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Abstract

Multiple studies have developed surface PM2.5 (particle size less than 2.5 µm in aerodynamic 

diameter) prediction models using satellite-derived aerosol optical depth as the primary predictor 

and meteorological and land use variables as secondary variables. To our knowledge, satellite-

retrieved fire information has not been used for PM2.5 concentration prediction in statistical 

models. Fire data could be a useful predictor since fires are significant contributors of PM2.5. In 

this paper, we examined whether remotely sensed fire count data could improve PM2.5 prediction 

accuracy in the southeastern U.S. in a spatial statistical model setting. A sensitivity analysis 

showed that when the radius of the buffer zone centered at each PM2.5 monitoring site reached 75 

km, fire count data generally have the greatest predictive power of PM2.5 across the models 

considered. Cross validation (CV) generated an R2 of 0.69, a mean prediction error of 2.75 µg/m3, 

and root-mean-square prediction errors (RMSPEs) of 4.29 µg/m3, indicating a good fit between 

the dependent and predictor variables. A comparison showed that the prediction accuracy was 

improved more substantially from the nonfire model to the fire model at sites with higher fire 

counts. With increasing fire counts, CV RMSPE decreased by values up to 1.5 µg/m3, exhibiting a 

maximum improvement of 13.4% in prediction accuracy. Fire count data were shown to have 

better performance in southern Georgia and in the spring season due to higher fire occurrence. Our 

findings indicate that fire count data provide a measurable improvement in PM2.5 concentration 

estimation, especially in areas and seasons prone to fire events.

1. Introduction

Previous studies have found strong associations between PM2.5 (particle size less than 2.5 

µm in aerodynamic diameter) and various adverse health outcomes including respiratory and 
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cardiovascular diseases [Dominici et al., 2006]. Thus, obtaining accurate spatiotemporally 

resolved PM2.5 concentrations is crucial to assess air pollution levels and address public 

health concerns.

Although stationary ambient monitors have been established to measure ground-level PM2.5 

exposure, satellite remote sensing estimated concentrations have the potential to expand the 

coverage of ground networks and the ability to improve estimates of population exposure to 

PM2.5 [van Donkelaar et al., 2010]. Many satellite aerosol optical depth (AOD) products 

have been used to estimate PM2.5 concentrations, such as those from the Moderate 

Resolution Imaging Spectroradiometer (MODIS), the Multiangle Imaging 

Spectroradiometer (MISR), and the Geostationary Operational Environmental Satellite 

Aerosol/Smoke Product [Hu et al., 2013; Liu et al., 2007, 2005; Paciorek et al., 2008]. 

Recently, a new AOD product with 1 km spatial resolution derived by a multiangle 

implementation of atmospheric correction (MAIAC) algorithm has been reported [Lyapustin 
et al., 2011b]. Hu et al. [2014b] successfully estimated PM2.5 exposure at 1 km resolution in 

the southeastern U.S. using the MAIAC AOD. Hu et al. [2014a] further used the MAIAC 

AOD estimated PM2.5 concentrations to investigate the 10 year spatial and temporal trends 

of PM2.5 in the southeastern U.S.

The quantitative relationships between PM2.5 and AOD have been established by multiple 

studies for various regions. Wang and Christopher [2003] developed empirical relationships 

between remotely sensed AOD and surface PM2.5 in the southeastern U.S. However, using 

AOD as the only PM2.5 concentration predictor may be insufficient to fully account for the 

complex PM2.5-AOD relationship. Liu et al. [2005] found that meteorological, geographical, 

and seasonal conditions can strongly affect the association between PM2.5 and MISR AOD. 

As a result, these factors need to be incorporated when establishing the PM2.5-AOD 

relationship. To accommodate for this, previous studies have developed statistical models to 

predict PM2.5 concentrations using satellite-derived AOD as the primary predictor and 

meteorological fields and land use variables as secondary predictors. For instance, Liu et al. 
[2007] incorporated surface temperature, surface wind speed, and mixing height in a 

predictive model and found that they are all significant predictors of PM2.5 concentrations. 

Liu et al. [2009] further pointed out that road length and population density within areas are 

effective predictors of PM2.5. Kloog et al. [2011] introduced a number of useful land use 

variables (e.g., elevation, percent of open spaces, PM2.5 point emissions, and area source 

PM2.5 emissions) that can potentially be incorporated into statistical models for PM2.5 

concentration prediction. In addition, Hu et al. [2013] reported that forest cover is 

significantly associated with PM2.5. However, to our knowledge, to date, fire data have not 

been used in statistical models for PM2.5 concentration estimation. Fires, including wildfires 

and prescribed burning, are important emission sources of primary air pollutants and 

precursors of secondary pollutants. Wildfires can be a natural disaster threatening human life 

and property, while prescribed burning is a vegetation management technique to control 

vegetation, enhance biotic production and diversity, control diseases and insects, and reduce 

dead fuel accumulation. Prescribed burning is widely used in the United States, especially in 

the southeast [Hardy et al., 2001]. Zeng et al. [2008] pointed out that prescribed burning 

emissions can lead to a maximum increase of 25 µg/m3 in PM2.5 concentrations within a 

day. Tian et al. [2009] indicated that 55% and 80% of PM2.5 mass were attributed to 
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prescribed burning in Georgia in January and March 2002, respectively. Zhang et al. [2010] 

reported that 13% of PM2.5 mass concentrations were contributed by biomass burning 

annually in the southeastern U.S., indicating that fires are significant contributors to PM2.5 

levels. In addition, Hu et al. [2014b] predicted PM2.5 concentrations in the southeastern U.S. 

and hypothesized that abnormally high concentrations in areas such as southern Georgia 

were partially caused by fires. As a result, fire data could be potentially useful predictors of 

PM2.5, particularly in areas where fire events frequently occur. Establishing accurate 

biomass burning emissions inventories is rather difficult, and another approach is to use 

observations of active fires [Al-Saadi et al., 2008]. Satellite remote sensing has provided a 

consistent means of detecting active burning through various sensors such as MODIS and 

advanced very high resolution radiometer [Cardoso et al., 2005; Justice et al., 2002]. The 

primary objective of this study is to investigate how remotely sensed fire count data can be 

incorporated in a spatial statistical model setting to predict surface PM2.5 concentrations and 

whether this parameter can significantly improve PM2.5 prediction accuracy, especially in 

areas where fires frequently occur. In addition, sensitivity analyses of fire counts on 

prediction accuracy of surface PM2.5 concentrations were conducted to preliminarily 

examine how much predictive power fire count data have at various levels of fire occurrence.

2. Materials and Methods

2.1. Study Area

The study area is approximately 1800 × 1200 km2 in the southeastern U.S. (Figure 1). This 

region contains various land cover in which wildfires and prescribed burning are prone to 

occur, including forestland, agricultural land, pasture/hay, and swamp (e.g., peat fires in the 

Okefenokee Swamp).

2.2. PM2.5 Measurements

Twenty-four hour averaged (daily mean) PM2.5 concentrations in the study domain from 

2007 were collected from the U.S. Environmental Protection Agency (EPA) federal 

reference method samplers and downloaded from the EPA’s Air Quality System Technology 

Transfer Network (http://www.epa.gov/ttn/airs/airsaqs/). PM2.5 concentrations less than 2 

µg/m3 (~2.5% of total records) are below the established limit of detection and were filtered 

[Environmental Protection Agency, 2008].

2.3. Remote Sensing Data

2.3.1. AOD Data—We obtained 2007 MAIAC AOD data from the National Aeronautics 

Space Administration (NASA) Goddard Space Flight Center. MAIAC used the time series of 

MODIS measurements and simultaneous processing of a group of pixels in fixed 25 × 25 

km2 blocks to retrieve aerosol parameters over land at 1 km resolution [Lyapustin et al., 
2011a, 2011b, 2012]. Validation showed that the accuracy of MAIAC is similar to that of 

operational Collection 5 MODIS Dark Target AOD over dark and vegetated surfaces and 

better over most urban regions [Lyapustin et al., 2011b]. The improvement is mostly related 

to the fact that MAIAC retrieves the spectral regression coefficient to assess surface 

reflectance at visible wavelengths from the 2.1 µm measurements, while the Dark Target 

algorithm relies instead on empirical parameterization. In this paper, we combined and took 
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the average of Terra and Aqua AOD values in order to increase the spatial coverage. The 

averaged measurements from Aqua and Terra are suitable for predicting daily PM2.5 

concentrations, because they are a good approximation of the daily mean AOD values, as 

pointed out by Zhang et al. [2012]. We adopted the approach of Puttaswamy et al. [2013] 

and Hu et al. [2014b] when one of the AOD products is missing. In the instance of missing 

values, a linear regression was fitted to establish the association between daily mean Terra-

MAIAC and Aqua-MAIAC AOD values. The missing AOD value was estimated by this 

regression equation, and daily AOD values were obtained by averaging both the observed 

and estimated values. Finally, in addition to the internal cloud mask provided by MAIAC 

[Lyapustin et al., 2008], an upper bound of 2.0 was established for the combined AOD 

values (~0.1% of data were filtered) to reduce potential cloud contamination. We employed 

the same method in our previous studies [Hu et al., 2014a, 2014b].

2.3.2. Fire Data—We obtained the fire count data for the study area from the U.S. 

Department of Agriculture Forest Service’s Remote Sensing Applications Center for 2007 

(http://activefiremaps.fs.fed.us). These data include Terra and Aqua MODIS fires and 

thermal anomalies from the NASA MCD14ML product, collection 5.1. These data were 

downloaded in the Environmental Systems Research Institute (ESRI) shapefile format and 

provided the centroids of the 1 km fire detections. Hawbaker et al. [2008] reported that the 

MODIS active fire product may underrepresent fires in regions with frequent cloud cover or 

rapid burning, as well as small and low-intensity fires. Hantson et al. [2013] also found that 

the detection rate of the MODIS fire product is low for small fires. Although MODIS fire 

data also provide fire radiative power (FRP), we found that fire counts yielded slightly more 

accurate predictions than FRP, and thus, we used fire counts in this analysis. To link fire 

count data to each PM2.5 monitoring site, buffer zones centered at each PM2.5 monitoring 

site with different radii were generated to implement the sensitivity analysis of the impact of 

radius on prediction accuracy of PM2.5 concentrations. The radius that exhibited the greatest 

improvement in prediction accuracy was selected for this analysis. The fire counts within 

each buffer were assigned to the corresponding PM2.5 monitoring site. Because our objective 

was to add the fire predictor to improve the overall prediction accuracy of PM2.5 across the 

entire study area, we used all PM2.5 monitoring sites for radius selection. It should be noted 

that the optimum radius may vary for different study areas, including other subregions in the 

southeastern U.S. and regions outside of the southeastern U.S.

2.4. Meteorological Fields

The meteorological fields were downloaded at a spatial resolution of ~13 km from the North 

American Land Data Assimilation System (NLDAS) (http://ldas.gsfc.nasa.gov/nldas/) 

website, including relative humility and wind speed. The NLDAS provided quality-

controlled, spatiotemporally consistent, real-time, and retrospective forcing data sets 

[Cosgrove et al., 2003]. We adopted the method used by Hu et al. [2014b] that employs 

hourly averaged NLDAS measurements from 10 A.M. to 4 P.M. local standard time as 

daytime meteorological parameters to match the satellite overpass times.
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2.5. Land Use Variables

We downloaded elevation data at a spatial resolution of 1 arc sec (~30 m) from the national 

elevation data set (http://ned.usgs.gov). The A1 road data (limited access highway) were 

obtained from ESRI StreetMap USA (Environmental Systems Research Institute, Inc., 

Redland, CA). A summed value of road length within a 1×1 km2 MAIAC grid cell was 

calculated for that grid cell, and a value of zero was assigned to grid cells that had no roads. 

2006 Landsat-derived land cover maps encompassing the study region at a spatial resolution 

of 30 m were downloaded from the National Land Cover Database (http://www.mrlc.gov). 

To generate forest cover maps, the value of one was assigned to forest pixels and a value of 

zero was assigned to others. We obtained primary PM2.5 emissions (t/yr) from the 2008 EPA 

National Emissions Inventory facility emissions reports. A summed value of point emissions 

within a 1 × 1 km2 MAIAC grid cell was calculated for that grid cell, and a value of zero 

was assigned to grid cells with no emissions.

2.6. Data Integration

We reprojected the data to the USA Contiguous Albers Equal Area Conic U.S. Geological 

Survey coordinate system. For model fitting, a nearest neighbor approach was used to link 

meteorological fields and AOD values to PM2.5 monitoring sites. Averaged forest cover and 

elevation and summed road length and point emissions over the 1 × 1 km2 square buffer 

centered at each PM2.5 monitoring site were assigned to the corresponding PM2.5 

monitoring site. For concentration prediction, we performed the same procedure for each 1 × 

1 km2 MAIAC grid cell. Fire data were linked to each monitoring site and MAIAC pixel 

centroid by calculating the fire counts within a buffer centered at each monitoring site and 

MAIAC pixel centroid with a selected radius.

2.7. Model Structure and Validation

To estimate PM2.5 concentrations using satellite AOD, Lee et al. [2011] and Kloog et al. 
[2011] developed linear mixed effects (LMEs) models to account for the day-to-day 

variability within the relationship between PM2.5 and AOD. Hu et al. [2014b] introduced a 

second-stage model using geographically weighted regression (GWR) to explain potential 

spatial variability in the relationship. This method achieved reasonable prediction accuracy 

and was adopted for use in this study. In addition, some of the predictors are local variables 

and some could be universal. Whether a predictor should be incorporated needs to be tested 

in the model. Hu et al. [2014a] found that for various years, the best prediction accuracies 

were obtained by using different combinations of predictors. We tested a number of different 

predictors in the model, including air temperature, mixing height, and area source emissions, 

to find the most suitable combination of predictors that would yield the best prediction 

accuracy. Since the primary purpose of this paper was to investigate whether fire data can be 

used to improve prediction accuracy of PM2.5 concentrations, particularly in areas with high 

fire occurrence, fire parameters were toggled on and off in the two-stage model to compare 

performances of models with and without fire predictors (hereinafter referred to as the “fire 

model” and the “nonfire model”). The model structure can be expressed as follows:
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(1)

where equation (1) is the model structure for the fire model. The nonfire model has the same 

model structure to equation (1) but does not include fire count data as a predictor. For the 

first-stage LME model, b0 and b0,t are the fixed and day-specific random intercepts, 

respectively, and bi(i= 1, 2, 3, …, 8) and bi,t (i= 1, 2, 3) are the fixed and day-specific 

random slopes for predictors, respectively; PM2.5,st, AODst, relative humidityst, and wind 

speedst are the PM2.5 measurements (µg/m3), the MAIAC AOD value (unitless), the relative 

humidity value (%), and the wind speed value (m/s) at site s in day t, respectively; elevations, 

major roadss, forest covers, point emissionss, and fire count datas are the elevation value (m), 

the road length value (m), the forest cover value, point emissions (t/yr), and the fire count 

data at site s, respectively; and Ψ is an unstructured variance-covariance matrix for the 

random effects. Element of Ψ in position i and j is the covariance between the ith and jth 

elements of a vector of random variables. There are several possible covariance structures 

for Ψ. We selected unstructured because unstructured covariance matrix has no a priori 

constraint and each variance and covariance is estimated uniquely from the data using a 

likelihood-based method. As a result, it can achieve the best possible model fit. For the 

second-stage GWR model, PM2.5_resist and AODst denote the residuals from the stage one 

model and the MAIAC AOD value (unitless) at site s in month t, respectively. β0,s and β1,s 

are the location-specific intercept and slope, respectively. The first stage of the model can 

explain the day-to-day variability within the relationship between PM2.5 and AOD, while the 

second stage is able to account for the spatial variability in the association. Model fitting 

estimates the fixed and day-specific random intercepts and slopes for the first-stage LME 

model and location-specific intercepts and slopes for the second-stage GWR model. After 

we obtained those intercepts and slopes, we calculated the two components of the PM2.5 

prediction from the first- and second-stage models separately and then added them together. 

Validation was conducted by calculating a variety of statistical indicators between fitted 

values from the model and observations such as the coefficient of determination (R2), mean 

prediction error (MPE), and root-mean-square prediction errors (RMSPEs). The MPE and 

RMSPE are defined as

(2)
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(3)

where y^i is the predicted PM2.5 concentrations, yi is the observed values, and n is the total 

number of the observations. Additionally, we adopted a tenfold cross-validation (CV) 

technique to assess potential model overfitting and randomly split the entire data set into 10 

subsets with each subset containing approximately 10% of the data [Kohavi, 1995]. In each 

round of cross validation, one subset was used for model testing, and the remaining nine 

subsets were used for model fitting. Predictions were made for the held-out subset. We 

repeated the process 10 times to test every subset and calculated R2, MPE, and RMSPE 

between CV-predicted values and observations to assess potential model overfitting.

3. Results

3.1. Radius Selection

To assign fire counts to each PM2.5 monitor and MAIAC grid centroid, a buffer zone 

centered at each monitor and centroid was generated, and the buffer zones radii were 

determined. The radius is believed to be related to the distance that fire smoke plumes could 

transport, on average, during the study period and within the study region. For radius 

selection, fire counts calculated in buffers with different radii were used in cross validation, 

and CV RMSPE was then calculated for each radius. The radius that generated the lowest 

CV RMSPE value (representing the best prediction accuracy) was adopted in this analysis. 

The result of radius selection is illustrated in Figure 2, and it showed that the lowest CV 

RMSPE was achieved when the radius reached 75 km. As a result, we selected 75 km as the 

buffer radius in this paper, regardless of the fact that the differences of CV RMSPE 

generated from various radii were actually small and inconsequential. The RMSPE is 

insensitive to the buffer radii considered, because fire counts within various radii are highly 

correlated. For all monitoring sites, the correlation coefficient (r) ranged from 0.05 to 0.997 

with a mean of 0.63.

3.2. Descriptive Statistics

Table 1 summarizes the descriptive statistics of dependent and predictor variables used in 

model fitting. The annual mean PM2.5 concentrations in 2007 ranged from 2 to 145 µg/m3, 

the annual mean AOD values extended from 0 to 1.95, and the fire counts (calculated within 

a 75 km buffer) ranged from 0 to 91, indicating frequent fire occurrence near some PM2.5 

monitoring sites. Figure 3 displays the seasonal distribution of fire counts in the study 

domain in 2007. Fire occurrence was the highest in spring and lowest in winter.

3.3. The Impact of Fires on PM2.5 Predictions

Our first-stage linear mixed effects model generated a slope of 0.20 (p< 0.0001) for the fire 

predictor, indicating a statistically significant and positive relationship between PM2.5 

concentrations and local fire counts. The accuracy assessment results showed that our fire 
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model performed well. Model fitting generated an R2 of 0.75, MPE of 2.47 µg/m3, and 

RMSPE of 3.83 µg/m3, while cross validation (CV) generated an R2 of 0.69, MPE of 2.75 

µg/m3, and RMSPE of 4.29 µg/m3. These results indicate a reasonable fit compared to 

previous studies [Hu et al., 2014a]. To further assess the extent of predictive power that fire 

data can add to our model, the performances of the fire and nonfire models were compared. 

Table 2 lists the CV statistics of the two models, and the results showed that by adding the 

fire predictor to the model, the overall prediction accuracy was improved. The CV RMSPE 

decreased by 0.025 µg/m3, representing a 0.58% reduction. However, the improvement was 

small because 62.3% of PM2.5 monitoring sites were not affected by fires (zero fire spots 

within their buffers), and the mean fire count for all monitoring sites was low (1.41 in this 

study). For those sites unaffected by fires, prediction accuracy was still improved with the 

overall CV RMSPE reduced by 0.021 µg/m3. Both fire and nonfire models overestimated the 

PM2.5 concentrations, while the fire model produced better model fit and yielded less bias 

than the nonfire model. The reason for the observed behavior of this model needs to be 

further explored. On the other hand, the CV RMSPE for three PM2.5 monitoring sites 

located in southern Georgia, including Albany, Brunswick, and Valdosta, decreased 0.65 

µg/m3, an 11.8% drop, and the mean fire count for the three monitoring sites was 5.26, as 

compared to a mean of 1.41 for all monitoring sites. This result could suggest that the fire 

predictor performed better in areas with higher fire occurrence. With fire counts as a 

predictor, the estimated PM2.5 concentrations are also more accurate in spring. That is, CV 

RMSPE was improved by 1.07% for the entire study area and by 25.6% for southern 

Georgia in spring, while the improvement was 0.25% and 1.64% for the study area and 

southern Georgia, respectively, in other seasons. Likewise, Figure 4 illustrates that the 

performances of the fire and nonfire models were largely similar for the entire study area 

and period, and the slope indicates the overall bias of our predicted concentrations away 

from the observations. For the study area, when predictions from both models were 

regressed against observations, the same slopes of 0.94 were obtained, and a slope of 1 was 

reached when they were regressed against each other, indicating similar performances of two 

models. However, in southern Georgia, a slope of 0.84 was obtained when predictions from 

the fire model were regressed against observations, while the slope dropped to 0.8 when 

those from the nonfire model were regressed against observations. Moreover, the slope 

increased from 0.65 to 0.73 in spring when the fire predictor was incorporated, indicating 

reduced biases. These results suggest that fire count data are an effective predictor of PM2.5 

in regions and periods with high fire occurrence. To further evaluate the performance of the 

fire predictor in the model for areas with various levels of fire occurrence, we established a 

number of thresholds for fire counts. We then calculated the differences of CV RMSPE 

between the fire and nonfire models separately for the PM2.5 monitors with fire counts above 

the thresholds (Figures 5a and 5b) and found that the higher the fire counts in buffers 

centered at monitoring sites, the greater the improvement the fire model achieved over the 

nonfire model at those sites. The decrease of CV RMSPE exhibits a general inclining trend 

as the threshold of fire counts become larger with decrease up to 1.5 µg/m3; a maximum 

drop of 13.4% in CV RMSPE. We further calculated the differences of CV RMSPE between 

the fire and nonfire models for the three PM2.5 monitoring sites located in southern Georgia 

(Figures 5c–5f), since differences between PM2.5 concentrations estimated from the fire and 

nonfire models primarily occurred in this area. The results showed that the reduction of CV 
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RMSPE increased as the mean fire count increased, indicating greater improvement of 

prediction accuracy from the fire model at sites with higher fire counts. In Valdosta, the 

annual reduction was 0.9 µg/m3 when the mean fire count reached seven; a 14.33% 

improvement in CV RMSPE. Furthermore, a 2.69 µg/m3 reduction in spring was detected 

when the mean fire count reached 25 in Valdosta; a 29.06% decrease in CV RMSPE.

3.4. Annual and Seasonal Mean PM2.5 Concentrations

The annual and seasonal mean PM2.5 concentrations estimated from both the fire and 

nonfire models are shown in Figure 6. The results showed that the patterns of PM2.5 

estimates from both models were largely similar. For instance, high concentrations occurred 

in large cities and along major highways, while low concentrations appeared in mountainous 

and rural areas. Figure 6 also shows that the differences between PM2.5 concentrations 

estimated from the fire and nonfire models match well with the spatial distribution of the fire 

density. That is, large differences occurred in areas with high fire density, while small 

differences appeared in areas with low fire density. These differences primarily occurred in 

the southeastern part of our domain, particularly in southern Georgia where fires frequently 

occur. In this region, PM2.5 estimates generated from the fire model were higher than those 

estimated from the nonfire model. In conjunction with our accuracy assessment results for 

the three PM2.5 monitoring sites in southern Georgia, the results suggested that high PM2.5 

concentrations in this region were partially a result of fires, and these contributions could be 

effectively captured by adding fire count data as a predictor to our model, especially for the 

areas with high fire occurrence. The comparison between seasonal mean PM2.5 estimates 

generated from the fire and nonfire models showed that the differences were larger in spring 

than those in the rest of the year, which was consistent with the seasonal distribution of fire 

counts. The mean relative differences in the study region were 1.2%, 2.3%, 0.1%, and 1.3% 

for winter, spring, summer, and fall, respectively. The fires mainly occurred in spring, and as 

a result, fire contributions to PM2.5 concentrations were also high in spring. Other seasons 

had lower fire contributions due to fewer observed fire occurrences. There were also some 

noticeable differences along the Mississippi River and in southern Alabama in fall. 

Investigating the PM2.5 monitoring sites in these regions, we found a 0.01 µg/m3 (0.2%) 

improvement in CV RMSPE in the Mississippi River region in fall and a 0.08 µg/m3 (2%) 

improvement in CV RMSPE in southern Alabama when the fire predictor was incorporated. 

This improvement was small, which might be due to lower fire occurrence in fall as 

compared to that in spring.

4. Discussion

A strength of our analysis was that we used high spatial resolution MAIAC AOD data to 

estimate high spatial resolution daily average PM2.5 concentrations. This method made it 

possible to examine whether fire counts can provide additional predictive power for PM2.5 

concentration prediction at a much finer scale than using MODIS or MISR. Higher 

resolution can help reveal more local details of the relationship and thus is more desirable. 

Our results showed that the differences between PM2.5 concentrations estimated from the 

fire and nonfire models matched well with the fire density. Furthermore, our results showed 

that incorporating fire data as a predictor can improve PM2.5 prediction accuracy, and fire 
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data may partially account for PM2.5 variability in the model, which suggests that elevated 

PM2.5 levels cannot be fully explained by AOD. This may be because some fire-generated 

smoke plumes were missed by Terra and Aqua and therefore were not captured by MAIAC 

AOD, while fire spots can remain detectable at the thermal infrared wavelengths for a 

significantly long period of time. Thus, at some locations, fire count data may introduce 

additional PM2.5 emissions sources missed by MODIS AOD into the model and lead to 

more accurate predictions of PM2.5 at those locations. However, fire count data can only 

partially supplement AOD in PM2.5 predictive models since MODIS fire data miss many 

small and short-lived fires. In addition, the improvement of accuracy of PM2.5 estimates over 

the entire study area was rather small because the distribution of fire spots was 

spatiotemporally unbalanced. Since fires occurred more frequently in southern Georgia and 

in spring than other areas and seasons, the improvement of prediction accuracy is greater in 

this area and season.

One of the difficulties of this analysis was linking fire count data to each PM2.5 monitoring 

site and MAIAC pixel centroid. The dispersion and transport of fire smoke plumes are 

affected by meteorological conditions such as boundary layer height, precipitation, wind 

direction, and speed. As a result, it is a challenge to determine which fire incident 

contributes fine particles to a particular monitoring site or MAIAC pixel centroid. In this 

paper, we defined a buffer centered at each PM2.5 monitoring site and MAIAC pixel 

centroid, and the buffer radius was determined by comparing the performances of the 

models with fire counts calculated using various buffer radii. The radius that can reduce the 

CV RMSPE between predicted values and observations the most was selected in this 

analysis. Although this simplification could bias our estimation, this method was effective in 

our two-stage model setting. Another potential problem regarding linking fire counts to 

PM2.5 monitoring sites and MAIAC pixel centroids was lag time. Transport of fire smoke to 

those locations took time and mainly depended on meteorological conditions, such as wind 

speed. However, the mean wind speed in our domain was 3.85 m/s, which translated to an 

air mass movement of ~332 km within a day. Given that this movement is much farther than 

the 75 km buffer radius, we used same day fire counts to estimate the PM2.5 concentrations.

One limitation of the study is that only fire count data were used in this analysis, not 

including fire size and intensity data. We might expect that fire contributions to PM2.5 

concentrations between fire incidents would vary. Our statistical model, however, assigned 

the same weight to every fire incident; this may be a source of bias. Although we do not 

expect that the resulting prediction errors were large because the fires in the study region 

were generally small, further analyses using more comprehensive fire data, including fire 

size and intensity, are needed for more robust modeling, especially for applying this model 

structure to studies conducted in areas with large wildfires, such as the western U.S.

5. Conclusions

This paper evaluated the performance of MODIS fire count data as a predictor to estimate 

surface PM2.5 concentrations using a two-stage model in the southeastern U.S. in 2007. Our 

findings showed that fire counts were an effective predictor of PM2.5 concentrations, 

especially in southern Georgia and the spring season. Our analysis further exhibited that the 
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predictive power of fire counts generally increased with the increasing number of 

surrounding fire spots. The differences between PM2.5 estimates generated from the fire and 

nonfire models corresponded well with the spatial distribution of fire density. This study 

provides insight into the utility of enhancing predictions of surface PM2.5 levels by 

incorporating fire count data, and future research should utilize more comprehensive fire 

size and intensity data.
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Key Points

• MODIS fire count data were utilized to enhance predictions of PM2.5 levels

• Fire count data provide a measurable improvement in PM2.5 prediction

• Fire counts have better performance in areas and seasons prone to fire events
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Figure 1. 
Study area indicating location of PM2.5 monitoring stations for year 2007.
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Figure 2. 
The impact of buffer radius on root-mean-square prediction errors (RMSPEs).
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Figure 3. 
The seasonal distribution of fire counts within the study area in 2007.
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Figure 4. 
Model validation and comparison between observed and predicted PM2.5 values.
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Figure 5. 
The impact of fire counts on model performance as measured by RMSPE difference 

(RMSPE difference = RMSPE of the nonfire model-RMSPE of the fire model).
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Figure 6. 
Annual and seasonal mean PM2.5 concentration predictions, differences between PM2.5 

concentrations predicted from the fire and nonfire models, and the density of fire counts in 

the study area in 2007.

Hu et al. Page 19

J Geophys Res Atmos. Author manuscript; available in PMC 2017 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hu et al. Page 20

Table 1

Descriptive Statistics Summarizing Observations for PM2.5 Monitoring Sites for Year 2007

Variable Mean SD Min Max

PM2.5 (µg/m3) 13.67 7.70 2.00 145.00

Relative humidity (%)a 49.81 11.75 18.74 86.83

Wind speed (m/s)a 3.85 2.02 0.05 15.11

Forest cover 2006b 0.11 0.14 0.00 0.79

Road length (m)b 2072.00 375.69 0.00 137.00

Elevation (m)b 165.97 150.89 −1.67 981.25

Point emissions 2008 (t/yr)b 2.75 15.81 0.00 138.21

AODa 0.28 0.25 0.00 1.95

Fire countc 1.41 3.36 0.00 91.00

a
Nearest neighbor.

b
Within a 1 × 1 km2 square buffer.

c
Within a buffer with a radius of 75 km.
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