 were drawn 

from a positively truncated Normal  distribution. Random effects αip0 and αip1 were 

drawn from a t-distribution with degrees of freedom ν = 4 and scale parameters drawn from 

an inverseGamma(4, scale = 4) distribution. Residuals εip0 and εip1 had multivariate-t 
distributions with degrees of freedom ν = 4 and scale matrix equal to the identity matrix 

times an inverseGamma(40, scale = 4) random variate. At such parameter values, responder 

and non-responder intensity distributions may share a moderate level of overlap. We fit the 

pepBayes model to 500 simulated data sets using MCMC and ECM methods.

For each replication, we examine the false discovery proportion (FDP) and the recall of the 

model output at various FDR values q, where

Averaging across simulated data sets, the expectation of the FDP estimates the actual FDR at 

a nominal q-level, while the expectation of recall summarizes sensitivity. The variability of 

the FDP and recall also provide important information about the quality of inference from 

experiment to experiment. Table 1 summarizes the expectation and variability of FDP and 

recall for the EM and MCMC fitting algorithms. The actual FDR of both fitting methods is 
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close to the nominal level, although the EM method appears slightly conservative across q 
values. The distribution of FDP has very low variability between simulations, indicating that 

the proportion of false positives tends to remain close to the desired FDR q value. Sensitivity 

is dependent on simulation parameters, but the procedure enjoys similar levels of sensitivity 

between EM and MCMC fitting algorithms.

3.4 Receiver operating characteristic comparison

The receiver operating characteristic (ROC) compares classifier performance in terms of 

false and true positive rates as its threshold varies. We apply an ROC analysis with the 

RV144 and Vax003 data to compare our method with pepStat, which had previously been 

compared to other methods (Gottardo et al., 2013). Calculating an ROC requires knowledge 

of the true binding status of each subject-peptide combination. For these data we cannot 

know exactly which subjects were responders, but prior knowledge of common HIV-Env 

epitopes and basic summary statistics provide insight about regions where true binding 

effects likely occurred. Placebo subjects should not generate any new binding response, and 

the vaccines used in RV144 and Vax003 did not contain a gp41 insert. Any peptide 

corresponding to a placebo subject or a gp41 peptide is therefore classified as a negative 

peptide with very high confidence. A peptide from gp120 is designated as a positive peptide 

for vaccine subjects if the mean difference in intensity before and after treatment is 

significantly greater than zero. For Vax003 and RV144 data, we define zip = ȳip1 – ȳip0 and 

calculate for 1423 peptides t-test statistics

where σ̂p is the sample standard deviation of zip across all subjects i = 1, …, N. Peptides 

with tp statistics exceeding the  quantile of a tN–1 distribution are considered 

positive peptides for vaccine subjects. This quantile is based on the Bonferroni correction to 

control family-wise error rate at level α = .01 for testing the null hypotheses that E{zip} = μp 

= 0 versus the alternatives μp > 0 across all p. Web Appendix D shows that the ROC results 

are insensitive to several choices of α. Positive peptides were selected separately for Vax003 

and RV144. Using this procedure, peptides corresponding to known immunogenic regions in 

the V2/V3 loop are selected, as well as peptides just prior to the V1 loop and the gp120 C-

terminus peptides. As expected, no peptides from gp41 are selected via this criterion. Figure 

5 suggests that our model has increased sensitivity relative to pepStat for unpaired and 

paired methods, as the ROC for pepBayes dominates that of pepStat along the range of the 

curves.

4. Discussion

PepBayes is a powerful, robust method for the analysis of peptide microarray data when 

subject-specific inference is required. Modeling probe replicates increases the information 

available in the model and, along with a robust error model, eliminates the dubious process 

of outlier deletion. Observations are implicitly up or down-weighted based on the relative 
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precision of probe replicates. The t-distribution was chosen for its tractability, small number 

of tuning parameters, and heavy tails that accommodate extreme observations. Other robust 

error models such as contaminated normal might also be feasible, but results in Little (1988) 

suggest that the choice among robust error distributions is not crucial when estimating 

location parameters. Binding effects associated with secondary antibody are explicitly 

modeled, and the concurrent estimation of technical and biological effects incorporates the 

uncertainty of normalization into our estimation of responses. Prior to estimation, the 

normexp method corrects probes for background intensity and adds a fixed offset parameter 

to all values prior to log2 transformation. Background correction relieves us from 

cumbersome modeling assumptions associated with foreground and background 

fluorescence channels. We have chosen an offset of one, but have found our results to be 

insensitive to the offset value (data not shown).

The pepBayes method identifies regions of high peptide response, while maintaining low 

estimated response rates in regions expected to generate no response. The RV144 and 

Vax003 trials elicited moderate or strong responses against the same four major regions of 

the gp120 peptide. Both trials’ vaccine regimens shared an identical AIDSVAX B/E 

recombinant gp120 insert, so this is not unexpected. The higher estimated response rates 

observed in Vax003 is plausible, as Vax003’s vaccine regimen provided more exposure to 

the gp120 insert. An ROC analysis leveraging experimental design suggests that pepBayes 

enjoys high specificity and sensitivity, and simulation results with a correctly specified 

model show that our FDR-based response classification is well calibrated.

The ROC analysis suffers from the limitation that the exact truth of peptide response is not 

known. Peptides within gp41 should experience no binding effects, and designating all such 

peptides as negative responses provides a large, reliable pool for estimating false positive 

rates. However, all vaccinated subjects for a positive peptide are designated as responders, 

which is unrealistic because of immune system heterogeneity. As such we expect most 

misclassification of true binding status to be from subjects designated as responders when 

they truly did not respond. For a given point on the ROC, we expect the true positive rate to 

be underestimated. Meanwhile, the ROC false positive rate should remain close to its true 

value because of the large pool of reliable true negative peptides from gp41. Another 

limitation is that positive peptides are selected by overall response strength. We have high 

confidence that our selected peptides correspond to regions with high response rates, but we 

possibly ignore other gp120 peptide where responses are more subtle. Subtle response are 

precisely where we aim to achieve higher power, but our ROC analysis cannot measure such 

improvements. Nonetheless, we see that pepBayes clearly separates placebo responses and 

gp41 peptides from high response peptides among vaccinated subjects.

Notably, pepBayes does not induce a higher correlation between random effects αip0 for 

peptides with neighboring positions. With tiled arrays, overlapping peptides sequences are 

drawn from a protein’s amino acid sequence. Overlapping peptides tend to experience 

similar levels of baseline antibody response, and can share similar response levels if they 

share a common antibody epitope. Sharing information between random effects αip0 based 

on sequence overlap could yield further power, but we find that our conditionally 
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independent prior on random effects αip0 produces satisfactory results and is easily 

estimated.

Given an extensive peptide microarray assay protocol and a physicochemically diverse 

peptide library, it is unlikely that an entire peptide library interacts identically with the same 

batch factor level. In the case of true non-response, a relatively strong batch effect 

interaction could result in false positive detections for a peptide. Similarly, a set of 

responders could be missed in a similar fashion, giving a peptide the appearance of no effect 

between treatments. Careful experimental design is required to avoid complete confounding 

of batch effects with treatments of interest. In a paired design, we recommend processing 

pre-treatment and post-treatment slides from the same subject in tandem to minimize 

differences due to technical effects. In an unpaired experiment, slides from both populations 

should be as balanced as possible across batches. If severe batch effects are a concern, 

additional preprocessing such as surrogate variable analysis (Leek and Storey, 2007) or 

ComBat (Li and Rabinovic, 2007) can model and remove batch effects prior to pepBayes 

modeling. A possible extension to pepBayes could incorporate such effects.

Two fitting algorithms are available for the pepBayes model. An ECM fit is well suited for a 

quick understanding of the results, while MCMC posterior samples give marginalized 

estimates of posterior binding probabilities that account for uncertainty in parameter 

estimation. MCMC samples of the full posterior distribution also admit a broad variety of 

posterior summary statistics. An R package for fitting the pepBayes model is available on 

Github (http://www.github.com/RGLab/pepBayes).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Representation of peptides on a slide probe. A probe comprises numerous identical copies of 

a single peptide. Peptide sequences on tiling arrays overlap and are drawn from the amino 

acid sequence of a protein of interest. Example sequences and positions for three clades of 

HIV are shown against the standard reference sequence HXB2.
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Figure 2. 
Each point represents the proportion of placebo or vaccinated RV144 subjects classified as 

responders against a peptide, using pepBayes paired MCMC fit at .05 FDR. The x-axis 

represents a peptide’s position when aligned against the standard HIV reference sequence 

HXB2. Very few placebo subjects are classified as responders, and response frequencies in 

gp41 are very low throughout, indicating high specificity.
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Figure 3. 
Each point represents the proportion of placebo or vaccinated RV144 subjects classified as 

responders against a peptide, using pepBayes unpaired MCMC fit at .05 FDR. The x-axis 

represents a peptide’s position when aligned against the standard HIV reference sequence 

HXB2. Very few placebo subjects are classified as responders, and response frequencies in 

gp41 are very low throughout, indicating high specificity. Placebo responses in areas of 

vaccine response are slightly elevated when compared with the paired algorithm, and 

treatment response rates in regions of high response are slightly lower than with the paired 

algorithm.
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Figure 4. 
Each point represents the proportion of Vax003 subjects classified as responders against a 

peptide, using pepBayes paired MCMC fit at .05 FDR. The x-axis represents a peptide’s 

position when aligned against the standard HIV reference sequence HXB2. Response 

frequencies in gp41 are very low throughout, indicating good specificity. Higher response 

rates are estimated in the same regions as RV144 subjects.

Imholte and Gottardo Page 17

Biometrics. Author manuscript; available in PMC 2017 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
The receiver operating characteristic (ROC) of a classifier shows a method’s tradeoff 

between false positive rate and true positive rate as a decision threshold varies. A large area 

under the curve indicates good discrimination. Curves are displayed for pepBayes and 

pepStat methods, based on a set of control peptides and response peptides from RV144 and 

Vax003. Regardless of whether data are run as paired or treated as unpaired, pepBayes more 

clearly separates likely positives from negatives.
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Table 1

The expected value of the FDP and recall quantities for EM and MCMC fitting algorithms at various FDR q 

values, from 250 replications of simulated data. Values in parentheses indicate the estimated standard 

deviation of FDP and recall. EM is slightly conservative at FDR values, while the MCMC algorithm is well 

calibrated. Both algorithms have low variability in the FDP, indicating that FDR control is tight. At modest 

FDR, both methods enjoy high sensitivity.

EM MCMC

q E[FDP] E[recall] E[FDP] E[recall]

.01 .006(sd .003) .869 (sd .019) .013 (sd .004) .891 (sd .018)

.05 .036 (sd .007) .923 (sd .014) .052 (sd .008) .935 (sd .014)

.1 .078 (sd .009) .948 (sd .012) .100 (sd .009) .955 (sd .011)

.2 .172 (sd .010) .973 (sd .008) .197 (sd .010) .976 (sd .008)
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