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Transcriptome profiling enables discovery of gene networks that are altered in alcoholic 
brains. This technique has revealed involvement of the brain’s neuroimmune system 
in regulating alcohol abuse and dependence, and has provided potential therapeutic 
targets. In this review, we discuss Toll-like-receptor pathways, hypothesized to be key 
players in many stages of the alcohol addiction cycle. The growing appreciation of 
the neuroimmune system’s involvement in alcoholism has also led to consideration of 
crucial roles for glial cells, including astrocytes and microglia, in the brain’s response to 
alcohol abuse. We discuss current knowledge and hypotheses on the roles that specific 
neuroimmune cell types may play in addiction. Current strategies for repurposing 
US FDA-approved drugs for the treatment of alcohol use disorders are also discussed. 
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Gene expression profiling is a powerful tool 
for defining key regulatory genes as well as 
molecular targets for potential drug devel-
opment or repurposing. In particular, gene 
expression profiling has been instrumental 
in understanding how the neuroimmune sys-
tem contributes to various aspects of alcohol 
dependence. Some of the first microarray 
analyses of cortical samples from human 
alcoholic brain identified differentially 
expressed genes associated with alcohol use 
disorder (AUD)  [1–9]. Immune-related genes 
emerged as an unexpected category of abun-
dantly changed genes in alcoholics  [3]. This 
discovery catalyzed investigation into the 
role of immune signaling in alcohol depen-
dence. Many of the immune-related genes 
were related to inflammatory responses such 
as production of cytokines, chemokines, glial 
activation and signaling components of the 
NF-κB inflammatory pathway  [5]. Comple-
menting the gene expression data, NF-κB and 
its p50 homodimer were shown to be upregu-
lated in human alcoholic frontal cortex [10]. In 
addition, human alcoholics show positive cor-

relations between alcohol craving and serum 
levels of lipopolysaccharides, peptidoglycans, 
cytokines and chemokines (e.g., IL-8, IL-1β), 
suggesting that activation of the innate 
immune system may regulate alcohol craving 
and consumption [11–13]. Knockout of some 
of the immune genes nominated by the gene 
expression studies (B2m, Cd14, Il1rn, Il6, Ctss 
and Ctsf ) reduced ethanol consumption and 
preference in the 24-h two-bottle choice test 
in mice and provided behavioral validation 
for these candidate genes [14]. In contrast, the 
immune activator lipopolysaccharide (LPS) 
increased ethanol consumption in mice  [15], 
indicating that enhancement of immune sig-
naling is associated with increased drinking 
as suggested in humans. These preclinical and 
clinical evidences support the hypothesis that 
activation of inflammatory pathways is a key 
process in alcohol dependence and further 
implicate neuroimmune pathways as relevant 
targets to treat AUD.

In brain, alcohol induces neuroinflamma-
tory and neurodegenerative changes partially 
mediated by innate immune activation [16,17]. 
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The TLR pathway, which activates NF-κB and leads 
to the secretion of pro-inflammatory cytokines and 
chemokines, has been suggested to be a key regulator of 
alcohol-induced innate immune activation. It remains 
unclear which cell types are mediating this response 
in the CNS. Neurons, astrocytes and microglia release 
and respond to neuroimmune signaling components. 
To determine if cell-type specific modulation of neu-
roimmune signaling is important in alcohol depen-
dence, it is necessary to understand the transcriptional 
changes that occur in each cell type after ethanol expo-
sure. Transcriptomics has already been used to iden-
tify potential drugs for treating AUD  [18], and tran-
scriptome profiling in different cell types after ethanol 
exposure will further define discrete cellular effects in 
the brain.

The mechanisms by which alcohol triggers inflam-
mation in the brain are only partially understood, 
complicated in part by the interplay between periph-
eral and central immune activation. Alcohol con-
sumption increases intestinal permeability and levels 
of LPS, resulting in peripheral and central immune 
activation  [11,12,15,19]. Moreover, the extent to which 
stress plays a role in central immune activation is 
another complicating factor. Literature has shown 
that stress increases brain cytokines which poten-
tially act as neuromodulators of alcohol consumption 
(for review see  [16]). An additional consideration is 
that withdrawal from alcohol is an extremely stress-
ful event, causing stress-induced increases in CRF as 
well as cytokines [17]. Because of the potential effects 
of stress on central immune activation, the drinking 
studies cited in this review focus on ethanol adminis-
tration (e.g., alcohol fed diet, two-bottle choice tests, 
operant self-administration) under non-stressful con-
ditions, unless otherwise noted. Additionally, levels 
of cytokines and other neuroimmune mediators mea-
sured during alcohol withdrawal are not discussed 
here.

We will discuss the TLR neuroimmune pathway 
and its validated genomic targets as well as the poten-
tial for identifying new drug targets that are TLR- and 
cell-type specific. We also review alcohol-induced tran-
scriptional changes in astrocytes, microglia and neu-
rons and their role as immune regulators and cellular 
targets for future drug development. Finally, we dis-
cuss using cutting-edge technology, such as the Library 
of Integrated Network-based Cellular Signatures 
(LINCS) program and other genomics strategies, to 
predict drugs for the treatment of alcohol dependence. 
Although these techniques are still in their infancy, 
they provide promising examples of the future of drug 
repurposing as a strategy for advancing therapeutic 
options for AUD.

Toll-like receptors
TLRs & immune responses
Innate immunity is the body’s first defense against 
infection and is responsible for most peripheral and 
central inflammatory responses. Acute inflammatory 
stressors induce a large number of genomic/transcrip-
tional responses, and unlike adaptive immunity, do 
not require genetic rearrangement to mount an inflam-
matory response [20]. Cells of the innate immune sys-
tem rely on germ-line encoded receptors that recognize 
broadly defined molecular motifs known as pathogen-
associated molecular patterns (PAMPs). Multiple 
receptor families are comprised of transmembrane 
pattern-recognition receptors (PRRs), which initiate 
inflammatory signaling in response to a wide variety of 
PAMPs. TLRs represent a class of PRRs that are criti-
cal for both innate immune reactions to pathogens and 
for initiating adaptive immunity [20]. Most TLRs rely 
on homodimerization to achieve specific agonist recog
nition  [21]. In addition to detecting molecular motifs 
associated with microorganisms, TLRs recognize 
endogenous ligands referred to as damage- (or danger-) 
associated molecular patterns (DAMPs), including 
β-defensin, heat shock proteins 60 and 70, stathmin, 
HMGB1 and reactive oxygen species [22,23]. The recog-
nition of specific PAMPs or DAMPs leads to receptor 
activation and initiation of multiple signaling cascades, 
eventually resulting in NF-κB pathway activation and 
immune-related gene expression changes.

There are currently 11 known TLRs in humans and 
13 in mice, and each receptor responds to specific classes 
of pathogens (Figure 1). TLRs 1–2, 4–6 and 11–13 are 
localized on the cell surface, whereas TLRs 3 and 7–9 
are found on the endosome or lysosome compartments 
in the endoplasmic reticulum  [24,25]. TLR2 recognizes 
lipoproteins, peptidoglycan (PGN) and dectin, and 
TLR2 dimerization with TLR1 or TLR6 allows for 
the discrimination between triacylated and diacylated 
lipoproteins, respectively. LPS primarily targets TLR4. 
TLR2 and TLR4 can also form oligomers, which recog
nize a broader range of microbial motifs  [26]. TLR5 
senses bacterial flagella and is commonly found in the 
intestine  [27]. TLR11 responds to bacteria associated 
with urinary tract infections, such as uropathogenic 
Escherichia coli and a profilin-like protein from the 
parasite Toxoplasma gondii [28]. TLRs 3 and 7–9 recog-
nize intracellular pathogen-derived nucleic acid motifs 
such as dsRNA, ssRNA and even mRNA from viruses, 
pathogens or infected cells [29]. TLR9 recognizes non-
methylated CpG islands of bacterial and viral mRNAs. 
PAMPs for TLRs 10, 12 and 13 are not yet well estab-
lished. Recent evidence suggests that TLR10 may act 
as a modulatory receptor with mainly inhibitory effects 
by forming a heterodimer with TLR2 [30]. TLR12 was 
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Figure 1.  Toll-like receptors initiate inflammatory responses via two intracellular signaling transduction cascades.
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hypothesized to form a heterodimer with TLR11 to 
recognize a profilin-like protein from T. gondii [31].

TLRs initiate inflammatory responses via two intra-
cellular signaling transduction cascades: MyD88-
dependent pathway and MyD88-independent pathway. 
As shown in Figure 1, TLRs are activated by binding 
of PAMPs or DAMPs to initiate an innate immune 
response. After binding, all TLRs (except for TLR3) 
utilize the MyD88-dependent pathway, via recruit-
ment of adaptor proteins in the cytoplasmic Toll/inter-
leukin receptor (TIR) domain (MyD88, IRAK4 and 
IRAK) to activate NF-κB  [32]. In contrast, TLR3 
recruits TIR-domain-containing adaptor-inducing 
IFN-β (TRIF) and bifurcates to activate either type-I 
interferons or NF-κB  [32]. Interestingly, TLR4 can 
also induce inflammatory responses via the MyD88-
independent pathway by recruiting the TLR-adaptor 
proteins TRAM and TRIF [33].

TLRs & alcohol exposure
Differential expression of TLRs 1, 6 and 7, as well 
as genes downstream of NF-κB (e.g.,  Casp8, Fadd, 
Ikbkb, Kbkg, Tradd, Map3k1), were observed in mice 
predisposed to drink ethanol  [34]. Microarray analy-
sis of gene expression in Drosophila showed ethanol 
increases expression of genes in the Toll pathway [35,36], 
as seen in vertebrates. An increase in mRNA expres-
sion of Tlr 1, 2, 4 and 6–9 was detected in the liver of 
mice fed an ethanol-containing diet for 10 days  [37]. 
Additionally, mice consuming ethanol for 5 weeks 
showed increased Tlr 2, 4 and 9 mRNA in the cere
bellum [38]. Ten days of binge-like drinking increased 
brain mRNA and protein expression of TLRs 2–4 in 
rats [39]. Further support comes from study of human 
postmortem brain showing increased protein expres-
sion of TLRs 2–4, which correlated with lifetime 
alcohol consumption [39].
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Despite the evidence that TLRs are key regulators 
of immune activity in response to alcohol, only a few 
studies have examined the role of TLRs in regulat-
ing behavioral responses to alcohol. Most research has 
focused on how ethanol changes TLR expression, in 
particular TLR4, due to its apparent ability to pro-
tect against ethanol-induced changes in immune gene 
expression. Knockout of TLR4 or its downstream sig-
naling component, MYD88, as well as TLR4 antago-
nism by (+)-naloxone in mice decreased the duration 
of loss of righting reflex and motor impairment recov-
ery time induced by ethanol  [40]. A naturally TLR4-
deficient mouse model C3H/HeJ showed a decrease in 
ethanol consumption compared with a control strain 
with a functional TLR4 receptor [41], although global 
knockout of TLR4 did not reduce ethanol consump-
tion  [42]. These studies highlight the potential role of 
TLR4 in ethanol’s behavioral responses; however, it 
should be noted that these results cannot distinguish 
between peripheral and central TLR involvement. To 
determine if the immune targets in brain can directly 
modulate behavior, researchers injected siRNA into 
brain regions involved in alcohol abuse and monitored 
ethanol consumption. Injection of Tlr4 siRNA into 
the central amygdala of alcohol-preferring rats reduced 
operant administration of ethanol but not sucrose [43]. 
Furthermore, infusion of amplicons for Tlr4 or Mcp1 
siRNA into the central amygdala or ventral tegmental 
area inhibited target gene expression and altered binge-
like drinking behavior [44,45]. Amplicons for scrambled 
siRNA did not inhibit TLR4 or MCP-1 expression or 
reduce binge drinking, suggesting that a specific neu-
ronal TLR4/MCP-1 signal may regulate initiation of 
voluntary alcohol self-administration [44].

Other types of TLRs may also regulate inflam-
matory responses to alcohol. In vitro studies showed 
that acute ethanol treatment enhances pro-inflamma-
tory cytokine production in response to a variety of 
TLR agonists. For example, acute ethanol enhanced 
Poly I:C (TLR3 ligand), PGN (TLR2 ligand) and 
microbial methylated DNA CpG (TLR9 ligand) stim-
ulated TNF-α, IL-6 and IL-12 synthesis in murine 
macrophages  [46,47]. In mouse models of alcoholic 
liver disease, activation of TLR3 attenuated alcoholic 
liver injury by stimulating Kupffer and stellate cells 
to produce the anti-inflammatory cytokine IL-10 [48]. 
However, ethanol-induced TLR3 activation can also 
have neurodegenerative effects. For example, chronic 
ethanol exposure combined with TLR3 stimulation 
via Poly I:C led to an increase in pro-inflammatory 
cytokines in rat brain (e.g. TNF-α, IL-6, IL-1β and 
MCP-1) [49,50]. It should be noted that in Qin et al. [50], 
ethanol was administered intragastrically which could 
cause stress-induced increases in cytokine responses 

(for review see  [16]). Similar to TLR4, TLR2 may 
have a brain region-specific effect on alcohol-induced 
immune responses. Mice chronically treated with eth-
anol for 5 months showed increased levels of cytokines 
and chemokines in the striatum; however, there was 
no change in TLR2 knockout mice, suggesting that 
TLR2 also regulates ethanol-induced pro-inflamma-
tory gene expression [51]. Elimination of TLR2 in the 
striatum also appeared to protect against abstinence-
induced anxiogenic behavior, evaluated by elevated 
plus-maze and dark and light box tests [51]. These stud-
ies suggest that TLR signaling is critical for alcohol-
induced cytokine production and represent potential 
targets for regulating behavioral responses to alcohol.

TLR cell-type specificity & alcohol modulation
The cellular specificity of TLRs is an important consid-
eration for developing drug targets that control alcohol-
induced inflammatory gene expression. As shown in 
Figure 2, the expression of TLRs and related signaling 
proteins has been demonstrated in all cell types, with the 
strongest expression in glia (microglia, astrocytes and 
oligodendrocytes) and more limited expression in neu-
rons [52–55]. Consequently, the majority of studies have 
examined how ethanol activates TLRs in glia. Ethanol 
directly activates microglia and astrocytes, resulting in 
stimulation of NF-κB, MAPKs, MyD88-independent 
pathways and inflammatory responses  [42,55–58]. How-
ever, neurons likely play a regulatory role in TLR 
responses to alcohol-induced inflammation, most 
likely by stimulating microglia. For example, neuronal 
stimulation causes release of HMGB1, an endogenous 
ligand for TLR2, TLR4 and RAGE that has been 
shown to increase NF-κB-mediated transcription of 
pro-inflammatory cytokines [39,59].

Chronic alcohol abuse also activates microglia in the 
orbital frontal cortex of alcoholics and in the cortex of 
ethanol-treated mice [49]. In microglial cultures, etha-
nol upregulates TLR2 and TLR4 expression, causing 
increased production of inflammatory mediators  [60]. 
Moreover, TLR4 expression and TLR2/4 associa-
tion in cultured microglia appear to be necessary for 
alcohol-induced microglia activation and produc-
tion of inflammatory mediators  [38,57,60]. Facci  et  al. 
(2014) demonstrated that TLR 2-4 endogenous 
ligands prime microglia (but not astrocytes) across 
the central nervous system for ATP-dependent IL-1β 
release  [61]. Microglia-specific priming may be linked 
to the increased IL-1β that is observed in ethanol-fed 
mice and human alcoholic frontal cortex  [38], provid-
ing evidence that microglia are necessary mediators of 
alcohol-induced inflammatory responses.

Additionally, astrocytes may be important in TLR-
mediated inflammatory signaling, although fewer 
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Figure 2.  Alcohol-sensitive expression of Toll-like receptors and cell-type specificity. 
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studies to date have examined their specific role after 
chronic alcohol exposure. Ethanol treatment activated 
MAPK, NF-κB and AP-1 inflammatory pathways 
via a TLR4-dependent mechanism in cultured astro-
cytes  [55]. Furthermore, ethanol-stimulated astrocytes 
produced IL-1R1 by activating the same inflamma-
tory mediators and signaling cascades observed in the 
cerebral cortex of ethanol-fed animals  [62]. Alfonso-
Loeches  et  al.  [63] linked astrocyte-mediated inflam-
matory responses to the TLR pathway by showing 
that TLR4 is critical for ethanol-induced inflamma-
tory signaling. This group demonstrated that siRNA-
mediated knockdown of TLR4 abolished alcohol acti-
vation of MAPK and NF-κB responses, which was also 
observed in TLR4-deficient cultures  [63]. The studies 
above support the pivotal role of TLRs in astrocyte and 
microglia activation in ethanol-induced inflammation.

TLR-specific drugs alter alcohol consumption
Because alcohol activates astrocytes and microglia via 
TLR4 signaling, drug targets may require cell-type as 
well as TLR-specificity. One potential drug already 

being investigated is (+)-naloxone, which inhibits 
TLR4-mediated microglial activation and decreases 
proinflammatory cytokine expression  [63]. Another 
microglia-related drug is minocycline, which reduces 
microglial and neuroimmune activation  [64]. Mino-
cycline also decreases ethanol consumption, albeit by 
an unknown mechanism  [65]. It is hypothesized that 
the reduced drinking occurs via neuroimmune sig-
naling because minocycline reduces mRNA expres-
sion of Il1β, Il6 and other cytokines linked to alco-
hol abuse in mouse cortex and hippocampus  [66]. 
However, it remains unknown if minocycline could 
reduce cytokine expression via a TLR-dependent 
pathway. Phosphodiesterase-4 (PDE4) inhibition is 
also of interest because PDE4 inhibitors reduce alco-
hol consumption  [67–69]. In addition, cAMP-specific 
PDE4 regulates LPS-TLR4 induced inflammatory 
cytokine expression in mouse models of liver fibrosis, 
a condition commonly attributed to alcohol abuse [70]. 
Finally, PDE4 inhibitors have been shown to reduce 
NF-κB binding, leading to decreased inflammatory 
cytokine production in macrophages  [71]. A promis-
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ing preliminary study by Avila et al.  [72] showed that 
alcohol-induced activation of astrocytes and microglia 
in mouse brain was attenuated in PDE4b knockout 
mice and by pharmacological inhibition using a PDE4 
inhibitor (rolipram, 5 mg/kg). A remaining question is 
if cell-specific TLR responses are critical to behaviors 
related to alcohol consumption. Further investigation 
of TLR- and cell-type specificity will be needed to 
determine if these are relevant molecular targets with 
therapeutic potential.

Cell-type specificity
Astrocytes
Alcohol-induced molecular changes in astrocytes
Astrocytes have diverse roles in the CNS, many of which 
are still being elucidated. As discussed earlier for TLR 
signaling, astrocytes play a substantial role in immune 
responses by producing and secreting inflammatory 
modulators. In addition, they are highly involved in 
neurotransmitter uptake and recycling. Astrocytes 
can also communicate with each other and influence 
neuronal functioning through Ca2+ signaling.

Chronic alcohol causes molecular changes in astro-
cytes that could affect their function. Some studies sug-
gest alcohol dependence is related to a hyperexcitable 
state caused by excess extracellular glutamate  [73]. 
Expression changes in astrocyte glutamate transport-
ers are observed in alcoholics and alcohol-exposed 
rodents  [74,75]. Upregulation of glutamate transporters 
in postmortem alcoholic brain could be a sign of com-
pensation for increased levels of extracellular glutamate. 
In cultured astrocytes, ethanol exposure alters the dis-
tribution of the glutamate transporter GLAST, shifting 
GLAST expression from the cytoplasm to the plasma 
membrane  [76]. Ethanol-treated rats display lower lev-
els of the astrocyte glutamate transporter GLT-1  [77]. 
Modulating glutamate transporter levels or activity 
alters drinking behavior. Blocking astrocytic glutamate 
uptake via GLT-1 attenuates binge-drinking behavior 
in mice  [78]. Adenosine-mediated glutamate signaling 
has also been implicated in alcohol abuse. Deletion or 
knockdown of ENT1, an adenosine transporter, leads to 
reduced expression of GLT-1 and an astrocyte-specific 
water channel, AQP4. Treatment with the β-lactam 
antibiotic ceftriaxone, a potent inducer of glutamate 
uptake in astrocytes, increases GLT-1 expression and 
decreases ethanol drinking in mice, an effect dependent 
on AQP4 expression [79]. Ceftriaxone blocks glutamate 
increases in the extracellular space and increases gluta-
mine synthetase activity in the nucleus accumbens [77]. 
It is effective in reducing relapse drinking in alcohol-
preferring rats after long-term ethanol dependence [80] 
and in attenuating withdrawal  [81]. These studies all 
point to a central role for astrocyte glutamate uptake in 

drinking behavior. Ceftriaxone, or similar compounds 
that target GLT-1, could potentially be used to treat 
alcohol withdrawal and other AUD-related behaviors. 
Baclofen, which has anticraving effects in patients with 
alcohol dependence  [82], also affects glutamate trans-
porter expression, as it prevented changes in subcellu-
lar localization of GLAST in cultured alcohol-treated 
astrocytes. This indicates a possible link between 
astrocytic glutamate transport and baclofen’s anti-
craving effects  [76]. However, other non-glutamatergic 
responses in astrocytes could also be modulated by 
long-term alcohol exposure and play a role in alcohol 
dependence. Astrocytes thus appear to be a viable cel-
lular target for some alcohol-related drugs, supporting 
our earlier point of the relevance of examining cell-type 
specificity in alcohol-neuroimmune signaling.

Alcohol induces reactive astrocytes
When astrocytes respond to a pathological condition 
in the brain, they exhibit an evolutionarily conserved 
phenotype known as astrocyte reactivity. This response 
is characterized by upregulation of the intermediate 
filament and astrocyte-specific marker, GFAP, as well 
as cellular hypertrophy and elongated processes. Astro-
cyte reactivity has been observed in multiple brain 
regions, including the frontal cortex, hippocampus and 
cerebellum of ethanol-exposed mice and rats [49,83–88]. 
Differences in GFAP-positive astrocyte distributions 
in human brains have also been shown  [89]. Alcohol-
fed mice show increased Gfap mRNA  [38]. Vimentin, 
another intermediate filament and indicator of astro-
cyte reactivity, was highly upregulated in a binge model 
of alcohol drinking in rats and was associated with 
alcohol-induced cell death [1]. Although the molecular, 
functional and behavioral consequences of alcohol-
induced astrocyte reactivity are unknown, evidence 
suggests that this reactivity is commonly occurring in 
specific brain regions following alcohol exposure.

Astrocyte reactivity involves transcriptional induc-
tion triggered by signaling cascades that can result in 
long-lasting functional adaptations [90], which may be 
either beneficial or detrimental to neuronal function-
ing. For example, in the event of a traumatic brain 
injury, reactive astrocytes play both helpful and harm-
ful roles. They can prevent infections and spread of cel-
lular damage by the generation of a barrier across the 
injured area known as a glial scar. However, they can 
also block neuronal regeneration by secreting growth-
inhibitory molecules to prevent axonal extensions. 
Reactive astrocytes can alter metabolism, disrupt the 
blood–brain barrier and alter ion and neurotransmitter 
uptake. They have the capacity to release various mole-
cules that affect nearby cells in many ways. Many sub-
types of reactive astrocytes exist, all precisely altering 
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their function to adjust to their unique pathological 
environment. For example, acute brain injury induces 
a response distinct from that of astrocytes affected by 
slowly progressing neurodegenerative disorders; how-
ever, both types of conditions upregulate GFAP and 
exhibit hypertrophic cell bodies and processes  [90]. 
Unique groups of genes are altered depending on the 
different models of astrocyte reactivity. In a study 
comparing gene expression changes in isolated reac-
tive astrocytes induced by two distinct models (LPS 
injection and experimentally-induced stroke), 50% of 
the differential expression was specific to the injury 
model [91]. Many of the top upregulated genes in LPS-
treated astrocytes also show differential expression in 
existing gene expression datasets from human alco-
holics and alcohol-exposed mice from our laboratory 
(unpublished), indicating that alcohol-induced reactiv-
ity may overlap with functional changes in astrocytes 
induced by immune perturbation.

Alcohol-exposed astrocytes as immune regulators
Astrocyte reactivity and accompanying changes in 
expression of immune-related genes can cause release 
of pro- or anti-inflammatory mediators, depending on 
the injury or disease context  [92]. Some studies have 
identified the specific inflammatory mediators released 
in response to ethanol. For example, acute ethanol 
treatment of cultured astrocytes causes upregulation of 
iNOS and COX-2  [56], and chronic ethanol activates 
the NLRP3 inflammasome in astrocytes from cere-
bral cortex and in primary cultures of astrocytes  [93]. 
Ethanol also promotes TLR4 signaling in astrocytes 
and microglia, which leads to upregulation of inflam-
matory cytokines, including IL-1β, TNF-α, IL-6, 
iNOS and COX-2  [63]. Knockout of TLR4 partially 
prevents the upregulation of GFAP observed after 
chronic ethanol-stimulated inflammation, indicating 
that TLR4 plays a role but is not solely responsible for 
inducing astrocyte reactivity [63].

It is unclear how astrocyte-specific immune signal-
ing regulates drinking and the development of alco-
hol dependence. Expression of Ccl2, an inflammatory 
chemokine, is increased in alcohol-exposed tissue [84]. 
Astrocytes are a prime source of CCL2, and immune 
stimulation can cause striking upregulation of Ccl2 in 
astrocytes  [94]. Astrocyte-specific Ccl2 overexpression 
in the hippocampus reduces ethanol-induced depres-
sion of long-term potentiation  [95]. Another study 
shows that Ccl2 and other inflammatory cytokines 
are increased in specific brain regions of adult, but not 
adolescent mice, after ethanol gavage treatment  [84]. 
Immune-related changes that depend upon sex, 
including sexually dimorphic cytokine signaling, have 
been reported in astrocytes after alcohol exposure [96]. 

Thus, several factors may regulate distinct inflamma-
tory mediators that influence the role of astrocytes in 
alcohol-neuroimmune responses.

Astrocyte Ca2+ signaling in drinking behavior
Secretion of neurotransmitters and other factors can 
activate astrocytic G-protein coupled receptors (GPCR), 
leading to release of intracellular Ca2+. Through Ca2+ 
waves, astrocytes can communicate with each other 
and influence neuronal activity. Astrocyte-neuronal 
Ca2+ signaling may be an important mechanism that 
is modulated by alcohol exposure. Studies have already 
shown that astrocyte activity can affect motivation 
for alcohol. The use of designer receptors activated by 
designer drugs (DREADDs) in nucleus accumbens 
core astrocytes led to the discovery that increased Ca2+ 
activity through DREADD activation reduces motiva-
tion for ethanol after a 3-week period of abstinence [88]. 
Blocking gap-junction hemichannels, through which 
astrocytes can propagate Ca2+ waves and release other 
molecules important for cell-to-cell communica-
tion [97], leads to increased motivation to self-administer 
ethanol after 3 weeks of abstinence. This indicates that 
modulating the activity of discrete populations of astro-
cytes could alter synaptic plasticity and influence drug-
seeking behavior. Alcohol may also cause specific GPCR 
expression changes, altering Ca2+ signaling and astro-
cyte responses. Inflammatory mediators such as LPS, 
TGF-β1 and IFN-γ induce notable expression changes 
in several GPCRs, effector proteins and downstream 
signal transduction pathways in cultured astrocytes [98]. 
Considering that the effects of neuroimmune activation 
are still relatively unexplored and neuroimmune media-
tors affect many pathways and cellular processes, it may 
be useful to consider targeting more discrete immune 
signaling processes. For example, if alcohol-induced 
alterations in astrocyte Ca2+ signaling regulate alcohol 
consumption, then targeting astrocyte-specific GPCRs 
could be a useful therapeutic tool.

Alcohol-responsive transcriptome in astrocytes
There are dynamic gene expression and transcriptional 
changes in reactive astrocytes in the face of immune 
modulation and alcohol exposure, and knowledge of 
the networks and pathways could reveal targeted cel-
lular therapies for alcohol dependence. Microarray 
studies of postmortem frontal cortex from alcoholic 
patients showed altered expression of astrocyte-specific 
genes  [9,99] and genes generally associated with glial 
function [3]. Astrocytes express many of the same genes 
as other cell types, and many innate immune genes are 
expressed in both microglia and astrocytes [100]. Most 
gene expression studies in brain have not determined 
which immune genes are altered in the different cell 
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Figure 3.  Possible alcohol-induced functional changes that potentially result from astrocyte transcriptional 
adaptations. 
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types. Astrocytes and microglia are often grouped and 
discussed together as the immune cells of the brain. 
However, considering the diverse nature and func-
tions of reactive astrocytes, it is feasible that molecular 
alterations in astrocytes are very different from those 
in microglia. Figure 3 summarizes some of the possible 
alcohol-induced functional changes discussed in this 
review that could result from astrocyte transcriptional 
adaptations. Dissecting the alcohol-induced transcrip-
tome changes in astrocytes will help define alcohol’s 
discrete effects in brain and identify potential cellular 
pathways and targets.

Microarray profiling of gene expression changes after 
acute ethanol exposure in cultured cortical astrocytes 
identified several immune and glial-specific genes, 
including Gfap  [101]. Hsf1, a heat shock transcription 
factor, was activated in astrocytes, and expression pro-
filing of heat-shock stressed astrocytes revealed over-
lapping changes between ethanol exposure and heat 
stress, indicating that the heat shock pathway is impor-
tant in ethanol-induced gene expression changes. 

There was also a striking resemblance between expres-
sion changes in astrocytes and cultured hepatocytes 
after alcohol exposure, suggesting common signaling 
mechanisms between the two types of cells.

Studies utilizing longer ethanol exposures will pro-
vide more insight into the long-term molecular adap-
tations of astrocytes. There are also significant differ-
ences in gene expression between astrocytes in vitro 
and astrocytes isolated from mature brains  [91]. Cul-
tured astrocytes appear to exhibit signs of reactivity 
without any stimulation, while astrocytes co-cultured 
with neurons show resting morphology, suggesting that 
neuronal interactions are important for maintaining 
nonreactive states. Thus, in vivo transcriptome analy-
sis in astrocytes isolated from chronic ethanol-treated 
animals is an important research direction.

Microglia
Alcohol activation of microglial genes
As previously noted, initial interest in alcohol-neuro
immune responses came from microarray studies that 
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identified immune and inflammatory transcripts and 
pathways in alcohol-exposed tissue from mice, rats 
and human tissue  [3–5,34,102–104]. Several immune 
genes found in these microarray studies were validated 
in rodent ethanol consumption paradigms, further 
corroborating a role for neuroimmune signaling in 
drinking behavior  [14,105]. Microglia are the resident 
immune cells in the brain and many of the validated 
transcripts are expressed in or secreted from microg-
lia (Cd14, Ctsf, Ctss, Il1rn, Il6), prompting interest 
in the role of this cell type in ethanol consump-
tion [14,106]. Since then, many studies have found that 
in vitro ethanol treatment of microglia leads to acti-
vation and the release of pro-inflammatory cytokines, 
while chronic ethanol consumption results in micro
glial activation in rodents and human postmortem 
tissue [57,63,107–110].

Gene expression in isolated microglia
The alcohol-neuroimmune field is progressing rap-
idly, and there is increasing interest in cell-specific 
changes. Cell-type specific databases provide one 
tool to identify the cellular basis of the transcriptome 
changes by identifying the gene co-expression mod-
ules that are enriched in different cells. This strat-
egy has also helped to identify discrete cells that are 
targeted depending on the ethanol drinking para-
digms, time points and brain regions studied [111–114]. 
Because microglia make up only 5–15% of cells in the 
brain, it is likely that key microglial gene expression 
changes are missed when examining whole tissue [115], 
making it necessary to perform transcriptome studies 
in isolated microglia. It will also become important 
to identify subtypes of microglia in gene expression 
studies, as microglia can be both pro- and anti-
inflammatory as well as play a role in neurogenesis 
and synaptic remodeling [116].

Drug identification & the transcriptome
Transcriptome studies have been helpful in identifying 
drugs that could potentially be used in the treatment of 
AUD. An insilico bioinformatics study examined gene 
expression data collected from adolescent and adult 
mice exposed to 20% ethanol using a 4 h/day, 4-day 
drinking-in-dark paradigm [18]. Several neuroimmune 
pathways related to microglial action were altered 
in the adult but not the adolescent mice. The study 
also showed that minocycline, a drug that modulates 
neuroimmune signaling and microglial activity, could 
be given intraperitoneally and cross the blood–brain 
barrier. Treatment with minocycline led to a significant 
reduction in ethanol consumption in the adult mice. 
This study highlights how transcriptome data can be 
successfully used to identify pathways that are altered 

by ethanol consumption and ultimately identify drugs 
that target these pathways.

Drug repurposing
Drug repurposing is the process of identifying a new 
therapeutic indication for an existing drug or drug can-
didate. The concept of US FDA-approved drug repur-
posing as a strategy for therapeutic development has 
received increased support because it can resurrect a 
failed drug or expand the number of clinical uses for a 
successful one  [117–123]. The primary advantage is that 
the time to clinical trial can be dramatically reduced. 
There are numerous examples of successfully repurposed 
drugs that are beyond the scope of the current review 
and are only briefly highlighted here. A notable example 
of drug repurposing is buprenorphine which was used 
to treat moderate pain, then subsequently used for treat-
ing heroin and other opioid addictions  [124]. Buspirone 
was initially marketed as an anxiolytic, but more recently 
has been identified as a potential candidate to treat drug 
addiction and compulsive behavior disorders based on its 
high affinity for D3 receptors (as well as 5-HT1A and 
D2 receptors)  [125]. In addition, a study of nonhuman 
primates indicates that buspirone attenuates drug-taking 
relapse in abstinent animals  [126]. Other general exam-
ples of repurposed drugs include sildenafil for erectile 
dysfunction (developed as an anti-hypertensive)  [127], 
thalidomide (original indication: nonbarbiturate 
sedative-hypnotic), finasteride (original indication: pros-
tatic hyperplasia) and chlorpromazine (original indica-
tion: antihistamine) that are also effective treatments 
for erectile dysfunction, leprosy, hair loss and psycho-
sis, respectively [128–130]. There are a limited number of 
repositioned drugs that have been identified as potential 
AUD therapeutics. These include topiramate, which was 
originally used as an anticonvulsant drug used to treat 
epilepsy  [131,132], naltrexone, an opiate receptor anta
gonist  [133] and aripiprazole, an atypical antipsychotic, 
with potential for treating alcohol dependence [134]. And, 
relevant to the current review and the role of the neuro
immune system in AUD, there is evidence that ibudi-
last, a nonselective phosphodiesterase inhibitor, decreases 
alcohol consumption in animal models [135].

There is growing support for computational 
approaches to drug repurposing as outlined in recent 
reviews [136–139]. The NIH is currently funding multi
ple research institutions to refine and extend a data-
base of human cellular responses. This funding sup-
ports the LINCS program, and includes funding to 
the Broad Institute which originally established the 
Connectivity Map (CMAP) database  [140,141], catalog-
ing the biological responses of approximately 1 million 
gene expression profiles using L1000 technology. This 
approach has been shown to identify existing drugs and 
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elucidate modes of action for novel chemicals based on 
findings from expression studies  [142]. L1000 technol-
ogy is a high-throughput method to estimate genome-
wide mRNA expression based on unique perturbations 
by drugs, ligands and other small molecules applied at 
different time points and doses in cell culture. Recently, 
the NeuroLINCS Center (University of California, 
CA, USA) was funded to include neuronal and glial 
signatures from normal and diseased-induced pluripo-
tent stem cells, thus expanding the LINCS database to 
noncancerous cell lines.

In a successful application of this approach, data 
from the Connectivity Map (CMAP,  [143]) were que-
ried with the gene expression signatures of Alzheimer’s 
disease to identify compounds putatively beneficial for 
the disease  [144]. A somewhat different approach used 
SNPs related to aversive memory combined with Inge-
nuity Pathway Analysis to predict drugs that might 
modulate memory, and the effectiveness of one of 
these drugs was verified in human studies  [145]. The 
use of genomics to predict drugs for brain diseases is 
in its infancy, but these examples are quite promis-
ing for future therapeutic development. For example, 
these computational approaches, which integrate 
gene expression signatures of drugs and small mole
cules with disease, have been successful in identify-
ing potential therapeutics for complex disorders such 
as obesity  [146] and inflammatory bowel disease  [147]. 
In addition, gabapentin, which has been shown to be 
effective in treating alcohol dependence and prevent-

ing relapse in clinical trials  [148] was identified as a 
potential therapeutic target based on RNA-sequencing 
of human postmortem brain  [149]. A key question is 
whether consistent changes in gene expression profiles 
and networks found in human alcoholics and animal 
models can be used to predict drugs that will normal-
ize the targeted gene networks and provide new treat-
ments for AUD. This research direction provides an 
important avenue for discovering novel compounds 
that target immune signaling in alcohol dependence.

Conclusion and future perspective
There is increasing evidence for neuroimmune system 
involvement in AUD. This work is also leading to a 
better appreciation for the roles of glial cells, includ-
ing astrocytes and microglia, in the brain’s response 
to alcohol. Strategies for drug repurposing based upon 
transcriptional profiles for the treatment of AUD, 
particularly relevant to the neuroimmune system, 
represent an important area of emerging research.
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