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Background

Intracranial aneurysms (IAs) are a cerebrovascular disease 
characterized by localized weakened pouches of the arteri-
al wall around bifurcations of the circle of Willis, with disrup-
tion of the media and loss of the internal elastic lamina [1,2]. 
Rupture of IAs can result in subarachnoid hemorrhage (SAH), 
of which the consequences are dire, carrying an overall mor-
tality rate of about 40% to 50% and a morbidity rate among 
survivors of approximately 50% [3]. Treatment with both en-
dovascular therapy and microsurgery is effective but can also 
cause significant morbidity and mortality [4]. Currently, there 
are no medical alternatives to stabilize aneurysmal progres-
sion or prevent rupture. Thus, there is a critical need for a bet-
ter understanding of the molecular mechanisms underlying 
the pathogenesis of IAs.

Risk factors predisposing formation of IAs include hyperten-
sion, cigarette smoking, heavy alcohol consumption, familial 
history, cocaine usage, ethnicity, sex, and age [5]. Though the 
pathophysiology leading to aneurysm formation, growth, and 
eventual rupture have not been completely elucidated, inflam-
mation is known to play a significant role [6]. Ample evidence 
has indicated a critical role of TNF-a in the IAs formation and 
progression to rupture [7,8]. A study demonstrated that he-
patocyte growth factor (HGF) concentrations were elevated in 
blood samples drawn from the lumen of patients with IAs [9]. 
In addition, Roder et al. performed a meta-analysis of micro-
array gene expression studies on IAs and revealed that seven 
genes, including B-cell CLL/lymphoma 2 (BCL2), collagen type 
I alpha 2 (COL1A2), collagen type III alpha 1 (COL3A1), colla-
gen type V alpha 2 (COL5A2), C-X-C motif chemokine ligand 
12 (CXCL12), TIMP metallopeptidase inhibitor 4 (TIMP4), and 
tenascin C (TNC) were very likely to be involved in the patho-
genesis of IAs [10]. On the other hand, the discovery and mod-
ulation of microRNAs (miRNAs) provide a novel direction for 
IA research [11,12]. MiRNAs are small, noncoding RNA mole-
cules of 18 to 25 nucleotides that have fundamental roles in 
post-transcriptional regulation of gene expression by binding 
to mRNAs and targeting the mRNA for degradation or trans-
lational inhibition [13]. Jiang et al. demonstrated differential 
expression of 18 miRNAs in IA tissue compared with controls, 
such as hsa-mir-133b and hsa-mir-143-3p [11]. In addition, the 
study of Lee et al. showed that miRNAs may take part in ce-
rebral aneurysm formation by affecting multiple target genes 
and signaling pathways [14]. However, the genes and miRNAs 
associated with the pathogenesis of IAs were largely unknown.

Recently, Pera et al. performed an analysis of global gene ex-
pression profiles in peripheral blood cells from patients with 
SAH from ruptured IAs and found that rupture of IAs strong-
ly influenced the transcriptional profiles of peripheral blood 
cells, involving a depression in lymphocyte response with 

enhancements in monocyte and neutrophil activities [15]. 
In this study, we downloaded and reanalyzed the dataset of 
Pera et al. [15] from a publicly accessible database. Blood 
samples from patients with ruptured IAs and controls were 
screened for differentially expressed genes (DEGs), followed 
by functional and pathway enrichment analyses. In addition, 
gene co-expression network was constructed and signifi-
cant modules were extracted from the network. MiRNAs that 
could regulate DEGs in the modules were screened out and 
the analysis of regulatory relationships was conducted. This 
study aimed to identify more potential genes and miRNAs as-
sociated with the pathogenesis of IAs, which may provide a 
valuable resource for future biochemical and genetic studies 
of IAs pathogenesis and rupture.

Material and Methods

Microarray data

The Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.
gov/geo/) repository is the largest, fully public gene expres-
sion resource for high-throughput microarray and other forms 
of high-throughput data submitted by the scientific communi-
ty [16]. In this study, we downloaded the microarray data that 
deposited by Pera et al. [15] from the GEO database [16] with 
the accession number of GSE36791. The platform is GPL10558, 
Illumina HumanHT-12 V4.0 expression beadchip. According 
to the description in the original study of Pera et al. [15], the 
dataset included peripheral blood samples from 43 patients 
with SAH from ruptured IAs and 18 controls who were suffer-
ing from headaches. SAH was diagnosed using cranial com-
puted tomography and/or lumbar puncture. The presence 
and location of IAs were evaluated by digital subtractive an-
giography and/or angio-computed tomography. Venous whole 
blood was collected before neurosurgical interventions and to-
tal RNA was purified from the blood samples. In this study, 43 
blood samples from patients with ruptured IAs and 18 blood 
samples from controls were applied for the following analysis.

Data preprocessing and screening of DEGs

The expression data which had already been normalized us-
ing Robust Multi-Array Average (RMA) [17] were downloaded. 
Then, probe sets were mapped to gene symbols according to 
the probe annotation files of the GPL10558 platform. When 
multiple probes mapped to a same gene symbol, the average 
value of all probes that mapped to the gene was calculated 
to represent the gene. Afterwards, the gene expression val-
ues were log2 transformed.

Linear Models for Microarray Analysis (limma) is an R-based 
open-source software package that provides an integrated 
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solution for differential expression analyses for data from ex-
periments involving microarrays and other platforms [18]. In 
this study, the limma package was used to identify DEGs be-
tween blood samples from patients with ruptured IAs and con-
trols. False discovery rate (FDR) was estimated using Benjamini-
Hochberg method [19]. The DEGs were as defined by FDR <0.05 
and fold change (FC) greater than 2 (|log2FC| >0.58).

Gene ontology (GO) and pathway enrichment analysis for 
DEGs

Database for Annotation, Visualization, and Integrated Discovery 
(DAVID) bioinformatics resources, is a web-accessible program 
that enable investigators to discover biological themes associ-
ated with large gene lists [20]. In this study, to further charac-
terize the identified DEGs, we performed GO terms and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway enrich-
ment analysis using the web tool DAVID. Those enriched GO 
terms and pathways with FDR <0.05 were considered significant.

Construction of gene co-expression network and module 
extraction

Weighted gene co-expression network analysis (WGCNA) R 
package provides a comprehensive systems biology method for 
performing weighted correlation network analysis that describes 
the correlation patterns among genes and identifying clusters 
(modules) of highly correlated genes across samples [21]. In this 
study, in order to identify ruptured IAs-associated co-expres-
sion modules and their key constituents, we input expression 
profiles of the identified DEGs to construct weighted gene co-
expression modules using the WGCNA R package [21]. Briefly, 
the framework for WGCNA involves four steps 1) an unsigned 
similarity matrix of gene co-expression is initially determined 
based on pair-wise Pearson correlations for all genes across 
the samples; 2) the co-expression similarities are transformed 
into a weighted adjacency matrix of connection strengths us-
ing a power adjacency function; 3) a topological overlap ma-
trix that measures the relative interconnectedness (proximi-
ty) of the genes is conducted from the adjacency matrix; and 
4) average linkage hierarchical clustering of the topological 
overlap dissimilarity matrix is performed to identify clusters 
(modules) of co-expressed genes [22,23].

An adjacency matrix (network), A=[aij], was constructed using 
the following formula:
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expression values of gene i and j. cor indicates the Pearson 
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(b) as a weight to obtain the weighted adjacency aij. The soft-
thresholding parameter b of the power function is selected 
when the resulting co-expression network (adjacency matrix) 
best approximates a scale-free topology. In this study, a soft-
threshold power of b=6 was used.

Next, the topological overlap-based dissimilarity matrix was 
computed from the weighted adjacency matrix using the fol-
lowing formula:
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where ki indicates the total connectivity of gene i with all oth-
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Average linkage hierarchical clustering was applied using a dis-
similarity measure (1-topological overlap matrix) [24,25] and 
modules which were defined as branches of the resulting hier-
archical clustering tree were subsequently identified using the 
blockwise Modules R function in the WGCNA R package [26]. 
Each module was subsequently designated by a color. The gene 
expression profiles of each module were summarized. Moreover, 
functional enrichment analysis for the DEGs in each enriched 
module were carried out for identifying overrepresented GO 
terms and pathways using the DAVID Bioinformatics Resources 
[20]. A p value <0.05 was set as the criterion.

Screening of disease-related miRNAs and regulatory 
relationships analysis

The combinatorial Gene Regulatory Networks Builder (cGRNB; 
http://www.scbit.org/cgrnb/) is a freely available web server to 
help biologists to model and analyze conditional combinato-
rial gene regulatory networks through integrated engineering 
of gene expression datasets and seed-matching sequence in-
formation, providing combinatorial regulations involving miR-
NAs, TFs, and genes [27]. In this study, we downloaded pre-
dicted miRNA-gene interactions from cGRNB website [27] with 
197,906 regulatory pairs, including 699 mature miRNAs and 
8,646 genes. The target genes for a miRNA were defined as Mi. 
The DEGs enriched in the above modules using WGCNA were 
defined as N. Fisher’s exact test [28] was applied to measure 
the significance of the overlap between Mi and N. The algo-
rithm was as follows:
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where a is the number of genes that both belong to DEGs in 
the modules and the target genes of miRNAs; b is the number 
of genes that belong to the target genes of miRNAs, but not 
DEGs in the modules; c is the number of genes that belong to 
DEGs in the modules, but not belong to the target genes of 
miRNAs; d is the number of genes that neither belong to DEGs 
in the modules, nor the target genes of miRNAs. In addition, 
p<0.05 was set as the threshold to identify relevant miRNAs 
for DEGs in the selected modules. Moreover, the regulatory re-
lationships between the miRNAs and the DEGs in the modules 
were visualized using Cytoscape software [29].

Results

Data preprocessing and DEGs screening

After data preprocessing, 19,080 genes were obtained. The 
normalized data for the remaining genes represented similar 
distribution from sample to sample as shown in the box plot 
(Figure 1), indicating the reliability of data. Totally, 304 genes 

were differentially expressed between blood samples from 
ruptured IAs and samples from controls. There into, 167 DEGs 
were up-regulated and 137 were down-regulated in blood sam-
ples from ruptured IAs.

Functional and pathway enrichment analysis

After enrichment analysis, we found that the up-regulated 
genes were only enriched in six over-represented GO biolog-
ical process (BP) terms that were mainly associated with im-
mune response, including inflammatory response, defense 
response, response to wounding, innate immune response, 
immune response, and detection of biotic stimulus. By con-
trast, the down-regulated DEGs were enriched in different GO 
terms and pathways. Table 1 represented the top 10 GO terms 
and pathways (ranged by FDR value) that were enriched by 
the down-regulated genes. The results showed that the down-
regulated DEGs were mainly concerned with structure of ribo-
some and translation.

Data before normalization

Data after normalization
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Figure 1. �A box plot of normalized data for differentially expressed genes (DEGs). (A) Data before normalization. (B) Data after 
normalization.
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Identification of gene co-expression modules

WGCNA analysis of the DEGs and the following module selec-
tion produced six modules significantly altered between rup-
tured IAs and controls. As shown in Table 2, four out of six 
modules were enriched by up-regulated genes, whereas genes 
distributed in two modules were down-regulated. To under-
stand the biological meaning of the modules of up-regulated 
genes and the modules of down-regulated genes, we carried 
out functional enrichment analyses. From the results of enrich-
ment analysis, we found that the blue module of up-regulated 
genes was mainly linked with immune response and anti-apop-
tosis process. The brown module of up-regulated genes was 
mainly involved in chromatin assembly and the yellow mod-
ule of up-regulated genes was correlated with interleukin-1 
receptor activity. While the turquoise module of up-regulated 
genes was concerned with inflammatory response. On the oth-
er hand, the blue module of down-regulated genes was main-
ly enriched in cytolysis and cellular defense response. The tur-
quoise module of down-regulated genes was mainly involved 
in the translation process. Table 2 only shows the top two GO 
terms or pathways that were ranked by p values. Collectively, 
the functions of the blue, yellow, and turquoise modules of 
up-regulated genes were similar, which were connected with 
immune response, and had differences with the functions of 
the brown module of up-regulated genes. The two modules 
of down-regulated genes were enriched in different function-
al categories.

Screening of ruptured IAs-related miRNAs

Totally, we identified miRNAs for only three modules (blue, yel-
low, and turquoise) with up-regulated genes of the identified 

6 functional modules (Table 3, Figure 2). We found that miR-
1304 was significantly enriched with less p value. Among the 
significant miRNAs, miR-33b could regulate up-regulated genes 
of two modules (yellow module and turquoise module), such 
as insulin receptor substrate 2 (IRS2), potassium voltage-gat-
ed channel subfamily J member 2 (KCNJ2), and monoamine 
oxidase A (MAOA). The up-regulated target genes in these two 
modules for miR-33b ate represented in Figure 3.

Discussion

In this study, a total of 304 DEGs (167 up-regulated and 137 
down-regulated genes) were screened for in blood samples 
from patients with ruptured IAs compared with those from 
controls. Functional enrichment analysis showed that the up-
regulated genes were mainly associated with immune response 
and the down-regulated DEGs were mainly concerned with 
structure of ribosome and translation. Besides, six functional 
modules were significantly identified, including four modules 
enriched by up-regulated genes and two modules enriched 
by down-regulated genes. Therein, the blue, yellow, and tur-
quoise modules of up-regulated genes were all linked with 
immune response. Additionally, 16 miRNAs were predicted to 
regulate DEGs in the three modules associated with immune 
response, such as hsa-miR-1304, hsa-miR-33b, hsa-miR-125b, 
and hsa-miR-125a-5p.

MiR-1304 is a primate-specific miRNA which has low expres-
sion in human brain cortex, peripheral blood, and embryonic 
stem cells [30,31]. Very few reports are available on the exact 
roles of miR-1304 to date. Recently, the study of Li et al. dem-
onstrated that miR-1304 suppressed cell growth and survival 

Category Term FDR

GOTERM_BP_FAT GO: 0006414~translational elongation 1.14E-20

KEGG_PATHWAY hsa03010: Ribosome 1.11E-15

GOTERM_MF_FAT GO: 0003735~structural constituent of ribosome 6.80E-14

GOTERM_CC_FAT GO: 0022626~cytosolic ribosome 2.66E-13

GOTERM_CC_FAT GO: 0033279~ribosomal subunit 5.33E-13

GOTERM_CC_FAT GO: 0005840~ribosome 2.24E-11

GOTERM_BP_FAT GO: 0006412~translation 8.18E-11

GOTERM_CC_FAT GO: 0044445~cytosolic part 3.14E-09

GOTERM_MF_FAT GO: 0005198~structural molecule activity 1.64E-07

GOTERM_CC_FAT GO: 0030529~ribonucleoprotein complex 3.71E-07

Table 1. Top 10 gene ontology (GO) terms and pathways enriched by the down-regulated genes.

The top 10 GO terms and pathways were ranged by FDR value. BP – biological process; CC – cellular component; MF – molecular 
function; KEGG – Kyoto Encyclopedia of Genes and Genomes; FDR – false discovery rate.
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miRNA Module P value Up.DEGs_targets

hsa-miR-1304 Blue 0.003169 CNIH4, CYP1B1, SH3GLB1, YOD1

hsa-miR-373* Blue 0.004342 PFKFB3, SH3GLB1

hsa-miR-514 Blue 0.012935 ADM, SH3GLB1, YOD1

hsa-miR-33b Yellow 0.014884 IRS2, KLHL8, MAOA

hsa-miR-568 Turquoise 0.022219
ACSL1, B4GALT5, CREB5, DUSP1, ETS2, 
GAS7, KLHL2, MEGF9, PHF21A, SIPA1L2

hsa-miR-139-3p Turquoise 0.023429 BASP1, GAS7

hsa-miR-621 Blue 0.023761 PFKFB3, YOD1

hsa-miR-125b Turquoise 0.024502
CREB5, FAM126B, KIF1B, MEGF9, 
MTF1, RNF144B, ZNF281

hsa-miR-575 Yellow 0.033528 IRS2, MANSC1

hsa-miR-125a-5p Turquoise 0.033995
CREB5, FAM126B, KIF1B, MEGF9, 
MTF1, RNF144B, ZNF281

hsa-miR-33b Turquoise 0.03954
FAM126B, KCNJ2, KIF1B, PCNX, 
RNF144B, ZNF281

hsa-miR-1197 Yellow 0.039541 DAAM2, MAOA

hsa-miR-432* Turquoise 0.041785 ETS2, RNF144B, ST3GAL4

hsa-miR-1234 Turquoise 0.046918 CEBPB, ZNF281

hsa-miR-545 Blue 0.04737 ADM, CNIH4, SH3GLB1, YOD1

hsa-miR-1208 Yellow 0.048709 DAAM2, IRS2

Table 3. The predicted miRNAs that regulated the 3 modules of up-regulated genes.

Module 
label

Number of 
genes

Function P value

Up_modules

Blue 28 GO: 0000267~cell fraction 0.00278

GO: 0019864~IgG binding 0.011041

Brown 21 GO: 0006334~nucleosome assembly 0.0037

GO: 0031497~chromatin assembly 0.004

Turquoise 95 GO: 0045087~innate immune response 1.42E-05

GO: 0006954~inflammatory response 1.00E-04

Yellow 20 GO: 0004908~interleukin-1 receptor activity 0.0085

GO: 0019966~interleukin-1 binding 0.012

Down_modules

Blue 16 GO: 0019835~cytolysis 1.70E-04

GO: 0006968~cellular defense response 0.00159

Turquoise 119 GO: 0006414~translational elongation 2.30E-25

hsa03010: Ribosome 5.60E-20

Table 2. The top 2 GO terms or pathways enriched by DEGs in the modules.

Up_modules represent the modules enriched by up-regulated genes. Down_modules represent the modules enriched by the down-
regulated genes.

4523
Indexed in:  [Current Contents/Clinical Medicine]  [SCI Expanded]  [ISI Alerting System]   
[ISI Journals Master List]  [Index Medicus/MEDLINE]  [EMBASE/Excerpta Medica]   
[Chemical Abstracts/CAS]  [Index Copernicus]

Bo L. et al.: 
Key genes and miRNAs in ruptured IAs
© Med Sci Monit, 2017; 23: 4518-4525

LAB/IN VITRO RESEARCH

This work is licensed under Creative Common Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)



through inducing cell apoptosis and cell cycle arrest in non-
small cell lung cancer [32]. Evidence reports that structural de-
generation of aortic tissue with apoptosis of vascular smooth 
muscle cells (VSMCs) contributes to aneurysmal formation. 
In the present study, we found that miR-1304 could regulate 
the up-regulated genes in the blue module with most signifi-
cance. A single miRNA may regulate several genes as its targets, 
while one gene may be targeted by many miRNAs. Although 
the exact role of miR-1304 is unclear, it is reasonable to con-
clude that miR-1304 may be involved in the pathogenesis of 
IAs possibly by affecting VSMCs apoptosis.

In this study, miR-33b could regulate the up-regulated genes 
of two modules (yellow module and turquoise module), such 
as IRS2, and KCNJ2. Martino et al. indicated that circulating 
miR-33b were up-regulated in familial hypercholesterolemia 
in pediatric age cases [33]. In addition, hypercholesterolemia 
was identified to be risk factor for aneurysms [34]. Thus, we 
suggested that miR-33b may play a critical role in the devel-
opment and progression of IAs. In addition, IRS2 encodes the 
insulin receptor substrate 2, a cytoplasmic signaling molecule 
which mediates effects of insulin-like growth factor 1, insulin, 
and other cytokines [35]. A study demonstrated that insulin 
treatment for glycemic control was safe in patients with aneu-
rysmal SAH [36]. The protein encoded by KCNJ2 is an integral 
membrane protein and inward-rectifier type potassium chan-
nel [37]. Additionally, activation of calcium-activated potassi-
um channels and ATP-sensitive potassium channels may be a 
major mechanism which regulates vasodilatation of cerebral 
arteries and arterioles in response to some stimuli [38]. Taken 
together, these data strongly suggested that miR-33b may be 

essential in the development and progression of IAs by reg-
ulating several genes, such as IRS2 and KCNJ2. However, fur-
ther studies are warranted to verify these findings.

Our study still had some limitations. First, the sample size was 
relatively small and further investigations with a larger size 
of samples are needed. Second, data cross-check and exper-
imental verifications were not included in this study. We will 
further strengthen our study by further experimental verifi-
cations in the future.

Conclusions

This study suggested that several genes and miRNAs (such 
as miR-1304, miR-33b, IRS2 and KCNJ2) may take part in the 
pathogenesis of IAs. MiR-1304 may be involved in the patho-
genesis of IAs possibly by affecting VSMCs apoptosis. In addi-
tion, miR-33b may be essential in the development and pro-
gression of IAs by regulating several genes such as IRS2 and 
KCNJ2. This preliminary work may be a valuable resource, af-
ter further characterization in a wider sample set, for designing 
future studies of both the pathogenesis and pathology of IAs.
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