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Colorectal cancer (CRC) is highly prevalent worldwide, and despite notable progress in 
treatment still leads to significant morbidity and mortality. The use of nanoparticles 
as a drug delivery system has become one of the most promising strategies for cancer 
therapy. Targeted nanoparticles could take advantage of differentially expressed 
molecules on the surface of tumor cells, providing effective release of cytotoxic drugs. 
Several efforts have recently reported the use of diverse molecules as ligands on the 
surface of nanoparticles to interact with the tumor cells, enabling the effective delivery 
of antitumor agents. Here, we present recent advances in targeted nanoparticles 
against CRC and discuss the promising use of ligands and cellular targets in potential 
strategies for the treatment of CRCs.
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Colorectal cancer (CRC) is the fourth 
most widely diagnosed cancer worldwide 
and manifests as a malignant neoplasm in 
the mucosa of the colon or the rectum [1,2]. 
Based on the progression of cancer cells, 
the American Joint Committee on Cancer 
(AJCC) has classified CRC into five stages 
(Figure 1). Stage 0 is considered 100% cured 
after a surgical resection. The standard 
treatment for stages I–IIC is also surgical 
resection, with 5-year survival in the range 
of 37–74%. Patients diagnosed in advanced 
stages (stages IIIA–IV) receive adjuvant che-
motherapy following surgical resection, but 
their survival rate decreases to 6% due to the 
high risk of metastasis and the recurrence 
(Table 1) [3,4].

A high cellular heterogeneity character-
izes CRC due to several genetic and bio-
logical alterations, which are responsible for 
the high variability between of tumors [5]. 
Despite the broad repertory of biomarkers of 
CRC described later as targets for advanced 

nanoparticles; recently, a tremendous effort 
by the Cancer Genome Atlas Network has 
been made for characterizing the molecu-
lar genetics of CRC in 224 samples [6]. By 
genome sequence analysis, the samples were 
classified into nonhypermutated and hyper-
mutated types of cancer. Among the non-
hypermutated tumors, the most frequently 
mutated genes were APC (81%), TP53 (60%), 
KRAS (31%), TTN (31%), PIK3CA (18%), 
FBXW7 (11%) and SMAD4 (10%), etc.; 
whereas the most commonly hypermutated 
tumors were CVR2A (63%), APC (51%), 
TGFBR2 (51%), MSH3 (40%) and MSH6 
(40%) among others [6]. Nonhypermutated 
tumors (∼84%) exhibited a high frequency of 
DNA somatic copy number alterations with 
a microsatellite stable, and hypermutated 
tumors (∼16%) showed either microsatellite 
instability due to defective mismatch repair 
(∼13%) or DNA polymerase epsilon proof-
reading mutations (∼3%) [7]. The integrative 
analysis of the molecular genetics of CRC 
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Figure 1. Stages of colorectal cancer according to the American Joint Committee on Cancer. Stage 0; tumor 
confined to mucosa (carcinoma in situ). Stage I: tumor invades submucosa and muscularis propria. Stage II: 
tumor invades through the muscularis propria into pericolorectal tissues (IIA), then penetrates to the surface 
of the visceral peritoneum (IIB), then directly invades or is adherent to other organs or structures (IIC). Stage III: 
tumor invades muscularis propria with metastases in 1–3 regional lymph nodes or nearby tissue, or invades 
submucosa with metastases in 4–6 regional lymph nodes (IIIA). Then tumor penetrates to the surface of the 
visceral peritoneum with metastases in 1–3 regional lymph nodes or nearby tissue, or invades through the 
muscularis propria into pericolorectal tissues with metastases in 4–6 regional lymph nodes, or invades muscularis 
propria with metastases in 7 or more regional lymph nodes (IIIB). Then tumor penetrates to the surface of the 
visceral peritoneum with metastases in 4–6 regional lymph nodes, or invades through the muscularis propria 
into pericolorectal tissues with metastases in 7 or more regional lymph nodes, or directly invades or is adherent 
to other organs or structures with metastases in one or more regional lymph nodes (IIIC). Stage IV: metastasis 
confined to one organ or site (e.g., liver, lung, ovary, nonregional node).
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provides many insights into the biology of CRC and 
identifies  potential therapeutic targets.

Adjuvant chemotherapy, usually used in stages III–
IV, includes a variety of chemotherapeutics intended 
to slow tumor growth and improve life expectancy. 
Despite the highly efficient chemotherapeutic agents 
used to treat CRC, their low specificity often produces 
a range of dose-limiting side effects including hair 
loss, nausea and vomiting [8]. In an effort to minimize 
side effects, current therapeutic protocols involve the 
coadministration of different chemotherapeutic agents 
in a series of cycles. The number of doses, frequency 
and duration of cycles depend on the needs and gen-
eral state of each patient [9]. In addition, fluctuations 
in plasma levels of drugs over chemotherapeutic cycles 
can encourage the development of drug resistance in 
tumor cells [10]. When added to the high financial 
cost of treatment, such interventions can significantly 
decrease quality of life for CRC patients [11,12].

Over the last few years, several types of drug-
loaded nanoparticles in the size range of 20–400 nm 
(i.e., liposomes, dendrimers, polymeric nanoparticles 
and micelles) have made a strong impact on drug 
delivery for chemotherapy [13–16]. In fact, such systems 

are among the most promising developments in nano-
medicine, which has grown exponentially: from simple 
nanoparticles loaded with drugs to multifunctional 
nanoparticles targeted to specific cancer cells through 
binding to unique cell-surface proteins [17–19]. Targeted 
nanoparticles exploit antigens differentially expressed 
on the surface of cancer cells, such as integrin [17,20] 
and folic acid receptors [21,22] and a number of such 
nanoparticles are currently undergoing clinical devel-
opment [23]. There have been major advances in the 
use of nanoparticles as therapeutic platforms for the 
treatment of prostate [24,25], ovarian [26], breast [27,28] 
and lung cancers [29–31]. Nevertheless, despite the high 
morbidity and mortality associated with CRC, the 
clinical development of nanoparticles for treatment 
remains limited. In this review, we describe the state of 
the art in nanoparticles for CRC and discuss the tools 
available for future applications of such  therapeutic 
strategies.

Current adjuvant chemotherapy against 
colorectal cancer
As stated above, much early-stage CRC is potentially 
curable by surgical resection [32]. Although adjuvant 
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chemotherapy clearly benefits patients with stages III 
and IV disease, its use in stage II is not usually indi-
cated because of the curative effects of resection [33,34]. 
For many years, the only cytotoxic drug used in adju-
vant chemotherapy for treatment of CRC was fluoropy-
rimidine 5-fluorouracil (5-FU), an analog of thymine 
that inhibits DNA replication [35]. Due to the variable 
gastrointestinal absorption of 5-FU, its preferred route 
of administration is intravenous (iv.) [36]. In addition, 
the discomfort associated with iv. administration of 
5-FU prompted the development of more effective and 
less expensive oral formulations, which can be classi-
fied into three groups: 5-FU prodrugs such as Tega-
fur and Capecitabine, 5-FU prodrugs combined with 
dihydropyrimidine dehydrogenase inhibitor and 5-FU 
combined with a dihydropyrimidine dehydrogenase 
inhibitor [37].

Since the early 2000s, other drugs have also come 
into use. For example, irinotecan inhibits the enzyme 
topoisomerase I, hindering the uncoiling of DNA dur-
ing replication [38]; and oxaliplatin forms cross-linking 
DNA, preventing transcription and replication [39]. 
However, in addition to cancer cells, cytotoxic drugs 
also kill healthy cells that grow and divide quickly 
such as white blood cells, red blood cells and plate-
lets; for this reason some of these cytotoxic drugs are 
administered with leucovorin, a vitamin that strength-

ens the production of blood cells and improves treat-
ment efficiency [40]. The drug combinations currently 
used in adjuvant chemotherapy for CRC are presented 
in Table 2. Another family of therapeutic agents for 
treatment of CRC are monoclonal antibodies, which 
can be directed against molecules on the surface or 
in the environment of tumor cells [41]. Two monoclo-
nal antibodies are licensed for use in humans: bevaci-
zumab binds to VEGF-A, which inhibits the forma-
tion of blood vessels, reducing tumor vascularization 
and inhibiting tumor growth [42,43]; and cetuximab 
binds to the extracellular domain of the EGFR to 
block ligand-induced receptor signaling [44].

Since its approval, the combination of monoclonal 
antibodies with cytotoxic drugs has become first-line 
treatment for CRC, extending both progression-
free survival and overall survival [42,58–61]. However, 
despite the improvements in treatments involving 
adjuvant chemotherapy and biological agents, drug 
resistance remains a major challenge and general side 
effects (e.g., fatigue, hair loss, nausea and vomiting, 
diarrhea or constipation, anemia, immunosuppression 
and bleeding) have prompted researchers to explore 
advanced strategies based on nanotechnology, either to 
improve the pharmacological properties of classic che-
motherapeutics or to specifically target tumor  tissue 
and reduce side effects.

Table 1. Stages, treatment options and survival rate for colorectal cancer.

Stage (TNM criteria) Standard treatment option 5-year observed survival rate

Stage 0 Surgical resection Considered curative

Stage I Surgical resection 74%

Stage IIA Surgical resection 67%

Stage IIB Surgical resection 59%

Stage IIC Surgical resection 37%

Stage IIIA Surgical resection 
Adjuvant chemotherapy

73%†

Stage IIIB Surgical resection 
Adjuvant chemotherapy

46%†

Stage IIIC Surgical resection 
Adjuvant chemotherapy

28%

Stage IV – liver metastasis Surgical resection 
Local ablation 
Neoadjuvant chemotherapy 
Intra-arterial chemotherapy 
Adjuvant chemotherapy

6%

Stage IV and recurrent CRC 
cancer

Surgical resection 
Adjuvant chemotherapy

6%

†In this study, survival was better for some stage III cancers than for some stage II cancers. The reasons for this are not clear.
CRC: Colorectal cancer; TNM: Tumor, Node, Metastasis.
Data taken from [3,4].
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Table 2. Adjuvant chemotherapy for colorectal cancer.

A. Drug combinations in adjuvant chemotherapy for stage III colorectal cancer

Regimen Scheme Ref.

FOLFOX4 regimen Oxaliplatin (85 mg/m2) administered iv. as a 2-h infusion on day 1; leucovorin 
(200 mg/m2) administered iv. as a 2-h infusion on day 1 and day 2; followed 
by a loading dose of 5-FU (400 mg/m2) bolus administered iv., then 5-FU 
(600 mg/m2) administered iv. as a 22-h continuous infusion on day 1 and day 
2, repeat every 2 weeks

[45,46]

FU/levamisole regimen 5-FU (450 mg/m2) bolus administered iv. daily for 5 days, then weekly 28 days 
later plus levamisole (50 mg) administered orally three-times/days for 3 days, 
repeat every 2 weeks

[47]

Mayo Clinic or North Central Cancer 
Treatment Group (NCCTG) regimen

5-FU (450 mg/m2)-leucovorin (20 mg/m2) bolus administered iv. daily for 
5 days, repeat every 4 weeks

[48]

Roswell Park Memorial Institute (RPMI) 
or National Surgical Adjuvant Breast 
and Bowel Project (NSABP) regimen

5-FU (500 mg/m2)-leucovorin (500 mg/m2) bolus administered iv. weekly for 
6 weeks, repeat every 8 weeks

[49]

B. Drugs combinations in adjuvant chemotherapy for stage IV colorectal cancer 

Regimen Scheme Ref.

FOLFOX4 regimen Oxaliplatin (85 mg/m2) administered iv. as a 2-h infusion on day 1; leucovorin 
(200 mg/m2) administered iv. as a 2-h infusion on days 1 and 2; followed by a 
loading dose of 5-FU (400 mg/m2) bolus administered iv., then 5-FU (600 mg/
m2) administered iv. as a 22-h continuous infusion on days 1 and 2, repeat 
every 2 weeks

[45,46]

FOLFOX6 regimen Oxaliplatin (85–100 mg/m2) administered iv. as a 2-h infusion on day 1; 
leucovorin (400 mg/m2) administered iv. as a 2-h infusion on day 1; followed 
by a loading dose of 5-FU (400 mg/m2) bolus administered iv. on day 1, then 
5-FU (2,400–3,000 mg/m2) administered iv. as a 46-h continuous infusion, 
repeat every 2 weeks

[50]

FOLFIRI regimen Irinotecan (180 mg/m2) administered iv. as a 2-h infusion on day 1; leucovorin 
(400 mg/m2) administered iv. as a 2-h infusion on day 1; followed by a 
loading dose of 5-FU (400 mg/m2) bolus administered iv. on day 1, then 5-FU 
(2,400–3,000 mg/m2) administered iv. as a 46-h continuous infusion, repeat 
every 2 weeks

[51]

FUFOX regimen Oxaliplatin (50 mg/m2) plus leucovorin (500 mg/m2) plus 5-FU (2000 mg/m2) 
administered iv. as a 22-h continuous infusion on days 1, 8, 22 and 29, repeat 
every 36 days

[52]

FUOX regimen 5-FU (2,250 mg/m2) administered iv. as a 48-h continuous infusion on days 1, 
8, 15, 22, 29 and 36 plus oxaliplatin (85 mg/m2) on days 1, 15 and 29, repeat 
every 6 weeks

[53]

XELOX regimen Oral capecitabine (1,000 mg/m2) two-times/days for 14 days plus oxaliplatin 
(130 mg/m2) on day 1, repeat every 3 weeks

[54]

IFL (or Saltz) regimen Irinotecan (125 mg/m2), 5-FU (500 mg/m2) bolus administered iv. and leucovorin 
(20 mg/m2) bolus administered iv. weekly for 4 weeks, repeat every 6 weeks

[55]

Douillard regimen Irinotecan (180 mg/m2) administered iv. as a 2-h infusion on day 1; leucovorin 
(200 mg/m2) administered iv. as a 2-h infusion on days 1 and 2; followed by a 
loading dose of 5-FU (400 mg/m2) bolus administered iv., then 5-FU (600 mg/
m2) administered iv. as a 22-h continuous infusion on days 1 and 2, repeat 
every 2 weeks

[56]

AIO or German AIO regimen Irinotecan (100 mg/m2) administered iv. as a 2-h infusion on day 1; leucovorin 
(500 mg/m2) administered iv. as a 2-h infusion on day 1; followed by 5-FU 
(2000 mg/m2) administered iv. as a 24-h continuous infusion weekly, repeat 
every 13 weeks

[57]

5-FU: 5-fluorouracil; AIO: Arbeitsgemeinschaft Internische Onkologie.
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Nanoparticles in colorectal cancer therapy
The development of therapeutic strategies for cancer 
treatment based on nanoparticles has generated sub-
stantial advances in pharmacology, decreasing the side 
effects of cytotoxic drugs and improving their effi-
cacy, solubility, pharmacokinetics and biodistribution. 
Over the last 50 years, several nanoparticles of diverse 
shapes, sizes and chemical natures have shown high 
efficacy in encapsulating different types of anticancer 
cargo, including siRNA [62], antibiotics [63] and chemo-
therapeutics [26]. These first-generation anticancer 
nanoparticles reach the tumor tissue passively, taking 
advantage of the enhanced permeation and retention 
effect offered by the vascular and lymphatic drainage 
of tumors; this allows the extravasation and accumula-
tion of nanoparticles within cancer cells and improves 
therapeutic efficacy [64]. Liposome-based platforms are 
the most well established and were the first nanocarri-
ers approved by US FDA for use in humans [65]. They 
are vesicles composed of a phospholipid bilayer with an 
internal and external aqueous phase that supports the 
encapsulation of both hydrophilic and  hydrophobic 
drugs.

Liposome-based nanoproducts currently under 
clinical study for the treatment of CRC include CPX-
1, LE-SN38 and Thermodox; CPX-1 (Irinotecan HCl: 
Floxuridine) has completed Phase II clinical trials [66]. 
One study focused on patients with advanced CRC 
who were already receiving chemotherapy including 
oxaliplatin or irinotecan [67]. Other researchers evalu-
ated the liposome formulation LE-SN38 in HT-29 
tumor-bearing mice; tumor growth was inhibited 
by 51, 79 and 90% after 10 days of treatment using 
doses of 10, 20 and 40 mg/kg (respectively) com-
pared with the drug-free liposome group [68]. How-
ever, assessment of the effects of LE-SN38 in patients 
with metastatic CRC after progression on oxaliplatin 
(Phase II of clinical trial) showed that the drug did 
not slow cancer progression in patients treated with 
LE-SN38 35 mg/m2 every 21 days for a minimum of 
2 cycles [69]. Thermodox, another liposomal strategy 
in clinical trials, involves the use of thermally sensitive 
liposomal doxorubicin as an adjuvant therapy with 
radiofrequency thermal ablation in the treatment of 
recurrent or refractory colorectal liver metastases [70]. 
Although a study comparing Thermodox to radiofre-
quency thermal ablation monotherapy has been ter-
minated, the results still are not available [71]. At pres-
ent, several agents under preclinical development have 
shown promising in vitro results with potential appli-
cations for CRC, including oxaliplatin-loaded long-
circulating liposomes (PEG-liposomal L-oHP) [72], 
liposomal curcumin [73] and doxorubicin-encapsulated 
liposome [74].

Since the 1980s, studies by Langer and cowork-
ers have shown that biodegradable and noncytotoxic 
polymers such as poly( d , l -lactide-co-glycolide) and 
their derivates [75], polycaprolactone [76,77] and chito-
san [78] offer a versatile platform for the development of 
nanoparticles and drug delivery. Polymeric nanoparti-
cles are spherical, with a hydrophobic core and a hydro-
philic shell formed by the self-assembly of biocompat-
ible amphiphilic block copolymers through aqueous 
or microencapsulation methods. They are consider-
ably more stable than liposomes, permit the efficient 
encapsulation of drugs of different chemical natures 
and allow sustained release in response to changes in 
temperature or pH [23,79–80].

At present, several formulations for cancer therapy 
in clinical trials have already shown outstanding phar-
macokinetic performance. For instance, NK105 (PEG-
P[Asp]-paclitaxel) showed an area under the curve sig-
nificantly higher than paclitaxel alone between 0 and 
48 h after iv. administration (191,000 ± 32,100 vs 1500 
± 108 ng·h/ml, respectively) [81]. Other formulations 
in clinical trials such as NK911 (PEG-P[Asp]-doxoru-
bicin) have shown high accumulation in solid tumors 
in mice [16], and SP1049C (Pluronic L61, F127–doxo-
rubicin) exhibited notable single-agent activity in 
patients with adenocarcinoma of the esophagus and 
gastroesophageal junction with high efficacy and fewer 
side effects compared with drug alone [82]. Assays in 
mice model of metastasis have shown that an in vivo 
gene delivery formulation comprising a core of high-
molecular-weight linear polyethylenimine complexed 
with DNA and surrounded by a shell of polyethylene-
glycol-modified (PEGylated) low-molecular-weight 
linear polyethylenimine are selectively transfected in 
neoplastic cells. However, only a small fraction of those 
cells expressed the transgene [83].

Polymeric nanoparticles continue to be a popular 
subject of study in cancer therapy because they are 
a strong platform with which to encapsulate both 
hydrophilic and hydrophobic drugs [84–86]. However, 
most drugs are released into the extracellular matrix; 
their effectiveness depends on diffusion through the 
tissue, and low in vivo specificity also limits their 
application [87]. Thus, recent site-specific targeting of 
nanoparticles is a promising advancement in cancer 
treatment research. One successful approach is the 
BIND-014 technology, which consists of docetaxel-
loaded polymeric nanoparticles capable of recognizing 
prostate cancer through targeting against PSMA, a 
tumor antigen on prostate cancer cells and the vascu-
lature of most nonprostate solid tumors. BIND-014 is 
currently in Phase II clinical trials for non-small-cell 
lung cancer and metastatic castration-resistant pros-
tate cancer, having already demonstrated significant 
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antitumor activity at a lower dose than conventional 
docetaxel in subjects with advanced or metastatic 
 non-small-cell lung cancer [88].

Targeted nanoparticles for colorectal cancer 
therapy
The conjugation of ligands such as antibodies, frag-
ments of antibodies, peptides, aptamers and other 
small molecules on the surface of nanoparticles for the 
purpose of cell recognition has yielded a new genera-
tion of nanoparticles for cancer therapy with enhanced 
in vivo specificity (Figure 2). The incorporation of 
these ligands is usually achieved by chemical modifica-
tion during nanoparticle synthesis or through chemi-
cal bonding between ligands and polymers before 
 synthesis [89,90].

Targeted nanoparticles are those that contain 
ligands on their surface and are capable of specifically 
recognizing cells. In applications against cancer, the 
promise of targeted nanoparticles is based on the fact 
that tumors express and/or overexpress some biomark-
ers, which can be used as targets for drug delivery. For 
example, Graf et al. described cisplatin prodrug-loaded 
poly(d,l-lactic-co-glycolic acid)-block-polyethylene 
glycol nanoparticles targeted with a cyclic pentapeptide 
c(RGDfK) that bind to the integrin receptor, which 
is highly upregulated in tumor-associated  endothelial 
cells during angiogenesis [17].

One recent study used immunohistochemistry to 
analyze the expression of four biomarkers in mucosal 
and CRC tissues from 280 patients [91]. Carcinoembry-
onic antigen (CEA) was the marker most consistently 
overexpressed, that is, expressed in CRC 98.8% more 
than in normal tissue, followed by tumor-associated 
glycoprotein-72 at 79%, folate receptor-α at 37.1% 
and EGFR at 32.8%. This work supports the appli-
cation of CEA as a potential cellular target for future 
development of targeted nanoparticles in the treatment 
of CRC [91] (see Figure 2). Markers have also been iden-
tified: IGF-1R [92], apolipoprotein A1 [93], the trans-
membrane receptor tyrosine kinase EphA4 [94], the 
receptor for hyaluronic acid-mediated motility [95] and 
α2 integrin [96].

Though the application of monoclonal antibod-
ies (mAb) to CRC-targeting nanoparticles is still 
an emerging field, there are already many mAbs in 
preclinical and clinical development [59,97–100]. For 
example, the humanized A33 mAb (huA33 mAb) has 
shown great promise in clinical trials as an immuno-
therapeutic biological agent and also as a targeting 
ligand for CRC cells of polymer capsules formed by 
the layer-by-layer method [101,102]. As shown in Table 3, 
using targeted nanoparticles as a drug delivery system 
based on mAb is now one of the main approaches for 

CRC therapy under preclinical development. How-
ever, the major limitation of mAb is their large size and 
complexity, posing a challenge to their conjugation on 
the surface of nanoparticles [103,104].

Peptides also represent a promising targeting alter-
native, given their small size and ease of attachment to 
nanoparticles. However, the use of peptides for CRC, 
for example, the tumor necrosis factor-related apop-
tosis-inducing ligand [119], and the peptide RPMrel 
(CPIEDRPMC) [120] as a targeting ligand, has not yet 
been well explored. One study has shown high cellu-
lar uptake of HPMA-copolymer-DOX conjugate with 
the oligopeptide GE11 in CRC cells that overexpress 
EGFR, achieving selective release of doxorubicin [114].

The differential expression of FRα has been associ-
ated with several types of cancers including CRC [121]. 
Cell lines such as Caco-2 and HT29, which overexpress 
the folate receptor, selectively internalize nanoparticles 
conjugated with folate on their surface (i.e., function-
alized) [113]. Sharma et al. described a multifunctional 
nanosystem based on methotrexate-loaded guar gum 
nanoparticles functionalized with folic acid (MTX-
FA-GGNP), which released methotrexate at colonic 
pH (6.8) and displayed preferential in vivo uptake in 
colon tissue [122].

Imaging & detection in colorectal cancer
Nanoparticles may also be used to facilitate early diag-
nosis and monitor the efficacy of therapy. The design 
of nanoparticles could incorporate different contrast 
agents (e.g., radioactive, superparamagnetic or fluo-
rescent), targeting groups and biocompatible coat-
ings [123]. Since small molecular-weight gadolinium 
and metal chelate-based contrast agents have disadvan-
tages such as low tissue specificity, rapid clearance and 
nonspecific extracellular distribution, nanotechnology 
may be used to modify such contrast agents to improve 
the sensitivity and specificity of CRC diagnostics [124]. 
Recently, He et al. described lectin core/shell nanopar-
ticles formulated with iron oxide magnetite and gold 
(lectin−Fe2O3#Au NP), which allowed dual-modality 
imaging, that is, T2-weighted MR and x-ray CT in 
nude mice bearing colorectal tumor (SW620) [125]. 
Another strategy that showed outstanding in vivo 
effectiveness by MRI, low cytotoxicity and extraordi-
nary fluorescence stability was based on nanoparticles 
formulated with a core of superparamagnetic iron 
oxide nanocrystals, conjugated with quantum dots 
and targeted with a monoclonal antibody binding to 
 CEA-related cell-adhesion molecules [126].

Near-infrared fluorescent (NIRF) endoscopic detec-
tion is a novel approach that may increase the sensi-
tivity and specificity of surveillance colonoscopy of 
patients with CRC. Studies in a mouse model of coli-
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Figure 2. Targeted nanoparticle strategy for colorectal cancer. The most common CRC biomarkers overexpressed 
in the cellular membrane and the typical molecules/ligands used on the surface of nanoparticles in targeting 
strategies: FR-α, EGFR, TAG-72. 
CEA: Carcinoembryonic antigen; CRC: Colorectal cancer; EGFR: EGF receptor; FR-α: Folate receptor-α; 
TAG-72: Tumor-associated glycoprotein.
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tis-associated cancer monitored by NIRF endoscopy 
showed high efficiency in the detection of dysplastic 
foci within chronically inflamed colons [127]. Yang et al. 
reported the application of folic acid-conjugated chito-
san nanoparticles loaded with 5-aminolaevulinic acid 
in NIRF endoscopy for CRC cells. The 5-aminolae-
vulinic acid is a precursor in heme group synthesis and 
is rapidly converted to the fluorophore protoporphyrin 
IX in normal cells. In cancer cells protoporphyrin IX 
accumulates intracellularly, because the degradation 
metabolism is slower than in normal cells, allowing its 
use in NIRF endoscopy and specifically on CRC cells, 
which overexpress the folate receptor [112].

Cancer stem cells in colorectal cancer
The biological basis of the recurrence of CRC after 
surgical treatment, chemotherapy and/or radiation still 
is not understood. Some authors suggest that factors 
like the stage of development of cancer, the age of the 
patient and the treatment received are a critical factor 
for the relapsed of patients; however, still the literature 
is controversial.

The cancer cells are recognized for a high rate of pro-
liferation, and cellular division that promotes to boost-
ing the number of mutations. The effect of cytotoxic 
drugs over the cancer cells generates a selective pres-
sure that stresses the progeny and induces novel drug 
 resistant mutants, which are responsible for relapses.

Interestingly, the relapse of those types of cancers 
that involve the drug resistant phenomenon is experi-
enced shortly after the treatment; however, some tumors 
manifest relapse long time after the surgery or pharma-
cological treatment (months or years, and even when the 
treatment has been stopped). In those cases of cancer, 
the drug-resistant effect does not explain the relapse.

Several hypotheses are under investigation, and 
the common point of view is centered in the fact of 
the tumors are composed by clonal subpopulations of 
cancer cells, which differs in its growth rate, immu-
nological characteristics, the ability to metastasize, the 
expression of proteins and sensitivity to treatments [128]. 
The authors also suppose a hierarchical interaction 
between the subpopulations of clones, which promotes 
the tumor progression. In this sense, it has been dem-
onstrated the existence of cancer stem cells (CSCs) 
in various types of cancers including leukemia and 
CRC [129,130]. In this context, if the chemotherapeutic 
drugs affect the viability of cells under a highly rate 
of division, the CSCs, that are characterized by a slow 
proliferation rate, could promote the recurrence after a 
long time of the treatment.

Recent investigations have reported that CSCs in 
CRC could be characterized according to cellular mark-
ers such as CD44, CD133, CD166 and EpCAM [131–
133]. At the signaling level, it has been proposed that 
both, WNT/β-catenin and NOTCH/HES1 pathways, 
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are involved in the regulation of CSCs, and the self-
renewal and maintenance of CSCs in CRC, respec-
tively [134–136]. At present, several experimental drugs 
targeting to CSCs in combination with conventional 
chemotherapeutic drugs are in clinical trials for CRC 
and others type of cancers. The BBI608 targeted to 
STAT-3, and BBI503 targeted to Nanog and multiple 
kinases, have been developed by Boston Biomedical and 
currently are in Phase III on a clinical trial.

In summary, it seems to be that the elimination of 
all CSCs is critical to eradicating cancer and that fail-

ure to do so might be responsible for the occurrence of 
relapses and/or metastases frequently observed in the 
clinical management of CRC patients. Consequently, 
an adequate isolation and a profound identification of 
CSCs in CRC is essential for a better understanding of 
their role in the tumorigenesis process and the develop-
ment of CSC-specific therapies.

Conclusion
Traditional cytotoxic drugs for CRC cause several side 
effects in part because of current therapeutic protocols, 

Table 3. Targeted nanoparticles for colorectal cancer under preclinical development.

Formulation Ligand Target Cell population Ref.

Nanosized maghemite particle Antibody CEA High CEA-expressing cell line 
(LS174T) and a low CEA-expressing 
cell line (HCT116)

[105]

Dextran- and PEG-coated 
superparamagnetic iron oxide 
nanoparticles (abf-SPION)

scFv CEA LS174T, a CEA-expressing (CEA+ve) 
cancer cell line and A375M, a CEA-
negative (CEA-ve) cancer cell line

[106]

Dye-doped silica nanoparticles 
conjugated with polyamidoamine 
dendrimers

Humanized anti-CEA 
monocolonal antibody 
A5B7

CEA LS174T, LoVo and HCT116 cells and 
murine xenografts model

[107]

Conatumumab (AMG 655)-coated 
nanoparticles

Antibody DR5 HCT116 cancer cells [108]

Photosensitizer meso-Tetra(N-methyl-
4-pyridyl) porphine tetra tosylate 
chitosan/alginate nanoparticles

Antibody DR5 HCT116 cancer cells [109]

Polymer capsules formed by the LbL 
technique

Humanized A33 
monoclonal antibody 
(huA33 mAb)

A33 antigen LIM1215 cells (antigen-expressing) 
SW480 (nonantigen-expressing)

[102]

Gold and iron oxide HNPs scFv A33 antigen Colorectal cancer cell lines 
(SW1222 and HT 29 cells)

[110]

Poly(lactide- coglycolide) NP loaded 
with camptothecin

Antibody Fas receptor 
(CD95/Apo-1)

HCT116 cells [111]

Chitosan nanoparticles loaded with 
5-ALA

Folic acid FR HT29 and Caco-2 colorectal cancer 
cell lines overexpressing folate 
receptor

[112]

FA-CS conjugates nanoparticles Folic acid FR HT-29 cancer cells [113]

HPMA-copolymer-doxorubicin 
conjugates

Peptide GE11 EGFR HT29, SW480 and A431 cell lines [114]

T22-empowered protein-only 
nanoparticles

18-mer peptide T22 
(T22-GFP-H6)

CXCR4 HeLa cells [115]

Chitosan nanoparticles encapsulating 
oxaliplatin (L-OHP)

HA HA receptor Colon cancer (HT-29) in C57BL mice [116]

MSN Coated with poly-(L-
lysine) and HA

CD44 receptor HCT-116 cancer cells [117]

rHDL nanoparticles loaded with siRNA Apo A-I SR-B1 Model colorectal cancer metastasis 
in mice (HCT116 cells)

[118]

5-ALA: 5-aminolaevulinic acid; Apo A-1: Apolipoprotein A-I; CEA: Carcinoembryonic antigen; CXCR4: CXC chemokine receptor 4; DR5: Death receptor 5; FA-
CS: Folate-chitosan; FR: Folate receptor; HA: Hyaluronic acid; HNP: Hybrid nanoparticle; LbL: layer-by-layer; MSN: Mesoporous silica nanoparticle; NP: Nanoparticle; 
rHDL: Reconstituted HDL; ScFv: Single-chain Fv antibody fragment; SR-B1: Scavenger receptor type B1.
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which are based on a series of cycles of administration. 
Recent trends in nanomedicine include the use of com-
bined therapy of cytotoxic drugs loaded in targeted 
nanocarriers, which allows sustained release and site-
specific delivery, reducing or even eliminating cycles, 
depending on the efficiency of the strategy. The com-
bined therapy can also include the use of DNA [137] or 
RNA [138] to assemble the nanoparticles that leading 
to the expression or knockdown of genes enhancing 
 effectiveness of the cytotoxic drugs.

The deeper understanding gained in recent years 
of manipulating the physicochemical properties of 
nanoparticles for in vivo application bodes well for 
their use in treatment of CRC. Relevant parameters 
include optimal size to avoid the immune system 
response and clearance by glomerular filtration in the 
kidneys (range: 10–100 nm) [139,140] and the best shape 
to encourage longer circulation time and faster uptake 
by cancer cells (spherical) [141]. Moreover, other rele-
vant parameters include the optimal surface charge to 
promote cellular binding and prevent complement acti-
vation (range: 0 to -10 mV) [142] and sufficient density 
of targeting ligands on the surface of nanoparticles to 
optimize tissue-specific targeting (range: 0.5–5%) [88].

On the other hand, optimizing the targeting tech-
nology for CRC therapy still faces several challenges, 
including the correlation of biomarkers with the early 
stages in the development of CRC and the identifica-
tion of novel highly specific molecular targets. Thus 
far, peptides, aptides, aptamers and small molecules 
are the most attractive tools for targeting, given their 
small size, high affinity and ease of conjugation on the 

surface of nanoparticles; they hold great promise for 
future drug development and medical translation.

Future perspective
The future perspective of targeted nanoparticles is 
brilliant because several of current promising formula-
tions under preclinical and clinical developments for 
CRC soon and after overtaking the high standards of 
safety and efficacy for patients required by the FDA 
could be in the market. A future challenge is to imple-
ment systems or protocols to determine the molecular 
expression profile of tumors from patients with CRC 
and classify them according to the genetic profile, stage 
of development of tumor and putative targeting mol-
ecules. All above will support the rational administra-
tion of precise-targeted nanoformulations containing 
the most effective drug combination.
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Executive summary

Colorectal cancer & adjuvant chemotherapy
•	 Colorectal cancer (CRC) is the fourth most widely diagnosed cancer worldwide and despite notable progress in 

treatment still leads to significant morbidity and mortality.
•	 Based on the progression of cancer the standard treatment involves surgical resection, and adjuvant 

chemotherapy; however, since stages IIC–IV the survival rate over 5 years is lower than 50% due to the high 
risk of metastasis and the recurrence.

•	 Despite the highly efficient chemotherapeutic agents used to treat CRC, drug resistance remains a major 
challenge and general side effects.

Targeted nanoparticles for colorectal cancer
•	 The development of therapeutic strategies based on nanoparticles as a drug delivery system has become one 

of the most brilliant strategies for cancer therapy.
•	 The conjugation of ligands on the surface of nanoparticles for the purpose of cell recognition has yielded a 

new generation of nanoparticles (targeted nanoparticles).
•	 Targeted nanoparticles could take advantage of differentially expressed molecules on the surface of tumor 

cells, providing an adequate release of cytotoxic drugs.
•	 Since contrast agents have disadvantages such as low tissue specificity, rapid clearance and nonspecific 

extracellular distribution, targeted nanoparticles may be used to modify such contrast agents to improve the 
sensitivity and specificity of CRC diagnostics.

Future perspective
•	 The near future of precise-targeted nanoformulations containing the most effective drug combination for 

CRC is just around the corner due to the promising advances in this field of research.
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