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Human Amygdala Tracks a Feature-Based Valence Signal
Embedded within the Facial Expression of Surprise
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Human amygdala function has been traditionally associated with processing the affective valence (negative vs positive) of an emotionally
charged event, especially those that signal fear or threat. However, this account of human amygdala function can be explained by
alternative views, which posit that the amygdala might be tuned to either (1) general emotional arousal (activation vs deactivation) or
(2) specific emotion categories (fear vs happy). Delineating the pure effects of valence independent of arousal or emotion category is a
challenging task, given that these variables naturally covary under many circumstances. To circumvent this issue and test the sensitivity
of the human amygdala to valence values specifically, we measured the dimension of valence within the single facial expression category
of surprise. Given the inherent valence ambiguity of this category, we show that surprised expression exemplars are attributed valence
and arousal values that are uniquely and naturally uncorrelated. We then present fMRI data from both sexes, showing that the amygdala
tracks these consensus valence values. Finally, we provide evidence that these valence values are linked to specific visual features of the
mouth region, isolating the signal by which the amygdala detects this valence information.
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Introduction
Understanding emotional signals conveyed by the facial expres-
sions of others is key to successful social interaction. One of the
most basic components of such emotional signals is affective
valence, the degree of positivity-negativity or pleasantness-
unpleasantness (Russell, 1980). Typically, facial expressions of
emotion convey a clear signal with regards to their valence: for

example, a person with a happy expression could be interpreted
to be experiencing a positive emotion. One notable exception is
surprise, a facial expression that could be perceived as either pos-
itive or negative; in other words, surprised faces are characterized
as being ambiguous with respect to valence (Tomkins and Mc-
Carter, 1964; Mattek et al., 2017).

fMRI studies have traditionally documented that the human
amygdala is highly responsive to negative facial expressions, in-
cluding fear (Breiter et al., 1996). Meanwhile, other fMRI studies
have shown that the amygdala is responsive to positive as well as
negative facial expressions (Fitzgerald et al., 2006), contributing
to a view that the amygdala may be generally sensitive to emo-
tional significance (Anderson and Phelps, 2001) or socially sa-
lient information (Adolphs, 2010). Indeed, a number of fMRI
studies have suggested that the amygdala might be better under-
stood as tracking the arousal, rather than the valence value,
of an emotional stimulus (Anderson et al., 2003; e.g., Wilson-
Mendenhall et al., 2013). The arousal account of amygdala func-
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Significance Statement

There is an open question as to whether human amygdala function tracks the valence value of cues in the environment, as opposed
to either a more general emotional arousal value or a more specific emotion category distinction. Here, we demonstrate the utility
of surprised facial expressions because exemplars within this emotion category take on valence values spanning the dimension of
bipolar valence (positive to negative) at a consistent level of emotional arousal. Functional neuroimaging data showed that
amygdala responses tracked the valence of surprised facial expressions, unconfounded by arousal. Furthermore, a machine
learning classifier identified particular visual features of the mouth region that predicted this valence effect, isolating the specific
visual signal that might be driving this neural valence response.
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tion is useful in that it may be able to reconcile previous findings
showing a purported valence effect because of a general tendency
for negative stimuli to be rated as being higher in arousal com-
pared with positive stimuli (Ito et al., 1998; Vaish et al., 2008).

Of critical importance, however, is the correlated nature of
valence and arousal ratings. Specifically, emotional stimuli with
clear valence (anger, happy, etc.) show a strong correlation be-
tween these dimensions, such that increased absolute valence in-
tensity corresponds to increased arousal (Mattek et al., 2017).
Consequently, studies contrasting positive/negative conditions
with a neutral condition cannot delineate an effect of arousal
from valence intensity. To distinguish an effect of valence inten-
sity from an effect of arousal, there must be a non-neutral
valence-ambiguous condition (i.e., where absolute valence inten-
sity is “low” but arousal is still “high”) (Mattek et al., 2017).
Surprised facial expressions offer two unique advantages in this
regard: (1) the effects of valence and arousal can be explored
unconfounded by one another; and (2) negative and positive
valence can be directly contrasted without resorting to the use of
two or more distinct categories of emotional stimuli, eliminating
potential confounds associated with cross-categorical emotions.

It is worth noting that, while previous studies have typically
assumed that the valence of all surprised faces is equally ambigu-
ous, photos of surprised faces that are available in standardized
facial expression sets actually display varying degrees of valence
ambiguity. That is, some individuals pose surprised facial expres-
sions that are consistently rated as more “positive” (e.g., wonder-
ment), other individuals pose surprised facial expressions that are
perceived as more “negative” (e.g., shock), and still other individ-
uals pose surprised facial expressions that are more ambiguous
with respect to valence, consistently being rated within the center
of the valence dimension. We hypothesize that this valence di-
mension can be decoded from visual features extracted from the
facial features present within this single facial expression cate-
gory. Thus, the purposes of the current study are the following:
(1) to quantify any systematic agreement in the valence of sur-
prised faces (i.e., surprised face stimuli that are consistently rated
as negative or positive) contained within standardized databases
that are widely used for scientific research; (2) to test whether the
human amygdala tracks affective valence in particular, separate
from arousal or emotion category; and (3) to link valence values
to specific visual features extracted from the facial exemplars.

Materials and Methods
Participants
The present study was divided into four parts: (1) valence rating study,
(2) emotion labeling study, (3) facial feature measurement, and (4) fMRI
study. Independent groups of volunteers were recruited for the valence
rating study, emotion labeling study, and fMRI study. For the valence
rating study, 40 healthy Dartmouth College undergraduate students were
recruited. Data from two participants were not recorded and thus re-
moved from the analysis. As a result, a total of 38 participants (23 fe-
males; ages 18 –21 years, mean age 18.7 years) were included in the final
analysis. For the emotion labeling study, 17 healthy Dartmouth College
undergraduate students volunteered (13 females; ages 18 –20 years, mean
age 18.8 years). For the fMRI study, 27 healthy Dartmouth College un-
dergraduate students were recruited. Five individuals were excluded
from all analyses due to excessive head movement during the scanning
sessions (�1.5 mm). Thus, a total of 22 participants (12 females, ages
18 –22 years, mean age 19.3 years) were included in the fMRI study. All
participants were screened for past or current psychiatric illnesses (Axis I
or II) using the Structured Clinical Interview for DSM-IV (First et al.,
1995). No participants had any history of taking psychotropic medica-
tions. Before the experiment, all participants gave written, informed con-

sent in accordance with the guidelines set by the Committee for the
Protection of Human Subjects at Dartmouth College.

Valence rating study
Each participant saw a total of 63 surprised faces, which were selected
from the Ekman (Ekman and Friesen, 1976), NimStim (Tottenham et al.,
2009), and Karolinska facial expression sets (Lundqvist et al., 1998).
Specifically, 12 faces from the Ekman stimulus set (6 females), 18 from
the NimStim stimulus set (9 females), and 33 faces from the Karolinska
stimulus set (19 females) were used. To keep the race/ethnicity consistent
across the three different facial expression datasets (as the Ekman dataset
only included white face stimuli), all of the stimuli included in the pres-
ent study were limited to photos of white individuals. We note that the
majority (68%) of the participants across all studies were also white. All
faces were grayscaled and normalized for size and luminance. All faces
were presented in a random order on a computer screen (visual angle
5° � 8°), using E-Prime software. Each face was presented once in a single
run, which consisted of a total of 63 trials. On each trial, a single surprised
face was presented on the computer screen for 1000 ms, followed by a two
alternative forced-choice affective valence rating trial asking whether the
face was positive or negative for 2000 ms. Behavioral ratings were col-
lapsed across all 38 participants and analyzed for each of the 63 surprised
face identities. The degree of ambiguity in affective valence for each
stimulus face was operationally defined as the ratio of negative ratings
each face received.

Emotion labeling study
While all 63 faces used in the current study were selected based on nor-
mative data that indicate each face was reliably categorized as surprise,
considering the existence of consensus positive and consensus negative
ratings (see Results section of the valence rating study for details), there
was a need to confirm whether some of these faces were being consis-
tently mistaken for any other emotion category than surprise. To this
end, labeling accuracy data were collected from an additional 17 healthy
volunteers (13 females; ages 18 –20 years, mean age 18.8 years). Partici-
pants were presented with all 63 surprised faces in a random order on a
computer screen (visual angle 5° � 8°); and for each trial, they were asked
to select the emotion category that best describes the expression on the
face. There were a total of 7 choices that the participants could select from
(angry, disgust, fearful, happy, sad, surprised, neutral). Faces remained
on the screen until the participants selected a response.

Facial feature measurements
Procedure. Consensus positive (n � 12) and negative (n � 12) surprised
faces from the three facial expression sets were selected based on the
results of the valence rating study. Specifically, for each valence type,
there were 2 Ekman, 4 NimStim, and 6 Karolinska faces (matched for
sex). For each identity, a total of four features were selected a priori for
measurement, focusing on the eye and the mouth regions according to a
rich body of literature suggesting that these regions provide critical affec-
tive information (Jack et al., 2014). These features were also consistent
with participants’ subjective report, when they were asked after the ex-
periment to clarify which part of the face contributed to their valence
decisions. Importantly, the majority of their responses were generally
vague but showed a tendency to be focused on the features of the eyes and
the mouth region (e.g., “something in the eyebrows,” “maybe looked like
smiling,” etc.). The selected features were as follows: (1) distance between
the upper eyelid and the eyebrows (Eye A); (2) distance between the
upper and lower eyelids (Eye B); (3) distance between the labial commis-
sures of the lips and the bottom of the chin (Mouth A); and (4) distance
between the upper and lower lips (Mouth B). For features Eye A, Eye B,
and Mouth A, an average of the measurements taken from the left and
right side of the face was used. To account for potential differences in face
size across identities, each individual measurement was normalized by
dividing the vertical length of the whole face. All measurements were
performed on a LCD computer monitor with a screen resolution of
1440 � 900 pixels, and the measuring units were in pixel counts. To rule
out potential experimenter bias, two raters (M.J.K., J.S.) independently
performed all measurements, and the interrater reliability was calculated
using Cronbach’s �, as well as the intraclass correlation coefficient. The
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intraclass correlation analysis was performed using Model 2 (two-way
random model), and measurements were assessed using absolute agree-
ment across raters because the measurement error between raters here
should not be systematic.

Machine learning classification analysis. For this procedure, we adopted
a machine learning classification approach from the affective computing
literature, which is in line with computational methods used to detect
emotional content from facial expressions (Picard, 2010; Martinez and
Valstar, 2015; e.g., D’Mello and Kory, 2015). All measurements were first
scaled to be mean-centered and have unit variance, and then fed into a
machine learning classifier, which used this information to distinguish
positive versus negative surprised faces. To this end, the scikit-learn ma-
chine learning package (RRID:SCR_002577) in Python was used (Pe-
dregosa et al., 2011). A support vector machine (SVM) with a linear
kernel was selected for classification analysis. A linear SVM is a super-
vised learning algorithm that uses labeled training data to define a hyper-
plane that separates multidimensional space into two or more classes
(Boser et al., 1992). Because there are two types of surprise being inves-
tigated here (12 positive and 12 negative surprise), classification accuracy
at chance level was 50%. Hyperparameter optimization was achieved
using a grid search algorithm; and through this analysis, a regularization
parameter of C � 0.1 was used. A sixfold cross-validation was applied to
the data such that the surprised faces are randomly and iteratively split
into training and testing datasets. Specifically, a linear SVM classifier was
trained iteratively on 5 folds and then tested on the remaining fold.
Overall classification performance was then calculated by averaging the
classification accuracy across folds. Feature weights were extracted for
each of the four features to assess the relative importance of each feature
to the trained classifier. In linear SVM, absolute values of the feature
weights can be interpreted as how much each feature contributes to
classification (Guyon and Elisseeff, 2003). Finally, to confirm the gener-
alizability of the trained classifier, an additional 8 surprised faces (4 con-
sensus positive, 4 consensus negative), which were never included in the
cross-validation classifier training phase, were selected from the original
63 faces from the valence rating study as a validation set. The trained
classifier performed classification on these 8 surprised faces, and its ac-
curacy was measured.

Face averaging and subtraction. To illustrate the overall characteristics
of the facial features associated with the consensus positive and negative
surprised faces, following the machine learning classification analysis,
the face stimuli were averaged separately for each valence type using an
online software (http://www.facefacts.scot; Institute of Neuroscience
and Psychology, University of Glasgow). The landmarks used to average
the faces were delineated semimanually; first, the software requires a
manual input for three major landmarks (left eye, right eye, mouth).
Based on these inputs, the software automatically places markers for
various specific landmarks (e.g., eyebrows, outer upper lip) in their ap-
proximate locations. Then we manually tweaked these markers to best
match the actual facial structure. The landmarks of each individual face
were carefully inspected to maximize the quality of the averaging algo-
rithm. Using an approach similar to the methods described by Ahs et al.
(2014), the averaged faces were subsequently transformed to z scores and
then subtracted from one another using Python.

fMRI study
Experimental design. Consensus positive (n � 12) and negative (n � 12)
surprised faces were taken from the facial feature measurement study. An
additional “ambiguous” sample of surprised faces (n � 12) that displayed
a ratio of negative ratings between the consensus positive and negative
face stimuli was selected balancing for the different facial expression
datasets and sex. Using E-Prime software, all stimuli were back projected
onto a screen (visual angle 5° � 8°), on which the participants viewed
during fMRI scanning using a mirror that was mounted on the head coil.
All faces were grayscaled and normalized for size and luminance. A pas-
sive viewing paradigm that has been shown to reliably elicit amygdala
activity to facial expressions of emotion was adapted for the current study
(Kim and Whalen, 2009; for meta-analysis and review, see Costafreda
et al., 2008). During fMRI scanning sessions, participants viewed two

runs consisting of 18 s blocks of consensus positive, consensus nega-
tive, and ambiguous surprised faces, interleaved with 18 s blocks
showing a single fixation crosshair at the center of the screen (e.g.,
example run structure: �P�A�N�A�N�P�N�P�A�). Within
each block, surprised faces were presented for 200 ms followed by a
300 ms interstimulus interval, yielding a total of 36 trials per block.
The order of the faces within each block was pseudorandomized to
ensure that the same face was not presented more than twice in a row.
There were three blocks for each condition in each run, and partici-
pants were scanned for the duration of two runs, which lasted for a
total of 12 min 20 s.

Image acquisition. All participants were scanned at the Dartmouth
Brain Imaging Center using a 3.0 Tesla Philips Intera Achieva Scanner
(Philips Medical Systems) equipped with an 8-channel head coil. High-
resolution anatomical T1-weighted images were collected using a high-
resolution 3D MP-RAGE, with 160 contiguous 1-mm-thick sagittal slices
(TE � 4.6 ms, TR � 9.8 ms, FOV � 240 mm, flip angle � 8°, voxel size �
1 � 0.94 � 0.94 mm). Functional images were acquired using echo-
planar T2*-weighted imaging sequence. Each volume consisted of 36
interleaved 3-mm-thick slices with 0.5 mm interslice gap (TE � 35 ms,
TR�2000ms,FOV�240mm,flipangle�90°,voxel size�3�3�3.5mm).

fMRI data analysis. All fMRI data were preprocessed using SPM12
(RRID:SCR_007037). Raw functional images were corrected for head
movement. None of the remaining 22 participants had head movement
�1.5 mm in any direction. Functional images were then normalized to
standard space (3 � 3 � 3 mm) using the MNI-152 template. Spatial
smoothing was applied to the normalized functional images using a
Gaussian kernel of 6 mm FWHM. By using a boxcar function convolved
with a HRF and covariates of no interests (a session mean, a linear trend
for each run to account for low-frequency drift and six movement pa-
rameters derived from realignment corrections), contrast maps for neg-
ative versus positive surprise (our a priori planned contrast) as well as
each condition versus fixation were generated for each participant. Con-
trast maps were then entered into a random effects model, which ac-
counts for intersubject variability and allows population based inferences
to be drawn.

Statistical analyses. Given our a priori hypothesis of the amygdala, we
imposed a significance threshold of p � 0.05 corrected for multiple com-
parisons over the bilateral amygdala volume defined using the Auto-
mated Anatomical Labeling atlas (Maldjian et al., 2003), as determined
by Monte Carlo simulations (n � 10,000) implemented in 3dClustSim, in
conjunction with 3dFWHMx and an updated method (autocorrelation
function) to estimate smoothness in the data, within AFNI software
(RRID:SCR_005927) (Cox, 1996). The corrected p � 0.05 corresponded
to uncorrected p � 0.005 and k � 4 voxels (108 mm 3). We note that the
results remained consistent (cluster size of the significant left amygdala
voxels increased from 14 to 22 voxels and right amygdala voxels increased
from 2 to 15 voxels; see Results) when nonparametric permutation tests
(n � 10,000) were performed on the data to determine significant voxels
at p � 0.05 corrected for multiple comparisons, using randomize along
with the threshold-free cluster enhancement method implemented in
FSL (RRID:SCR_002823) (Smith and Nichols, 2009; Winkler et al.,
2014). For all other brain regions, whole-brain corrected p � 0.05 threshold
was achieved by using uncorrected p � 0.001, k � 77 voxels (2079 mm3)
through the use of Monte Carlo simulations described above.

Postscan assessment. Upon exiting the scanner, participants were pre-
sented with the same blocks of surprised faces that they have seen in the
scanner in a random order on a computer screen. Similar to the methods
described by Kim et al. (2003), after each block, they were instructed to
rate the overall valence and arousal of each block on a 9-point Likert
scale. Valence ratings were collected using a scale that ranged from 1 to 9
(positive to negative), which was subsequently converted to a scale that
ranged from �4 to 4 (negative to positive; the scale itself was an identical
9-point Likert scale). Each individual’s average valence and arousal rat-
ings for the negative, ambiguous, and positive surprise blocks were then
calculated. Average valence ratings for each type of surprise were used as
a manipulation check: to ensure that the participants in the fMRI study
have indeed viewed the negative/ambiguous/positive surprised faces in a
similar manner as the participants in the valence rating study.
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As a final step, participants filled out the State-Trait Anxiety Inventory
Form-Y (STAI) (Spielberger et al., 1988) and the Positive and Negative
Affective Schedule (PANAS) (Watson et al., 1988). All postscan measure-
ments were used to quantify concurrent mood and anxiety levels that
may influence the perceived valence of surprised faces. State anxiety
scores (STAI-S) were used as a proxy for each participant’s anxiety levels.
Both PANAS negative and positive mood scores were used as an index of
concurrent mood.

Results
Valence rating data
Calculating the consensus ratio of negative ratings for each sur-
prised face revealed a varying degree of ambiguity across all 63
faces, ranging from as low as 0.03 (consensus positive) to as high
as 0.95 (consensus negative; see Fig. 1; Table 1). Current results
provide evidence that the valence of surprised faces, when per-
ceived devoid of contextual cues, can display a wider range of
valence ambiguity than previously assumed. From these 63 sur-
prised faces, 12 consensus positive and 12 consensus negative
identities, matched for sex (6 males, 6 females) and stimulus set
(2 Ekman, 4 Nimstim, 6 Karolinska) per valence, were selected
and used for subsequent studies.

Emotion labeling accuracy data
Results showed that surprised faces with a higher ratio of negative
ratings were more likely to be confused with fearful faces than any
other emotional expressions (Fig. 2). However, those consensus
negative surprised faces were still categorized as surprised overall
(i.e., in the “worst” case, the face was categorized as 59% sur-
prised, 29% fearful, 6% happy, and 6% sad). Finally, one consen-
sus positive face tended to be confused with happy but was still
primarily categorized as surprised (59% surprised, 35% happy,
6% fearful).

Facial feature measurements
Inter-rater reliability
For all four features, interrater reliability was high, as indicated by
Cronbach’s � (Eye A � 0.97; Eye B � 0.88; Mouth A � 0.89;
Mouth B � 0.98). These results were further corroborated in
that all four facial features achieved high intraclass correlation
coefficients (Eye A � 0.83; Eye B � 0.79; Mouth A � 0.79;
Mouth B � 0.95; all p values �0.00001). Thus, for the subse-
quent classification analysis, measurements from one rater
(M.J.K.) were used.

Classification accuracy data
Cross-validation tests showed that the lin-
ear SVM classifier was able to correctly
classify negative and positive surprised
faces at 75% accuracy (SEM 12.9%) when
trained with the four features. Feature
weights indicated that this classifier relied
on information from the mouth regions
(Mouth A � 0.32; Mouth B � 0.55) rela-
tive to the eye regions (Eye A � �0.28;
Eye B � �0.12). The absolute value of the
feature weights in a linear SVM classifica-
tion analysis corresponds to the relative
importance of each feature, yielding a
rank-order of Mouth B � Mouth A � Eye
A � Eye B. A classification accuracy of
87.5% was achieved when a validation set
of 8 novel surprised faces were used (1
misclassification each of a total of 8 faces).
Figure 3 summarizes the outcomes from
the classifier analysis.

Averaged faces
Averaged (i.e., composite) positive and negative surprised faces
are presented in Figure 4. Upon visual inspection, the averaged
positive surprised face most notably differed in the mouth region
displaying a more prominent jaw drop. We note that, while the
areas around the hair and below the ears include substantial vari-
ability across individual faces, our four measurements were un-
affected by the noise in those regions. For future studies that may
include facial features around the noisy areas, further manipula-
tion of the stimuli (e.g., removing the hair) may be necessary.

fMRI data
Neuroimaging data
The consensus negative versus positive surprise contrast revealed
significantly increased activity in the left amygdala (MNI �24,
�6, �18, t(21) � 4.61, z � 3.79, k � 14 voxels; Cohen’s d � 1.07;
corresponding to p � 0.05 corrected for multiple comparisons
within the amygdala; Fig. 5). Power analysis was performed to
compute the power for the amygdala, using a standard effect size
that is associated with typical emotional tasks (Cohen’s d �
�0.6) (Poldrack et al., 2017), � level, and sample size. Given these
parameters, the power to detect significant differences in the
amygdala was 77%. Amygdala activity was not correlated with
either concurrent anxiety (STAI-S scores) or mood (PANAS-P,
PANAS-N scores; all p values �0.05). Post hoc analyses showed
that left amygdala activity to ambiguous surprise was not signif-
icantly different from either negative or positive surprise (both
p values �0.05). No clusters within the amygdala displayed in-
creased activity as a function of arousal when the negative and
positive � ambiguous surprise contrast was examined post hoc,
according to the postscan behavioral data. These findings high-
light the fact that the amygdala is responsive to a negative valence
signal embedded within surprised faces, likely comprising a con-
figuration of certain facial features. No other brain regions
showed significant differential activity across negative, ambigu-
ous, and positive surprise face conditions.

Postscan behavioral data
Repeated-measures ANOVA demonstrated that, as expected,
participants rated the affective valence of the surprised face
blocks in accordance with their predetermined categories
(F(2,42) � 64.79, p � 0.000001). Post hoc analysis showed that

Figure 1. Scatterplot depicting the distribution of emotional ambiguity in 63 surprised faces, taken from the Ekman (green),
the NimStim (red), and the Karolinska (blue) facial expressions sets, sorted by the ratio of negative ratings.
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negative blocks (�1.36 	 0.87) were significantly rated as
more negative than ambiguous (�0.88 	 0.74; t(21) � �2.11,
p � 0.047) or positive blocks (1.53 	 1.03; t(21) � �9.28, p �
0.000001). Participants also rated the positive blocks as being
significantly more positive than the ambiguous blocks (t(21) �
8.88, p � 0.000001; Fig. 6A).

Participants rated the arousal of the negative (4.42 	 1.49)
and positive (4.6 	 1.39) surprised face blocks as significantly
different from the ambiguous blocks (3.92 	 1.44; F(2,42) � 5.31,
p � 0.009). Post hoc analysis confirmed that both negative (t(21) �
2.43, p � 0.024) and positive (t(21) � 3.17, p � 0.005) blocks
received significantly higher arousal ratings than the ambiguous
blocks. Importantly, no significant difference in arousal ratings
between the negative and positive blocks was observed (t(21) �
0.77, p � 0.45; Fig. 6B). No significant correlations were observed
between the absolute valence and arousal ratings for the negative,
ambiguous, or positive surprised faces.

Descriptive statistics of the self-report measures of anxiety
and mood are as follows: STAI-S (33.18 	 8.64), PANAS-P
(37.95 	 5), and PANAS-N (17.36 	 2.77).

Discussion
Here, we tested whether the human amygdala is sensitive to dif-
ferences in the valence value of surprised facial expressions.
Given that valence and arousal ratings were uncorrelated (see also
Mattek et al., 2017), we demonstrated a dimensional valence af-

fect within the amygdala that was unconfounded by arousal
ratings or expression category. In addition, we showed that a
machine learning algorithm could reliably differentiate between
positive and negative surprised expressions. These data allowed
us to assert that the degree to which the mouth is open predicts a
qualitatively more positive surprised expression. It follows then
that the amygdala may be sensitive to this low-level visual signal
that is associated with subjective valence for surprised facial
expressions.

Human amygdala can encode valence unconfounded
by arousal
The amygdala responses characterized here are consistent with
previous reports showing a relationship between stimulus va-
lence and amygdala activity. A number of fMRI studies have
found that amygdala BOLD response is greater to negative com-
pared with neutral items (Williams et al., 2004; Chang et al.,
2015), and still others have found that amygdala BOLD response
is greater to negative compared with positive items (Anders et al.,
2008; Lindquist et al., 2016). In comparison, some experiments
find that the amygdala responds equally to positive and negative
stimuli (Garavan et al., 2001), and still others find that the
amygdala responds more to positive compared with negative
stimuli (Sergerie et al., 2008). Importantly, these studies are un-
able to address whether categorical differences in the stimuli used
to elicit amygdala response may be driving these effects.

Compared with other categories of facial expressions, the va-
lence signal of surprised faces is subtle (i.e., limited range of re-
sponses to the positive/negative surprise on a 9-point Likert
scale), yet reliable (i.e., existence of consensus positive/negative
surprise). Considering these characteristics of surprise, the
current fMRI finding speaks to the sensitivity of the human
amygdala to valence information. An important detail here was
that arousal was equivalent between positive and negative sur-
prised faces. This is consistent with a recent fMRI study using a
multivariate pattern analysis that reported the activity of the
amygdala closely represented the valence, not arousal, of various
odor stimuli (Jin et al., 2015).

The present fMRI data show that amygdala activity can cap-
ture subjective valence exclusively when experimental conditions
remove subjective arousal as a potential confound. We are not
suggesting that the amygdala does not also encode arousal; we of
course assume the amygdala processes both dimensions and that
the subnuclei of the amygdala may differ in their relative contri-
butions to processing these two dimensions (for review, see
Whalen et al., 2009). That being said, given reports showing that
the amygdala can function to provide information about the sa-
lience or arousal value of environmental events (e.g., Wilson-
Mendenhall et al., 2013), we thought it critical to offer the
example of the surprised expression category to demonstrate that
the amygdala can also track the valence of environmental events
(Whalen, 1998; Belova et al., 2007).

An interesting parallel to the current fMRI study using sur-
prised faces is a series of reports on the relationship between the
perceived trustworthiness traits of emotionally neutral faces and
amygdala activity. Similar to the consensus valence ratings of
surprised faces, Engell et al. (2007) showed that amygdala activity
tracked consensus ratings of trustworthiness of neutral faces,
such that more untrustworthy faces elicited higher amygdala re-
sponse. Furthermore, variability in trustworthiness ratings was
identified as being closely related to a general valence dimension,
and the amygdala activity increased as a function of this dimension

Table 1. Ratio of negative ratings for all 63 surprised faces

Face ID
Ratio of negative
ratings Face ID

Ratio of negative
ratings

Tottenham et al. (2009)
01F 0.68 20M 0.08
02F 0.30 23M 0.81
03F 0.11 27M 0.38
05F 0.03 28M 0.71
06F 0.76 32M 0.72
07F 0.58 34M 0.41
08F 0.81 35M 0.88
09F 0.77 36M 0.60
10F 0.08 37M 0.49

Lundqvist et al. (1998)
AF01 0.35 AF32 0.39
AF02 0.74 AF34 0.73
AF03 0.76 AM02 0.73
AF09 0.56 AM03 0.80
AF11 0.86 AM05 0.74
AF12 0.17 AM06 0.69
AF13 0.05 AM09 0.86
AF16 0.76 AM11 0.39
AF19 0.68 AM12 0.78
AF20 0.80 AM13 0.33
AF21 0.78 AM18 0.81
AF22 0.16 AM20 0.94
AF23 0.51 AM24 0.66
AF24 0.76 AM31 0.57
AF26 0.89 AM34 0.65
AF27 0.91 AM35 0.73
AF30 0.69

Ekman and Friesen (1976)
C 0.44 EM 0.79
MF 0.50 GS 0.55
NR 0.94 JJ 0.89
SW 0.83 PE 0.91
PF 0.29 WF 0.86
JM 0.76 JB 0.95
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(Todorov and Engell, 2008). In other words, higher amygdala activ-
ity was associated with more negative signals embedded within the
facial features of otherwise neutral expressions, similar to the obser-
vations from the current study. Collectively, these converging
findings suggest that the human amygdala is sensitive to valence
information gleaned from the faces of others, based on certain fea-
tures that may have likely served as biologically relevant predictive
cues.

Feature-based valence signal within surprised faces guides
amygdala responsivity
The current study also showed that a machine learning classifier
could be trained to reliably discriminate positive and negative
surprised faces, using a combination of four simple facial fea-
tures. Upon examining the relative contributions of each of the
four features on classifier performance, the two mouth regions
were observed to contain more information about valence than

Figure 2. Heat map depicting the confusion matrix of all 63 surprised faces, sorted by the ratio of negative ratings. Color bar represents the probability of being categorized as the corresponding
emotion. While all faces were primarily categorized as surprised, they were most frequently confused with fear.

Figure 3. Summary of the classification results. A, Four facial features that were measured for classification analysis. B, A linear SVM classifier that was trained to distinguish negative versus
positive surprised faces demonstrated 75% accuracy from cross-validation testing. Error bars indicate SEM. C, Absolute values of the feature weights indicate that the mouth regions have more
informational value than the eye regions for this trained classifier. D, An additional validation test was performed on a holdout set of surprised faces that were never used for the cross-validation
training of the classifier, and showed a classification accuracy of 87.5%.

Kim et al. • Amygdala Tracks Feature-Based Affective Valence J. Neurosci., September 27, 2017 • 37(39):9510 –9518 • 9515



the two eye regions. Specifically, a more open mouth in the ver-
tical direction predicted more positive ratings. Given the high
concordance rate for these consensus positive and negative sur-
prised faces, it is reasonable to hypothesize that human observers
may also extract information from these facial features in a sim-
ilar manner. Interestingly, participants could not confidently
pinpoint certain facial features that guided their affective valence
decisions in the current experiment. Participants’ generally vague
responses (e.g., “just feels negative,” “something in the eye-
brows”), combined with the fact that there still was a high degree
of agreement on the consensus positive and negative surprised
faces, are consistent with the view that these facial features are
being processed implicitly (Farah et al., 1998). Interestingly, the
mouth region was recently suggested to be more informative than
the eye region in discriminating facial expressions across multiple
categories of emotion (Blais et al., 2012). Our data expand this
report by showing the utility of the mouth region in distinguish-
ing positive versus negative faces within a single emotional
category.

The present results converge with a previous study of compos-
ite facial expression categories. Du et al. (2014) showed that an
algorithm could distinguish between composite facial expres-
sions when human actors were asked to deliberately combine two
basic emotional expressions, such as surprised faces blended with
either happy or fearful faces. The present results critically extend
this work to show that there is sufficient variability of facial mus-
cle expression, within the category of surprised expressions avail-
able across standardized facial expression stimulus sets, for an
algorithm to discriminate this valence dimension. Another study
used computer-generated dynamic facial expressions (i.e., a short
video clip of a neutral face morphing into either a positive or
negative surprised face) that the participants viewed while their
brain activity was recorded in an fMRI scanning session, and
found increased amygdala activity to positive versus negative
surprise (Vrticka et al., 2014). There are several key differences
between studies, which include the use of naturalistic versus ar-
tificial face stimuli and static photos versus movies of facial ex-
pressions. More importantly, unlike Vrticka et al. (2014), the

Figure 4. Average faces of consensus positive and consensus negative surprise, and a heat map depicting the differences between the two images. Largest differences were found in the mouth
and the right eyebrow area.

Figure 5. Summary of the fMRI results. A, A coronal slice of the brain depicting the voxel clusters in the amygdala whose activity tracked the valence (negative � ambiguous � positive) of
surprised faces. B, Left amygdala activity showing a linear increase as a function of valence. Error bars indicate SEM.
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present study controlled for subjective levels of arousal between
positive and negative surprise, and established that these positive
and negative surprise faces were indeed perceived as the category
of surprise overall, which may have contributed to the discrep-
ancy in the results across studies.

Finally, the findings reported here have implications for fu-
ture research that would use these surprised expression faces
as experimental stimuli. Depending the experimental goals, it
would be important to stratify selection of specific stimuli based
on the designation of positive, negative, or ambiguous surprise.
That is, the degree of emotional ambiguity should be quantified
and then balanced (e.g., equal numbers of positive, negative, and
ambiguous exemplars) or unbalanced (e.g., use only the ambig-
uous exemplars) depending on the study design. Additionally,
the present data could inform future research that the amygdala’s
responsiveness to specific facial features may depend on context.
For example, studies have shown that the amygdala is sensitive to
the eye region when comparing fearful versus happy facial ex-
pressions in a backward masking paradigm (Straube et al., 2010;
Kim et al., 2016), which is seemingly in contrast with the present
data. We suggest that context is key: the amygdala being more
sensitive to the mouth region within the context of surprise, and
to the eye region within the context of fear (as well as backward
masking), could be understood through a general framework that
suggests that the amygdala is most sensitive to facial features that
offer useful, biologically relevant information in a given context.
As such, we speculate that the human amygdala is sensitive to the
mouth within the category of surprise because it is the best avail-
able source of biologically relevant information (i.e., valence sig-
nal) when comparing negative versus positive surprised faces. It
remains an open question as to whether the amygdala is sensitive
to the mouth in other expressions. Future studies might seek to
systematically manipulate the mouth region, use an algorithm
that can automatically detect relevant facial features, or delineate
low versus high spatial frequency components of surprised faces
(e.g., Méndez-Bértolo et al., 2016) to address this issue.

In conclusion, the current study demonstrated that human
amygdala responses track affective valence, when holding emo-
tional arousal and emotion category constant. This was achieved
by focusing on the emotion category of surprise, single facial
expression category that can capture the dimension of valence.
Differences in the configuration of facial features predicted these
differences in valence, with more vertical opening of the mouth

being most predictive of a qualitatively more positive surprised
expression. Together, these findings suggest that the human
amygdala is responsive to very subtle valence-related cues em-
bedded within facial features.
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