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During the past decade, primary cilia and the associated centrosomes have moved to center 

stage in investigations to understand the molecular mechanisms that lead to renal cyst 

growth in polycystic kidney disease (PKD) and other so-called ciliopathies.1–3 Renal tubule 

epithelial cells possess exactly one primary cilium that protrudes into the tubule lumen. 

These mechanosensors bend in response to intralumenal fluid flow and trigger a calcium 

signal. Numerous cilia-associated proteins have been identified, and mutations in many of 

them lead to proliferation of tubule epithelial cells and renal cystic disease.4 These moieties 

include the polycystins, which are affected in autosomal dominant PKD (ADPKD).

The consensus among many investigators has been that the loss of function of renal cilia 

somehow leads to aberrant proliferation of tubule cells. However, it is unknown what the 

actual purpose of renal cilia is and why flow sensing of fluid movement should have 

anything to do with the regulation of proliferation in the essentially nonproliferative adult 

kidney.

Several groups around the same time made a surprising observation using inducible-gene 

null mouse models; the elimination of polycystins in mature kidneys—or even of primary 

cilia altogether—had no apparent immediate consequence on the kidneys for months. 

Whereas disruption of polycystins or cilia in embryonic or early postnatal mice led to rapid, 

massive renal cyst growth, the same disruption in fully grown kidneys led to cyst growth 

only after a lag of several months.5–9 Therefore, polycystins and primary cilia seem to 

regulate proliferation and cyst growth in the developing and growing kidney but are 

dispensable for the minute-to-minute operation of healthy adult kidneys.

How, then, does one explain the renal cyst growth in ADPKD that is thought to involve 

numerous somatic second-hit mutations that presumably occur during adulthood in 

individual tubule cells? This loss of heterozygosity mechanism involves the inherited first-
hit germline mutation in a polycystin gene, followed by later somatic second-hit mutations 

in the remaining polycystin allele, leading to the growth of genotypically heterogeneous 

clonal cysts. If polycystins and cilia were indeed dispensable in adult kidneys, then a 

second-hit mutation should be inconsequential.
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Recent results from several groups, including an article in this issue of JASN,10 provide 

important insights to explain these puzzling findings. The bottom line is that the simple loss 

of polycystins or cilia in mature kidneys indeed does not always lead to immediate renal cyst 

formation. Although gene dose or epistasis may play a role,11–13 another event—which has 

logically been termed a third hit3—may need to occur, which then leads to proliferation and 

cyst growth. Ischemic7,14,15 and nephrotoxic injury16 have been identified recently as 

important stress events providing a third hit.

In these latter experiments, polycystin 1 or a protein required for cilia formation, Kif3a, was 

eliminated in adult animals by inducible gene knockout. Subsequent renal injury led to cyst 

growth instead of the normal tissue regeneration and resolution of injury. Collectively, these 

findings suggest that polycystin 1 and cilia may not have major functions in the healthy adult 

kidney but are required to orchestrate the orderly execution of tissue regeneration in 

response to renal injury. They seem to be especially involved in the inhibition of 

proliferation once tubules have been repaired because tubule cells seem to keep going to 

form cysts in the absence of cilia or polycystin. Therefore, PKD could be regarded as a 

disease facilitated by unexpected or inappropriate continuous activation of an innate renal 

epithelial repair program. This notion is consistent with the fact that renal repair and PKD 

exhibit numerous similarities with regard to the renal activation of signaling pathways 

(mammalian target of rapamycin [mTOR]), protein expression (kidney injury molecule 1), 

and tissue abnormalities (fibrogenesis).17

The article in this issue of JASN adds another important piece to the puzzle.10 Similar to the 

previous work described, the investigators eliminated renal cilia in adult mice by gene 

knockout of the intraflagellar transport protein polaris. It was previously shown that this loss 

does not result in renal cyst formation until approximately 6 months later.5 One week after 

the polaris gene was eliminated, unilateral nephrectomy was performed. Normally, this leads 

to compensatory hypertrophy of the remaining kidney involving an increase in the size of the 

tubule epithelial cells but very little cell proliferation. In kidneys lacking cilia, however, this 

treatment led to induction of proliferation and massive cystic disease by 3 months.10

These new results suggest that compensatory hypertrophy is another, third hit leading to 

renal cyst growth in addition to ischemic and nephrotoxic injury. Interestingly, the mTOR 

pathway is activated in renal epithelial cells in all of these conditions: After injury, during 

hypertrophy, and in virtually all forms of PKD.17–19 Treatment with the mTOR inhibitor 

rapamycin strongly inhibits compensatory hypertrophy and proliferation during injury repair 

and in PKD.17,18 Furthermore, primary cilia and fluid flow down-regulate mTOR activity in 

renal epithelial cells.20

A possible model emerging from these studies is that cilia and polycystins are required to 

turn off hypertrophic and proliferative signaling in renal epithelial cells after they have 

completed their response to stress-related insults. In the same way, cilia and polycystins may 

be required to turn off proliferation after renal maturation is complete, around day P13 in the 

mouse. Once cilia and polycystins have done their job, they seem no longer required to 

suppress proliferation on a day-to-day basis as long as the kidney does not experience any 

new stress.
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Tubule epithelial cells lacking functional cilia as a result of genetic disease or manipulation 

seem hypersensitive to growth factor signaling that occurs after nephrectomy or injury. 

Many open questions remain about the molecular mechanisms that connect primary cilia and 

the regulation of proliferation. In particular, what is the role of polycystins, 

mechanosensation, calcium signaling, growth factors, and the immune system?

The induction of cyst growth in hypertrophic and injured kidneys could explain the rapid 

decline in renal function in the late stages of ADPKD. Progressive cyst growth leads to 

increased injury of normal tissue and increased functional impairment to which the kidneys 

may attempt to respond with more hypertrophy and repair, but this should make matters only 

worse because it should induce accelerated cyst growth until renal destruction spirals out of 

control. Although there is some evidence that family history predicts renal dysfunction from 

cystic disease,21 this notion of a third hit could also explain the enormous heterogeneity of 

phenotypes even within the same family with ADPKD. Untoward environmental factors may 

lead to subclinical renal injuries that trigger bursts of cyst growth that accelerate disease 

progression.
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