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Abstract

Breast cancer is the second largest cause of cancer death among U.S. women and the lead-

ing cause of cancer death among women worldwide. Genome-wide association studies

(GWAS) have identified several genetic variants associated with susceptibility to breast can-

cer, but these still explain less than half of the estimated genetic contribution to the disease.

Combinations of variants (i.e. genetic interactions) may play an important role in breast can-

cer susceptibility. However, due to a lack of statistical power, the current tests for genetic

interactions from GWAS data mainly leverage prior knowledge to focus on small sets of

genes or SNPs that are known to have an association with breast cancer. Thus, many

genetic interactions, particularly among novel variants, remain understudied. Reverse-

genetic interaction screens in model organisms have shown that genetic interactions fre-

quently cluster into highly structured motifs, where members of the same pathway share

similar patterns of genetic interactions. Based on this key observation, we recently devel-

oped a method called BridGE to search for such structured motifs in genetic networks

derived from GWAS studies and identify pathway-level genetic interactions in human popu-

lations. We applied BridGE to six independent breast cancer cohorts and identified signifi-

cant pathway-level interactions in five cohorts. Joint analysis across all five cohorts revealed

a high confidence consensus set of genetic interactions with support in multiple cohorts.

The discovered interactions implicated the glutathione conjugation, vitamin D receptor,

purine metabolism, mitotic prometaphase, and steroid hormone biosynthesis pathways as

major modifiers of breast cancer risk. Notably, while many of the pathways identified by

BridGE show clear relevance to breast cancer, variants in these pathways had not been pre-

viously discovered by traditional single variant association tests, or single pathway enrich-

ment analysis that does not consider SNP-SNP interactions.

Author summary

Susceptibility to breast cancer is partially encoded in our genomes, but despite the devel-

opment of new genomic technologies over the past decade, we are still not able to
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accurately predict disease susceptibility from genome sequences. One reason for this gap

is that we lack methods for finding combinations of genome variants that lead to disease.

Extensive studies in model organisms have experimentally constructed millions of double

mutants to study genetic interactions and have defined the basic principles by which

genes combine to cause phenotypes in an organism. One powerful outcome of these stud-

ies in model systems is that genetic interactions frequently form highly organized patterns

that can be used as a basis for improved detection of them in humans. We developed a

novel computational approach based on this principle for identifying pathway-level inter-

actions that contribute to breast cancer disease risk. Applying this method to six different

groups of breast cancer patients, we identified a core set of pathways, including glutathi-

one conjugation, vitamin D receptor, purine metabolism, mitotic prometaphase, and ste-

roid hormone biosynthesis. These pathways are well-supported across multiple cohorts

and may contribute to breast cancer susceptibility.

Introduction

Cancer, like many common diseases, is influenced by a variety of genetic and environmental

factors. With the rise of inexpensive genotyping technologies, the portion of risk due to inher-

ited genetic variants has been measured with unprecedented resolution. A recent comprehen-

sive study reported excess familial risk for 20 of 23 cancer types with an overall heritability

estimate of 33% [1]. This varied across different cancer types, from prostate cancer and breast

cancer on the high end with estimated heritabilities of 57% and 31% respectively, to head and

neck cancers on the low end with an estimated heritability of 9% [1, 2]. This study concluded

that for most cancers, our risk is at least partially influenced by the genes we inherit.

As with other heritable diseases, there has been substantial interest in identifying specific

genetic loci that increase or decrease an individual’s risk for specific cancers. Over the past

decade, genome-wide association studies have been the primary strategy for discovering such

loci, and indeed, have been successful at identifying a large number of single-nucleotide poly-

morphisms (SNPs) with statistically significant association to a variety of diseases including

cancer [3–7]. However, for most diseases, there remains a large disparity between the disease

risk explained by the discovered loci and the estimated total heritable disease risk based on

familial aggregation [8–13]. For example, for breast cancer, there have been approximately 100

risk loci identified to date through genome-wide association studies, but the combination of

these loci explains only approximately one-third of the genetic contribution to breast cancer

risk [1], a scenario that is typical across many diseases. There are a variety of explanations for

this phenomenon, commonly referred to as “missing heritability.” For example, one explana-

tion is that disease risk is modulated by a large number of loci, each having a relatively small

effect [8–12, 14]. Alternatively, it has been proposed that rare variants, which are not measured

by most microarray-based genotyping platforms, may be responsible [8–12, 14]. Yet another

possible explanation for our inability to explain the genetic component of disease is genetic

interactions between combinations of common and/or rare loci [10, 11, 13, 15, 16].

Genetic interactions describe combinations of two or more genetic variants whose com-

bined contribution to a phenotype cannot be explained by their independent effects [13, 17,

18]. In principle, genetic interactions can also be discovered through genome-wide association

analysis by measuring the associations between specific combinations of variants and the dis-

ease phenotype. However, in practice, the large number of possible combinations introduces

both computational and fundamental statistical challenges. For a typical genotyping array,

Genetic interactions in breast cancer
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computing associations for all possible pairs (e.g. 1011 for 500k SNPs) is a daunting computa-

tional task. While there have been efficient and scalable computational tools developed for this

purpose [19–22], even when association tests can be computed, statistical power is too limited

to support genome-wide discovery of SNP-SNP interactions [13].

We recently developed a novel method, called BridGE, for discovering genetic interactions

from genome-wide association studies [23]. The approach was designed based on key insights

from reverse-genetic interaction screens in model organisms where it has been observed that

genetic interactions frequently cluster into highly structured motifs [24–27]. More specifically,

genetic interactions often cluster into coherent groups that connect or bridge across two distinct

pathways. In other words, if variants in two different genes, each belonging to a different path-

way, result in a genetic interaction, then any pairwise combination of deleterious SNPs in genes

annotated to the two pathways should exhibit a similar interaction phenotype. We refer to this

type of genetic interaction structure as a “between-pathway” model [28]. The BridGE approach

leverages this idea to explicitly search for coherent sets of SNP-SNP interactions within GWAS

cohorts that connect groups of genes corresponding to characterized pathways or functional

modules. Although many pairs of loci do not have statistically significant interactions when con-

sidered individually, interactions can be collectively significant if there is an enrichment of

SNP-SNP interactions between two functionally related sets of genes (Fig 1A). The method

imposes prior knowledge of pathway membership to exploit the expected between-pathway

topology of genetic networks [23]. Because the number of hypothesis tests performed for all pos-

sible between-pathway combinations is substantially less than the number of tests for all possible

SNP pairs (~105 as compared to ~1011), this enables us to extract statistically significant path-

way-level interactions that can be associated with either increased or decreased risk of disease.

In this study, we describe the application of our BridGE method to breast cancer as part of

the “Up for a Challenge—Stimulating Innovation in Breast Cancer Genetic Epidemiology”

(U4C) competition. Breast cancer is the second largest cause of cancer death among women in

the U.S. with approximately 40,000 deaths annually [29]. GWAS studies have been quite suc-

cessful at identifying a number of susceptibility loci for breast cancer in a variety of populations

[30–37], but as described earlier, the known loci still explain only a limited portion (~one-third)

of the measured heritability [1], suggesting that there are new genetic factors to be discovered.

The U4C challenge presented a unique opportunity to apply our new method to several differ-

ent breast cancer cohorts representing more than five different ethnic populations and enabled

a detailed analysis of how genetic interactions vary across different patient populations.

We describe new pathway-level genetic interactions discovered across four U4C studies (six

independent cohorts) (Table 1) [38–42]. Our approach can discover between-pathway interac-

tions, as described above, as well as within-pathway interactions, which are pairwise combina-

tion of SNPs in genes annotated to the same literature-curated pathway. We also describe the

identification of pathways that participate in many interactions without exhibiting a specific

local structure (i.e. “hub-pathways”). Independent discoveries from each cohort are discussed

along with replication analysis where the proper cohorts exist. We conclude with a consensus

analysis of genetic interactions, which revealed a set of new pathways that are associated with

breast cancer across multiple cohorts.

Results and discussion

BridGE: A method for systematic discovery of pathway-level genetic

interactions

We applied our recently developed method, BridGE, to explicitly search for pathway-level

genetic interactions from genome-wide association study (GWAS) data [23]. The details of
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our method are described in our companion paper [23], but a brief overview is provided as

part of this study (Methods). In general, BridGE takes as input human genotypes from

matched disease/control groups, typical of that used for GWAS, together with a set of pathways

as defined by curated functional standards (e.g. KEGG[43], Reactome [44], Biocarta[45]).

The method then searches for instances of three different pathway-level models of genetic

interactions, all motivated by analysis of genetic interactions in yeast [24–27, 46]: (1) between-

Fig 1. Pathway-level genetic interaction models. (A) Between-pathway interaction and between-pathway model. Two biological pathways share a

common function necessary for maintaining a healthy state. Genetic variants in individual pathways do not result in a phenotype, but joint mutations in both

pathways in the same individual results in disease. Between-pathway interactions clustering between two complementary pathways and appear are referred

to as an instance of the between-pathway model (BPM). (B) Within-pathway interaction and within-pathway model. A single pathway supports a function for

maintaining a healthy state. A single genetic variant does not result in a phenotype, but joint mutations in the same pathway results in the loss of function and

a disease state. Within-pathway interactions clustered within the single pathway are called a within-pathway model (WPM). (C) Overview of the framework for

discovering pathway-level genetic interactions from GWAS breast cancer data, leveraging the BridGE method [23].

https://doi.org/10.1371/journal.pgen.1006973.g001

Table 1. Information about the 4 GWAS data sets used in this study.

Study Accession Platform Case Control Population Subtype Number of Samples used

in BridGE

BPC3 phs000812 Illumina HumanHap550v3.0;

HumanHap 660

1998 3263 European ER negative 3490

CGEMS phs000147 Illumina HumanHap550 1145 1142 European Primarily ER positive 2244

MCS phs000517 Illumina Human660W-Quad_v1_A,

Human 1M

1878 1830 Japanese,

Latina,

African

American

Primarily ER positive 1364, 282,

390

SBCGS phs000799 Affymetrix 6.0 2867 2285 Chinese Mixture of ER positive/

negative

imputed 4562,

non-imputed 4490

https://doi.org/10.1371/journal.pgen.1006973.t001
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pathway model (BPM) (Fig 1A and 1C), (2) within-pathway model (WPM) (Fig 1B and 1C),

and (3) hub pathways (PATH) (Fig 1C). Between-pathway interactions occur when two path-

ways impinge on a common function required to maintain a healthy (non-disease) state.

Because the two pathways can functionally compensate for each other, the disease phenotype

only occurs when both pathways are perturbed in the same individual. Under the within-

pathway model, a single genetic variant partially disables a pathway’s function but, when com-

bined with another deleterious variant affecting the same pathway, complete loss of pathway

function results and leads to a disease state. Pathway hubs correspond to pathways with fre-

quent modifier effects where the target loci are not necessarily functionally coherent as under

the between-pathway model, and are identified by the BridGE algorithm as pathways that

involve SNPs with an elevated number of SNP-SNP interactions. Specifically, BridGE tests

each pathway-level interaction structure to assess enrichment for SNP-SNP interactions based

on three statistics (χ2global, χ2local and pperm for BPM and WPM) (See Methods) [23]. BridGE

also implements multiple disease models (based on the assumption that the alleles increasing

susceptibility to the disease are recessive, dominant or additive) [23] and discovers interactions

associated with both increased and decreased risk of the disease of interest.

Analysis of genetic interactions in the BPC3 and CGEMS cohorts

We first applied our BridGE approach to the BPC3 and CGEMS cohorts (phs000812 and

phs00147, respectively). These cohorts are both comprised of European Americans with geno-

types measured using a common array platform (Illumina HumanHap550, Table 1), which

provides a robust basis for replication analysis. We note that despite a common patient ethnic

group, distinct disease populations are represented. The BPC3 cohort is comprised exclusively

of women with ER-negative breast cancer while the CGEMS cohort consists of women with

invasive, post-menopausal breast cancer. Previous studies suggest both unique and overlap-

ping risk factors for ER negative and other breast cancers [47].

Discovery of between pathway interactions in BPC3 cohort (European). Focusing first

on identifying between-pathway model (BPM) interactions, we applied BridGE to the BPC3

cohort [38]. At a false discovery rate of 0.25, we identified 18 between-pathway interactions,

corresponding to 11 distinct pathway pairs after removing redundancy (S1 Table). All 11 in-

teractions were associated with increased risk and were discovered under a combined domi-

nant/recessive model, which integrates SNP-SNP interactions arising from either a recessive

or dominant disease model. Across the 11 discovered BPMs, there were 19 total pathways

involved in these pathway-pathway interactions, and many of them were clearly relevant to the

biology of breast cancer. For example, we found evidence for a genetic interaction between the

steroid hormone biosynthesis pathway (Reactome) and a gene set associated with acute mye-

loid leukemia (Fig 2A). This gene set was obtained from KEGG and was created based on liter-

ature curation of the genetic events that are known to be crucial for leukemic transformation

(many of them identified through somatic mutations observed for leukemia). The basis for

our discovery of this interaction was an elevated density of SNP-SNP interactions bridging

genes in these two pathways relative to the background density. Specifically, we observed a

density of 0.05 of weakly significant SNP-SNP pairs relative to an expected background of 0.03

in the entire network, which was highly significant based on a null distribution estimated from

200,000 SNP label permutations (p = 1.0 × 10−5) (Fig 2B). This BPM was associated with

increased risk, which means that for each SNP-SNP interaction pair supporting the BPM, indi-

viduals that were either homozygous (recessive and dominant models) or heterozygous (domi-

nant only) for the minor allele at two loci of interest were enriched among the cases relative to

the controls. None of the individual SNP-SNP interactions we identified were significant in

Genetic interactions in breast cancer
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individual pairwise tests (min. FDR = 0.94) (Fig 2C). Furthermore, although several of the

individual SNPs supporting this BPM exhibited moderate univariate association (5.0 × 10−4�

p� 0.05) with breast cancer incidence (21/139 in AML, 4/38 in SHB), respectively, none of

them would reach a standard level of genome-wide significance (p� 10−8) suggesting that

accounting for interaction between combinations of different common variants may contrib-

ute significantly to breast cancer heritability.

Fig 2. An example between pathway interaction identified from the BPC3 cohort. (A) Interaction between Acute Myeloid Leukemia (AML) gene

set and Steroid hormone biosynthesis (SHB) gene set. White and yellow nodes represent the SNPs mapped to genes in the corresponding pathways

and their color shows the significance of a univariate test in the same breast cancer cohort (white: not significant; yellow: marginally significant, 10−4 <
p < 0.05). Red lines indicate the risk associated SNP-SNP interactions between SNPs mapped to the corresponding pathways. (B) Null distribution of

the SNP-SNP interaction density between the AML and SHB based on 200,000 SNP permutations. The arrow indicates the observed SNP-SNP

interaction density in the BPC3 cohort. (C) Distribution of the significance of pairwise SNP-SNP interactions (-log10 p-value) tested individually for

SNP pairs supporting the AML-SHB interaction. The most significant SNP-SNP interaction results in an FDR = 0.94 after multiple hypothesis

correction, suggesting that there is not sufficient power to detect SNP-SNP interactions between these pathways in this cohort.

https://doi.org/10.1371/journal.pgen.1006973.g002
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The steroid hormone biosynthesis pathway represented a major hub among our discoveries

for the BPC3 cohort, appearing in 8 of the 11 discovered BPMs (Fig 3A). The steroid hormone

biosynthesis pathway consists of a combination of cytochrome P450 heme-containing proteins

and hydroxysteroid dehydrogenases that are responsible for converting cholesterol into active

steroid hormones [44]. Previous studies have found an association between higher levels of

endogenous estrogens, progesterone, cortisol, and androgens and higher incidence rates of

breast cancer [48–50] [51]. Several individual genetic variants that modulate steroid hormone

biosynthesis levels have been explored in relation to breast cancer risk, perhaps most notably a

variant in the CYP11A1 enzyme [48]. Our results suggest that several common variants in this

pathway may contribute to risk of breast cancer through genetic interactions with several

other pathways.

Replication analysis of BPC3 interactions in CGEMS cohort (European). We next

examined whether significant between-pathway interactions discovered in the BPC3 cohort

replicated in the CGEMS cohort (see Methods for details). BPMs were tested for replication in

the independent cohort using our previously described approach [23]. The steroid hormone

biosynthesis and the AML gene set (SHB-AML) BPM interaction described above was nomi-

nally significant (p� 0.05) by all three measures of significance. Another two BPMs, both

involving interaction of the steroid hormone biosynthesis pathway with either Na+/Cl- depen-

dent neurotransmitter transporters or Amine compound SLC transporters, were also nomi-

nally significant by 2 of the 3 measures in the CGEMS cohort (S2A Table). In addition to

evaluating the significance of the replication statistics for the individual BPMs, we also found

that the overall degree of replication of the entire set of BPMs based on 10 random sample per-

mutations was significant (S2B Table, fold-change >15, p = 0.0043).

We further investigated whether the individual SNP-SNP interactions supporting the dis-

covered pathway-level interactions between the steroid hormone biosynthesis pathway and the

AML gene set were similar across cohorts. The set of overlapping SNP-SNP interactions sup-

porting this pathway-pathway interaction across the BPC3 and CGEMS cohorts was relatively

small (6 SNP-SNP interactions in common, S3 Table). We observed more agreement between

the cohorts when considering genes implicated by the interactions instead of SNPs (Fig 3B and

3C). Nonetheless, these results suggest that despite the common pathway-level interaction sup-

ported in both cohorts, distinct combinations of SNPs confer disease risk between these popu-

lations. This idea is consistent with the between pathway interaction model and may explain

why success in discovering statistically significant SNP-SNP level interactions is limited in

most standard GWAS cohorts.

Evidence for link between AML-associated genetic risk loci and breast cancer. Given

the replication of the AML gene set and the steroid hormone biosynthesis pathway, we investi-

gated the potential connection between AML genes and breast cancer risk. Interestingly, sev-

eral previous studies have explored the link between breast cancer and AML and show that

patients surviving breast cancer tend to exhibit higher incidence of AML [52, 53]. Although it

remains unclear if this higher incidence is linked to genetic lesions induced by therapies used

to treat breast cancer, the enrichment of SNP-SNP interactions connecting AML-linked genes

to the hormone biosynthesis pathway observed in our analysis suggests that common genetic

factors may contribute to increased susceptibility to both diseases. Interestingly, the transcrip-

tion factor RUNX1 is included in the AML gene set and was a major driver of the BPM we dis-

covered (Fig 3, S1 Table). There is an established link between the Runt family of transcription

factors (RUNX1, RUNX2, RUNX3), which have been identified as key drivers of AML and

other cancers [54], and breast cancer. Specifically, RUNX1 is highly expressed in luminal and

basal cells in normal breast tissue, but its expression is reduced in many breast tumors, and

lower expression of RUNX1 has been used to predict breast cancer metastasis [55]. RUNX2

Genetic interactions in breast cancer
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has been shown to play an oncogenic role in breast cancer [54, 56, 57] and its expression has

been associated with the triple-negative cancers and correlates with poorer patient survival

[56]. Our data suggest that subtypes of breast cancer may share a common genetic basis given

the fact that we observe an enrichment of SNP-SNP interactions connecting AML-linked

genes to the hormone biosynthesis pathway associated with increased breast cancer risk.

Given the appropriate cohort with access to AML incidence post breast cancer, this hypoth-

esis could be directly tested. We predict that there should be a subpopulation of patients whose

breast cancer is due to interactions between AML-associated genes and variants in the hor-

mone biosynthesis pathway. For these patients, we would expect an increased incidence of

AML relative to other individuals with breast cancer regardless of whether they were treated

with chemotherapy. Such a finding could have clinical utility because the relevant variant com-

binations could be used as a diagnostic marker to avoid administering chemotherapy to

women who harbor a subtype of breast cancer that predisposes them to AML. Interestingly,

we did identify a recent study that provides indirect support for this hypothesis [58]. This

study focused on a set of women who developed leukemia after chemotherapy for breast can-

cer and identified germline risk factors enriched among these patients. The study concludes

that these factors predispose those individuals to chemotherapy-induced leukemia. The

authors also note previous reports of secondary AML diagnoses following only surgery or radi-

ation treatment for breast cancer [59–62], supporting the idea that germline risk for AML

within breast cancer patients even without exposure to chemotherapy may be a factor in the

observed prevalence of AML among breast cancer survivors.

Although the number of common individual SNP-SNP interaction pairs supporting this path-

way-level interaction was relatively small between these two cohorts, the set that does overlap pro-

vides a starting point for more in-depth analysis. The gene- and corresponding SNP-pairs that

supported the discovery of this BPM in both cohorts include: RARA-HSD11B1, RAF1-HSD11B1,

LEF1-HSD11B1, ZBTB16-HSD11B1, FLT3-STARD4, PIK3R3-CYP19A1; corresponding SNP-

SNP pairs: rs4077125-rs742375, rs6442323-rs11119343, rs4956041-rs11119343, rs7118530-

rs12143281, rs1933437-rs42670, rs3845301-rs3751586. Notably, a search of the NHGRI-EBI

GWAS catalog [63] reveals that none of the genes or the SNPs involved in these pairs have been

previously associated with breast cancer despite the clear relevance of the corresponding genes to

cancer and evidence of genetic interactions in two independent cohorts. More investigation of the

potential relevance of these interactions would be worthwhile.

While the steroid hormone biosynthesis-AML pathway interaction has the strongest sup-

port across these two cohorts, other pathways that we found to interact with the steroid hor-

mone biosynthesis pathway were also relevant to breast cancer. For example, one of the other

risk-associated BPMs that replicated in the CGEMS cohort connected the steroid hormone

biosynthesis pathway and an amine compound SLC transporter gene set (Reactome). A recent

study showed that amino acid transporters (e.g. SLC6A14) were upregulated in tumors of epi-

thelial origin, including breast cancer, and suggested them as a possible new target for cancer

treatment [64]. Another interaction connected the steroid hormone biosynthesis pathway to a

Type II diabetes gene set (KEGG), which is interesting given previous findings that women

with type II diabetes have elevated risk of breast cancer. This interaction suggests a potential

genetic basis for this comorbidity [65].

Fig 3. Summary of between-pathway and within-pathway interactions discovered from the phs000812 (BPC3) cohort. (A) Network

representation of a set of significant (FDR� 0.25) pathway-level interactions (BPM, WPM and PATH) that are associated with increased risk of breast

cancer. Node size reflects the interaction degree. (B & C) Heatmap view of the interaction between the Acute Myeloid Leukemia (AML) gene set and

the steroid hormone biosynthesis (SHB) pathway in the discovery cohort BPC3 (B) and in the replication cohort CGEMS (C). Red in the heatmap

indicates that there is at least one SNP-SNP interaction identified between the corresponding genes.

https://doi.org/10.1371/journal.pgen.1006973.g003
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Discovery of within pathway interactions and pathway interaction hubs in BPC3 and

CGEMS. In addition to between-pathway interactions, the BridGE approach can also be

used to identify single pathways that are enriched for SNP-SNP interactions mapping to multi-

ple genes within the same pathway (within-pathway model, WPM) or pathways that are

enriched for SNP-SNP interactions across the entire genome (pathway hub model, PATH).

Applying BridGE to the BPC3 and CGEMS cohorts, we identified 2 WPM and 3 PATH inter-

actions from the BPC3 cohort and 2 WPM and 4 PATH interactions on the CGEMS cohorts

(FDR�0.25, S1 Table, S4 Table). For example, in the CGEMS cohort, we found that the PKA

activation pathway (Reactome) was enriched for risk-associated WPM and PATH interactions.

Both types of interactions were replicated in a second cohort with permutation p-values of

0.004 and 0.015 respectively (MCS Japanese, see JPN517 in S5 Table). Previously, PKA activa-

tion has been associated with prognosis and resistance to certain therapies against breast can-

cer (e.g. [66], [67]). It is worth noting that the validation of this PKA activation was based on a

cohort consisting of Japanese women while our discovery was completed on women of Euro-

pean ancestry. This suggests that the PKA activation pathway may be a common breast cancer

risk factor across different populations.

Application of BridGE method to four additional non-European breast

cancer cohorts

In addition to detailed analysis of the two European cohorts described above, we also applied

BridGE to four additional cohorts, for a total of six cohorts: MCS (JPN, LTN, AA) and SBCGS

(CHN) (Table 1). The JPN cohort was genotyped using the Illumina Human 1M platform, and

thus, to facilitate comparison between the JPN and CHN cohorts, we used the imputed SNPs

in the CHN cohort (Affymetrix 6.0 platform) to ensure enough common SNPs across two

cohorts for BridGE analysis. For the CHN cohort, we attempted discovery both from the origi-

nal genotypes as well as the imputed profiles. Results on the JPN cohort were originally

reported in our companion paper [23], but are analyzed in the context of the other cohorts dis-

cussed here. BridGE was applied to discover between-pathway (BPM), within-pathway

(WPM), and pathway hub (PATH) interactions independently from three out of four addi-

tional cohorts (Table 2, MCS AA cohort is omitted as it did not yield significant discoveries).

Indeed, we were able to find genetic interactions in three of the four additional cohorts,

although the number of interactions identified varied across cohorts as did the corresponding

model (BPM, WPM, or PATH) (S6 Table, S7 Table and S8 Table). Notably, the SBCGS CHN

cohort, the largest of all cohorts we analyzed, produced a large number of discoveries (S7

Table). For example, at an FDR of 0.25, we discovered 37 distinct BPMs, 1 WPM, and 1 PATH

interaction. Several of these involved DNA repair pathways. In particular, the base excision

repair pathway (Reactome) was involved in 6 of the 39 genetic interactions we discovered

and included interactions with other pathways such as an adipocytokine signaling pathway

(KEGG), ubiquitin-mediated proteolysis (KEGG), and a renal cell carcinoma gene set (KEGG)

(S7 Table). Because some of the most well-known risk factors for breast cancer, e.g. BRCA1/

BRCA2, PALB2, and ATM, are involved in DNA repair [37, 68], the prominence of this path-

way is not surprising. Our finding suggests that these pathways are frequent modifiers in this

population.

Consensus analysis of pathway-level genetic interactions across five

cohorts

Most of the significant genetic interactions discovered across the five cohorts were unique to

each cohort, suggesting that the strongest genetic interactions are distinct in each population
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and may reflect the broad set of ethnicities represented by these cohorts. However, we rea-

soned that there may also be common genetic interactions underlying breast cancer risk across

diverse populations, and that if we performed joint discovery across these diverse cohorts, we

may be able to detect such universal risk factors. We anticipated that pathway-level interac-

tions with moderate significance in individual cohorts that were consistently identified across

multiple populations would be highly significant when analyzed together. Applying this princi-

ple, we extended our BridGE approach to enable joint analysis of between-, within-, and hub-

pathway interactions across multiple cohorts. Significance of BPMs, WPMs, or PATH interac-

tions with support across multiple datasets was assessed through resampling of the pathway-

level statistics from 10 sample permutations (case-control label permutations) we ran for all

five cohorts (see Methods for details). Indeed, this analysis identified a set of BPM, WPM and

PATH genetic interactions with significant support across multiple different cohorts (Fig 4,

S5A, S5B, S5C and S5D Table). For example, for BPM interactions, at a stringent joint signifi-

cance threshold (p� 1 × 10−5, see Methods for details), we identified 17 BPMs with support in

multiple cohorts, which was significantly more than random expectation based on a permuta-

tion-derived null distribution (p = 0.02, S5D Table, see Methods for details). Similar analysis

for WPM and PATH interactions suggested greater than expected coherence across the

cohorts as well (S5D Table).

We visualized the complete set of BPM interactions as a network to explore the relationship

between the discovered interactions (Fig 5). Several interesting breast cancer-relevant path-

ways emerged as part of this analysis, including a vitamin D receptor pathway that appeared to

act as a consensus interaction hub by connecting several significant BPMs with support from

at least two cohorts each. This hub’s existence suggests that the vitamin D receptor pathway is

an important modifier of breast cancer risk. All of these interactions with the vitamin D recep-

tor pathway were associated with protective effects (decreased risk of disease) and included

interactions with integrin signaling and the toll-like receptor signaling pathway (Fig 4A). Vita-

min D is a secosteroid hormone, and several previous studies have explored the potential pro-

tective effect of vitamin D levels on breast and other cancers [69, 70]. Interestingly, despite

substantial interest, studies on the protective effects of vitamin D in cancer have produced

Table 2. Summary of discoveries across five breast cancer cohorts.

Study Race Disease Model Interaction

Type

min(fdr) Number of significant discoveries (non-redundant)

fdr�0.05 fdr�0.1 fdr�0.15 fdr�0.2 fdr�0.25

BPC3 EUR Combined BPM 0.25 18 (11)

WPM 0 1 (1) 2 (1) 2 (1) 3 (2) 3 (2)

PATH 0 5 (2) 8 (2) 10 (2) 10 (2) 13 (3)

CGEMS EUR Dominant BPM 0.35

WPM 0.23 3 (2)

PATH 0.13 5 (4) 5 (4) 5 (4)

MCS JPN Dominant BPM 0.15 86 (37) 108 (43) 124 (48)

WPM 0.4

PATH 0.1 2 (2) 2 (2) 2 (2) 2 (2)

MCS LTN Dominant BPM 0.31

WPM 0.92

PATH 0.1 1 (1) 1 (1) 1 (1) 1 (1)

SBCGS CHN Combined BPM 0 12 (7) 28 (19) 38 (21) 73 (34) 84 (37)

WPM 0 2 (1) 2 (1) 2 (1) 3 (1) 3 (1)

PATH 0.1 1 (1) 2 (1) 2 (1) 2 (1)

https://doi.org/10.1371/journal.pgen.1006973.t002
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Fig 4. Consensus summary of pathway-level interactions discovered from the 6 GWAS breast cancer cohorts. (A) Network view of the most

significant between-pathway interactions (BPM) (geometric mean p� 5.0 × 10−5) that are supported by at least two cohorts. The supporting cohorts are

indicated by the edge labels. (B) List of all within-pathway interactions (WPM) and hub pathways (PATH) that are most significant (geometric mean

p� 5.0 × 10−3) and supported by at least two cohorts.

https://doi.org/10.1371/journal.pgen.1006973.g004
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mixed results [69]. Our observation that the vitamin D receptor pathway participates in many

genetic interactions may suggest that only specific subsets of patients will benefit from in-

creased dosage of vitamin D, which is consistent with these findings. These interactions were

primarily supported in the MCS LTN and SBCGS CHN cohorts. Another pathway, the gluta-

thione conjugation pathway (Reactome) (Fig 4 and Fig 5), emerged as the single strongest con-

sensus pathway interaction hub (PATH) associated with increased breast cancer risk, with

support in three of the five cohorts examined (MCS LTN, MCS JPN, and SBCGS CHN). Sev-

eral between-pathway interactions were associated with the glutathione conjugation pathway

in the consensus analysis as well. With additional cohorts, these discoveries could be assessed

for replication beyond our consensus analysis, which would further increase confidence.

Glutathione conjugation as a common breast cancer modifier

Glutathione S-Transferases (GSTs) comprise a large and conserved family of enzymes that cat-

alyze conjugation of reduced glutathione (GSH) to a variety of substrates [71]. GST-mediated

conjugation of glutathione often leads to formation of less reactive products and, as a result,

Fig 5. Network view of the between-pathway interactions (BPM) from the consensus analysis. All BPMs satisfying a geometric mean p� 5.0 × 10−4

threshold from consensus analysis are plotted. Red edges indicate interactions associated with increased breast cancer risk while green edges indicate

interactions associated with decreased risk. Node size is proportional to the number of BPMs connected to each pathway. Several of the highly connected

pathways are labeled by numbers, and their corresponding pathway names are listed. The complete information for these pathways can be found in S5 Table.

https://doi.org/10.1371/journal.pgen.1006973.g005
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GSTs play an important protective role in the detoxification of toxins and reactive oxygen spe-

cies produced as a result of oxidative stress [71]. Non-enzymatic roles have also been reported,

whereby GSTs modulate specific cell functions through physical interaction with specific pro-

teins and lipids in a GSH independent manner [71].

Based on their broad enzymatic and non-enzymatic functions, GSTs have been identified

as important targets for anti-inflammatory and anti-tumor drug therapies [71]. Indeed, several

GST isoenzymes have been associated with various forms of cancer. For example, the GSTM

family of isoforms has been the focus of more than 500 studies examining associations between

GSTM genotypes and various malignancies. One of these studies suggested that homozygous

deletion of GSTM1 is associated with protective effects against breast cancer [72] while other

studies proposed that GSTM1 null alleles have a modest effect on lung cancer [73]. Polymor-

phisms in another GST isoenzyme, GSTP1, have also been shown to modify response to che-

motherapy in patients with colorectal cancer and multiple myeloma [74, 75], and GSTP1 was

shown to influence risk of acute myeloid leukemia in patients successfully treated for breast

cancer, non-Hodgkins lymphoma, Hodgkins and ovarian cancer [76]. Furthermore, human

tumor cell lines can overexpress GSTP1, GSTA and GSTM isoenzymes [77]. In fact, GSTP1

overexpression is considered a major cancer biomarker that can influence both disease devel-

opment and treatment [77]. For example, GST overexpression can lead to enhanced GSH con-

jugation and inactivation of chemotherapeutic agents [71] as well as aberrant regulation of cell

growth and apoptosis signaling pathways caused by direct binding and sequestration different

protein and hormone ligands [71, 77–82]. Indeed, our systematic analysis to identify between-

pathway interactions involving the glutathione conjugation pathway revealed a clear relation-

ship between GSTs and cancer-related signaling pathways (Fig 6B and 6C, S10 Table).

Given the discovery of the glutathione conjugation pathway as a pathway interaction hub

(PATH) from our consensus analysis, we performed a full analysis of the three relevant cohorts

to focus on discovering significant between-pathway interactions that specifically involved the

glutathione conjugation pathway. By focusing on just this pathway, we further reduced the

number of hypothesis tests to improve our power to discover specific pathways interacting

with glutathione conjugation. This approach was successful for two of the three cohorts

(MCS LTN, SBCGS CHN) and produced 17 and 77 interactions at FDR� 0.25 (S10 Table),

respectively.

Strikingly, 3 of these BPMs were independently discovered in both cohorts: regulation of

PGC-1a, toll-like receptor 9 cascade and response to E. coli infection (Fig 6B and 6C). One of

these pathways, PGC1A (also called PPARGC1A) regulates the activity of numerous transcrip-

tion factors that regulate cell growth and proliferation. These transcription factors include

PPARγ (Peroxisomal Proliferator-Activated Receptor γ), PPARa (Peroxisome proliferator-

activated receptor alpha), GR (glucocorticoid receptor), THR (thyroid hormone receptor) and

estrogen receptors (Biocarta, [83]). Unsurprisingly, variants in PPARGC1A, PPARGC1B,

PPARγ and PGC1a have been associated with familial as well as alcohol-related breast cancer

risk [84, 85]. In addition, PPARγ is upregulated in colon and breast cancer cells [86, 87] and

relationships between PGC1a expression levels in breast tumors and clinical outcome have

also been reported [88, 89].

Importantly, a mechanistic link between the PGC1a pathway and the glutathione conjuga-

tion pathway is well established, supporting the interactions we discovered and suggesting

increased breast cancer risk in patients carrying variants in both of these pathways [71]. Specif-

ically, PPARγ is activated by binding to its ligand 15-deoxy-Δ-prostaglandin J2 (15d-PGJ2), a

potent cyclopentanone [78]. 15d-PGJ2 biosynthesis requires GST [71] and, in addition to its

production, GST also regulates 15d-PGJ2 activity by directly binding to both GSH-conjugated

and unconjugated forms of 15d-PGJ2 and sequestering the ligand in the cytosol away from its
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nuclear target, PPARγ [78, 81]. Indeed, stable expression of GST in a breast cancer cell line

inhibited PPARγ-dependent gene expression [78]. Other studies have also shown that GST

can modulate the activity of various signaling and metabolic pathways in a similar manner

suggesting that sequestration by GST may represent a general mechanism for regulating path-

way function [71, 77, 79, 80, 82]. Such a regulatory role is consistent with our discovery of the

glutathione conjugation pathway as a pathway interaction hub (PATH) (Fig 5A) and its inter-

actions with a substantial number of pathways known to control cell growth and proliferation.

Another interaction involving glutathione conjugation included the Toll-like receptor 9

(TLR9) pathway (Fig 6B). TLR9 is known to control the innate immune response by detecting

foreign DNA from microbial or other sources [90], And has been extensively studied in the

context of breast cancer [91]. TLR9 expression has been measured in normal epithelial cells of

Fig 6. Consensus interactions with the glutathione conjugation pathway. (A) Gene interaction degree (fold enrichment) of all glutathione

conjugation genes in the three cohorts that support a PATH interaction for the glutathione conjugation pathway (LAT517, CHN799 and JPN517). (B)

Between pathway interactions associated with glutathione conjugation that are significant (FDR� 0.25) in both LAT517 and CHN799 datasets. The

red edges indicate they are all associated with increased risk of breast cancer. (C) Detailed statistics for the between pathway interactions shown in

(B).

https://doi.org/10.1371/journal.pgen.1006973.g006
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the mammary gland as well as epithelial cancer cells and fibroblast-like tumor cells [91]. TLR9

has also been shown to have prognostic significance, specifically in triple negative breast can-

cers where low TLR9 expression is associated with shorter disease-free-specific survival. The

link between TLR9 and glutathione conjugation is unclear, but the established relevance of

both pathways to breast cancer suggests that this interaction is worth further study. In general,

the independent discovery of several genetic interactions involving the glutathione conjuga-

tion pathway across multiple cohorts suggests that it likely acts as a common modifier for

other risk factors.

Summary and proposed future work

We described the application of our recently developed method, BridGE, to several breast can-

cer cohorts. We found significant discoveries across 5 of the breast cancer cohorts examined,

suggesting that genetic interactions indeed play a role in determining breast cancer risk. Our

approach leverages the key observation from reverse genetic screens in yeast, which observed

that genetic interactions often form dense clusters in which they bridge across two pathways,

or connect pairs of genes within the same pathway. This observation about local structure

prevalent in the yeast genetic interaction network provides a powerful basis for discovering

interactions in human populations. Our results here demonstrate that this approach can shed

new light on risk factors for breast cancer.

We note that many of the pathways involved in genetic interactions reported here are novel

and have never been implicated as genetic risk factors for cancer. For example, if we consider

only BPM, WPM or PATH interactions passing a conservative cutoff of FDR< 0.05, we discov-

ered a total of 25 pathways across the five cohorts (S11A Table). Based on the dbGaP GWAS

catalog, traditional univariate analyses have identified 172 distinct SNP variants associated with

breast cancer (p� 1.0 × 10−5) from published GWAS. Mapping these variants to nearby genes

and then to pathways reveals that only 9 of the 25 pathways involved in the genetic interactions

reported here include a gene for which a SNP had previously been reported, suggesting that the

remaining 16 of 25 have not been previously implicated through germline genetic analysis.

Thus, despite their clear relevance to breast cancer, the majority of genetic interactions reported

here represent novel mechanisms underlying genetic risk of breast cancer relative to previous

studies of single variants. Interestingly, the BridGE-discovered pathways also cover many of the

previously reported SNPs. Of the 172 unique GWAS SNPs mentioned above, 47 can be mapped

to our collection of 833 pathways and 34 of these 47 (72%) map to at least one of the set of

BridGE-discovered pathways (FDR� 0.25), suggesting that most pathways linked to previously

identified SNPs from single locus analysis are also involved in genetic interactions.

There were a large number of pathway-level interactions unique to individual cohorts we

examined, suggesting that interactions can be contributed by a broad range of mechanisms

and likely vary substantially across different human populations. We did, however, find evi-

dence for a core set of interactions with support across multiple populations. Specifically,

significant interactions involving glutathione conjugation, vitamin D receptor, purine metabo-

lism, mitotic prometaphase, and steroid hormone biosynthesis pathways were discovered

across different cohorts, suggesting these pathways may act as important general modifiers of

breast cancer.

There are several other interesting directions for future work based on the results presented

here. First, one of the main inputs of the BridGE method is the definition of pathways, for

which it then discovers genetic interactions. Of course, the quality and utility of the genetic

interactions discovered depend on the quality of the input pathway definitions. We expect that

there are several pathways highly relevant to breast cancer that are not yet well-understood or
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at least not well-captured by current pathway databases. As these pathway definitions improve,

the BridGE approach will improve in terms of its power in discovering interactions. In the

context of breast cancer, there is a wealth of functional genomic data (e.g. gene expression

profiles) that could directly inform the definition and further refinement of pathways. Leverag-

ing these unbiased data to improve the input pathways before running BridGE would be

worthwhile.

Another limitation of the BridGE approach is the resolution of the discovered interactions.

The genetic interactions reported in this study were all discovered at the pathway level (i.e.

between or within-pathways). The premise of the method, and indeed the reason we are even

able to discover genetic interactions, is that while power to detect individual pairs of SNPs

with disease association is low, these associations can be discovered at the pathway level.

Because of this, it is typically difficult to pinpoint individual SNPs or combinations of SNPs for

further investigation. For example, for the steroid hormone biosynthesis-AML gene set inter-

action, the BPM was discovered on the BPC3 cohor and replicated on the CGEMS cohort.

However, the overlap in the individual SNP-SNP interactions supporting these BPMs in the

different cohorts was relatively small. This likely reflects both the fact that our power for

detecting the actual SNP-SNP interactions underlying the association is limited as well as the

fact that the actual SNPs contributing interactions between these pathways can be highly het-

erogeneous. Our analysis of the glutathione conjugation pathway discovery provides some

hints at how to approach this challenge. Once BridGE identified the glutathione conjugation

pathway as a risk factor in several cohorts, we computed the density of SNP-SNP interactions

connecting each gene in the pathway. This did highlight substantial differences in the SNP-

SNP interaction density contributed by each gene, providing some clues as to which individual

SNPs have the strongest contributions to the pathway-level trend (Fig 6A). Consensus analysis

of consistent SNP-level interactions across independent cohorts, much like we performed at

the pathway level, could also be an effective strategy for narrowing the focus to individual vari-

ant combinations. In general, improved methods for further dissecting pathway-level genetic

interactions to identify individual SNPs or pairs of SNPs responsible for a pathway-level inter-

action would be of interest.

Finally, another direction worth further investigation is analysis of the clinical relevance of

the discovered interactions. We expect that, at least in some cases, the genetic interactions pre-

disposing individuals to breast cancer will influence the prevention, progression, and optimal

treatment of the disease. Application of our method to large cohorts with the corresponding

clinical information and development of predictive modeling approaches that leverage both

pathway-level and SNP-level information from the discovered genetic interactions to model

clinical features will be a focus of future work.

Methods

Datasets used

U4C designated breast cancer GWAS datasets. The National Cancer Institute provided

seven breast cancer GWAS datasets for the U4C Stimulating Innovation in Breast Cancer

Genetic Epidemiology Challenge: phs000812.v1.p1, phs000147.v3.p1, phs000517.v3.p1,

phs000799.v1.p1, phs000851.v1.p1, phs000912.v1.p1, phs000383.v1.p1. Among them, we

focused our analysis on four datasets: phs000147.v3.p1, phs000812.v1.p1, phs000517.v3.p1,

and phs000799.v1.p1. A brief summary of these four datasets can be found in Table 1.

Other datasets. We used Hapmap Phase III data [92] as our population reference data to

filter out sample outliers. We used pathways from the MSigDB v3.0 C2 curated collection [93]

as our candidate pathways. We required each pathway to have at least 10 genes and at most
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300 genes, and at least 10 SNPs and at most 300 SNPs after mapping the pathways to SNP

level. A power analysis with respect to the pathway size suggested that our power would be lim-

ited for pathways with fewer than 10 genes [23]. Gene sets with too many genes are unlikely to

provide actionable information as they most likely do not represent specific biological func-

tions. Thus, including these pathways in our testing set only exacerbates the multiple testing

issues without a strong likelihood that we can actually discover an interaction for them.

Among the 833 pathways from our pathway collection, only 3 had less than 10 genes and 9 had

more than 300 genes. A SNP was mapped to all genes that overlap with a +/- 50kb window

centered at the SNP, and then mapped to pathways to which the corresponding gene(s) were

annotated.

A brief overview of the BridGE method

The details of the BridGE method are described in our separate paper [23], but we provide a

brief overview of the approach here. Because there is not enough power to detect individual

SNP-SNP interactions from most GWAS studies, based on the observation from yeast reverse

genetic screen that genetic interactions often form dense clusters bridging across two path-

ways, or connect pairs of genes within the same pathway, we developed a method to specially

search for pathway-level interactions. More specifically, BridGE searches for three different

structures:

Between-pathway model (BPM): Between-pathway interactions occur when two pathways

impinge on a common function required to maintain a healthy (non-disease) state; because

the two pathways can functionally compensate for each other, the disease phenotype only

occurs when genetic perturbations occur in both pathways in the same individual.

Within-pathway model (WPM): Under the within-pathway model, a single genetic variant

partially disables a pathway’s function and additional partial loss of function variants affecting

the same pathway result in a complete loss of pathway function, leading to a disease state.

Hub pathway model (PATH): Pathway hubs correspond to pathways with frequent

modifier effects where the target loci are not necessarily functionally coherent as under the

between-pathway model.

Briefly, the BridGE approach involves the following five main components [23]:

(1) Data processing consisting of sample quality control, adjustment for population struc-

ture between the cases and controls to avoid false discoveries due to population stratification,

and control for linkage disequilibrium (LD) by pruning the full set of SNPs into an unlinked

subset, as LD could otherwise result in spurious BPM or WPM substructures. (2) Construction

of SNP-SNP interaction networks based on SNP pair-level genetic interactions scored under

different disease model assumptions (additive, recessive, dominant or combinations of reces-

sive and dominant models). (3) A low-confidence, high-coverage interaction network is

derived by applying a lenient threshold to the SNP-SNP interaction network. (4) Pairs of path-

ways from predefined gene sets are tested for BPM or WPM enrichment of SNP-SNP pair

interactions with a chi-squared test. The observed density is evaluated for significance based

on comparisons to the global density (χ2global), the marginal interaction density of the two

pathways (χ2local), as well as a permutation test (pperm) conducted by randomly shuffling the

SNP-pathway assignment (e.g. 100K~200K times). (5) Pathway-level statistics are assessed for

significance after correction for multiple hypothesis testing. Each pathway-level interaction

can be associated with either increased risk of disease (risk interaction: pairs of minor alleles

linking two pathways are more frequent in the diseased population) or decreased risk of dis-

ease (protective interaction: pairs of minor alleles linking two pathways are more frequent in

the control population). So, for example, for the between-pathway model (BPM) the number
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of hypothesis tests evaluated by BridGE is two times the number of all pair-wise pathway-path-

way interactions. A sample permutation strategy (e.g. permutation of the case-control labels 10

times) is used to estimate the false discovery rate accounting for multiple hypotheses testing.

Further details of our methods are described in [23].

Data processing for the U4C datasets

For each dataset analyzed, we followed these steps to perform quality control: (1) we used a

standard PLINK (Purcell, et al. 2007) procedure to remove individuals with more than 5%

missing values, and remove SNPs with more than 5% missing values, less than 5% minor allele

frequency, or failed Hardy-Weinberg equilibrium test at 1.0E-6; (2) we checked relatedness

among individuals, and for any pair of individuals that had a proportion IBD score greater

than 0.2, one of them was removed from the study; (3) we removed subjects that were identi-

fied as population outliers based on multidimensional scaling (MDS) analysis after combining

the study data with HapMap phase III data [92]; (4) we ensured balanced population structure

between the cases and controls by matching each case with a control (implemented in PLINK

with "—cluster—cc–mc 2"). All datasets analyzed were processed with these steps. Additional

steps unique to each cohort are included in the sections that follow.

phs000812 Breast and Prostate Cancer Cohort Consortium (BPC3) and phs000147

Cancer Genetic Markers of Susceptibility Study (CGEMS). For the two breast cancer Euro-

pean cohorts, BPC3 (phs000812) and CGEMS (phs000147), since there is a partial overlap in

cases and controls between these two cohorts, we first applied identity by descent (IBD) analy-

sis to recognize these overlapping individuals and removed them from the BPC3 (phs000812)

cohort, while keeping them in the CGEMS cohort (phs000147).

phs000517 Multiethnic Cohort Study (MCS). The phs000517 dataset has three popula-

tion groups: JPN, LTN and AA. We used MDS analysis as described above to split this cohort

into three sub-cohorts, one for each ethnic group. Samples that did not cluster within each

group based on MDS analysis were filtered from the cohort. These three sub-cohorts are also

labeled as JPN517, LTN517 and AA517 respectively.

phs000799 Shanghai Breast Cancer Genetics Study (SBCGS). To allow for direct com-

parisons with results from the phs000517 cohort, we used imputed SNPs from the phs000799

cohort, which was genotyped using the Affymetrix 6.0 platform, to match the SNPs measured

on the Human660W-Quad_v1_A and Illumina Human 1M platforms, which were used to

genotype the phs000517 cohort. We ran our BridGE approach on both the non-imputed data-

set and imputed dataset and reported discoveries for both. These imputed and non-imputed

versions of the phs000799 dataset are referred to as “CHN799 imputed” and “CHN799 non-

imputed”.

Application of BridGE to discover significant BPM, WPM and PATH

interactions in breast cancer GWAS cohorts

We applied the BridGE method to six different cohorts derived from four GWAS breast cancer

studies (BPC3 phs000812, CGEMS phs000147, MCS phs000517, and SBCGS phs000799). Spe-

cifically, we tested pathway-level interactions (BPM, WPM and PATH) for 6 different cohorts

(EUR812, EUR147, JPN517, LTN517, AA517, and CHN799), and for the CHN799 cohort, we

used the both imputed and non-imputed data, independently. Details of the procedure used

are described in the sections that follow.

For each dataset, we first ran pilot runs to find a proper set of parameters to be used for a

full BridGE run. Specifically, we tested the four disease models (additive, recessive, dominant,

or combinations of recessive and dominant models) with different network thresholds by
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performing a small number of SNP permutations (10,000) (SNP-pathway assignment was ran-

domly permuted), and estimated which combination of disease model and network density

cutoff was the most sensitive for each dataset. Based on the pilot results, a recessive/dominant

combined disease model was chosen for BPC3 (network density = 0.06), SBCGS (network den-

sity = 0.04) for both imputed and non-imputed version; a dominant model was chosen for

CGEMS (network density = 0.04), MCS JPN cohort (network density = 0.04), and MCS LTN

cohort (network density = 0.02). For the MCS AA cohort, the pilot run suggested that we were

unlikely to discover pathway-level interactions, so we did not apply a full BridGE run on this

dataset in order to focus our computational resources on analysis of other cohorts. For all

BridGE runs, we used supercomputing resources provided by the Minnesota Supercomputing

Institute.

As described in [23], for the discovery of between-/within-pathway (BPM/WPM) interac-

tions, three metrics are used to measure the significance of the density of SNP-SNP interac-

tions: χ2global and χ2local are chi-square tests to measure whether the observed SNP-SNP

interaction density between two pathways, or within a pathway, is significantly higher than

expected globally (the overall network density), and locally (the marginal density of SNP-SNP

interactions for any SNPs linked to genes in either of the two pathways). Additionally, a per-

mutation test in which SNP labels are randomly reassigned is used to derive a third measure of

significance (pperm). These permutations are used to establish a null distribution for χ2global

and χ2local for each between-/within- pathway interaction. Finally, a false discovery rate is esti-

mated for the entire set of between- or within-pathway interactions based on sample permuta-

tions in which the entire process is repeated under permutations of the case-control labels

(χ2global, χ2local and pperm) [23].

For the hub pathway interactions (PATH), a one-tailed rank-sum test was used to test if the

SNPs linked to each pathway show significantly more interactions than non-pathway SNPs, in

terms of interaction degree. The sample permutation and SNP label permutation procedure is

same as the between- and within-pathway interaction discovery.

We reported all significant BPM, WPM or PATH interactions with FDR�0.25. The sum-

mary table (Table 2) shows that all five of the datasets have significant BPM, WPM or PATH

level interactions. Since many of the pathways overlap with each other, the total number of dis-

coveries can be inflated by the fact that many overlapping pathway-pathway interactions

reflect the several overlapping pathways. Thus, we also report the number of discoveries after

filtering for redundancy among the pathway interactions [23], and the information on overlap

is included in our supplemental files. Detailed discovery information for each cohort can be

found in (S1 Table, S4 Table, S6 Table, S7 Table, S8 Table and S9 Table). All technical details

of the BridGE method are described in [23].

Replication analysis of discoveries in BPC3 and CGEMS

For significant pathway-level interactions identified from any of the two European cohorts

(BPC3, CGEMS), we performed replication analysis. The disease models used for full interac-

tion discovery in the BPC3 and CGEMS were different based on trends observed in the pilot

runs (see details above), so for the replication analysis, we used the disease model with the dis-

covery cohort and ran BridGE with 1000 SNP label permutations for all candidate pathway-

level interaction. Ten sample permutations were also run for the replication cohort, just as in

the discovery cohort.

Significant discoveries were tested for validation with two different approaches. The first

approach checked for replication of the individual pathway-level interactions. For each path-

way-level interaction (e.g. BPM, WPM, or PATH), we measured all three significance scores
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(χ2global, χ2local and pperm) on the replication cohort and tested whether they met a nominal

significance criteria (p� 0.05). Of the discoveries from the BPC3 cohort, one of the 18 signifi-

cant pathway-pathway interactions, the BPM connecting the steroid hormone biosynthesis

pathway to an AML gene set, was significant (p� 0.05) by all three measures. Two additional

BPMs were significant (p� 0.05) by two of the three significance measures (amine compound

SLC transporter gene set and Na(+)- and Cl(-)-dependent neurotransmitter transporters)

when tested for replication in the CGEMS cohort (S2 Table).

In addition to testing for replication of individual pathway-level interactions, we further

investigated if the total number of replicating interactions among the entire set of discoveries

was higher than expected by chance. This “set-level” replication analysis was done by resam-

pling of the same amount of pathway-level statistics from all pairwise pathway interactions.

Further details on replication procedures are described in [23].

Comparison of pathways discovered by genetic interaction analysis with

previously reported breast cancer risk loci

Based on the NHGRI-EBI GWAS catalog[63], there are 172 SNP variants (mapped to 134

genes) reported with strong association (p�1.0 x 10−5) with breast cancer susceptibility. To

measure the extent to which our approach produced new pathway-level insights about breast

cancer susceptibility, we evaluated how many pathways in our collection were implicated

basted on these 172 risk loci, and how many pathways discovered by BridGE analysis were

novel relative to this set derived from traditional GWAS single variant analysis.

Of 172 SNPs linked to known breast cancer risk loci, 47 of these SNPs could be mapped to

our collection of 833 pathways. Then we collected all pathways that were identified by BridGE

in any of the breast cancer cohorts analyzed here with a conservative FDR cutoff (FDR� 0.05),

which yielded a total of 25 unique pathways either from significant BPM, WPM or PATH

discoveries. Among these pathways, 9 were in common with the pathways already implicated

by at least one known breast cancer risk locus. Thus, our analysis of genetic interactions by

BridGE has implicated 16 new pathways (FDR� 0.05) as playing a role in breast cancer

susceptibility. We listed all unique pathways resulted from the less stringent FDR cutoff

(FDR� 0.25) in S11A Table.

Consensus analysis to evaluate pathway-level interactions across

multiple cohorts

Although we found that many pathway-level interactions discovered by BridGE were relevant

to breast cancer, the most significant pathway-level interactions discovered from each cohort

were relatively unique, suggesting that the strongest genetic interactions in each population

are distinct. However, we observed that interactions discovered in one cohort often exhibited

strong signals in additional cohorts even though they did not meet the stringent threshold

required for discovery significance in a single cohort. Thus, we developed a modified version

of BridGE to enable joint discovery of pathway-level interactions across cohorts to enable the

discovery of these moderately significant, but consistent interactions.

More specifically, we first ran the standard version of BridGE on 4 different GWAS datasets

(6 total cohorts), and we summarized each pathway-level interaction based on its permutation

p-values (pperm) across all cohorts. We then selected pathway-level interactions that were nom-

inally supported by at least two cohorts, for which we required that all test scores (χ2global,

χ2local and pperm for BPMs and WPMs, degree rank-sum test and pperm for PATH) be nomi-

nally significant (p� 0.05). For each surviving pathway-level interaction, we computed the

geometric mean of the p-values of all individual cohorts that met the nominal significance
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requirement. These criteria produced a total of 3930 consensus between-pathway interactions

(BPM), 76 within-pathway interactions (WPM), and 59 hub pathway interactions (PATH),

which were sorted based on the aggregate p-value (see S5 Table). The most significant

between-pathway interactions (geometric mean� 5.0 × 10−5), within-pathway interactions

(geometric mean p� 5.0 × 10−3), and hub pathway interactions (geometric mean p� 5.0 ×
10−3) are visualized in Fig 4.

To evaluate the statistical significance of the discovered consensus interactions, we used the

10 random sample permutation results from each cohort. We repeated the same procedure

described above 100 times, but each time, selecting the results from one of the 10 randomly

permuted sample labels from each cohort, and generated consensus p-values for these random

results. We applied several cutoffs to the consensus p-values (geometric mean) (5.0 × 10−5,

1.0 × 10−4, 5.0 × 10−4, 1.0 × 10−3, 5.0 × 10−3, 1.0 × 10−2, and 5.0 × 10−2) and counted how many

of interactions from the real consensus table met the cutoff relative to the permuted results to

derived an empirical p-value for the BPM, WPM and PATH consensus observations indepen-

dently. For BPMs, our analysis suggested the real consensus results were significantly larger

than expected at the chosen cutoffs (5.0 × 10−5, 1.0 × 10−4, 5.0 × 10−4) (p< 0.02). For WPM

and PATH, we tested geometric mean p-value cutoffs of (1.0 × 10−3, 5.0 × 10−3, 1.0 × 10−2, and

5.0 × 10−2). The WPM consensus interaction set was significantly larger than expected by a

consensus p-value cutoff of 0.05 (p = 0.05). The PATH consensus interaction set was signifi-

cantly larger than expected by chance (p� 0.05) with consensus p-value cutoffs of (1.0 × 10−3,

5.0 × 10−3, 1.0 × 10−2). Detailed information for all consensus interactions is reported in (S5A–

S5D Table).

Analysis of interactions for the glutathione conjugation pathway

From the consensus interaction analysis, we identified the glutathione conjugation pathway as

a major source of genetic interactions in multiple cohorts. As a PATH hub interaction, gluta-

thione conjugation was deemed significant in MCS LTN (LTN517) and SBCGS (CHN799)

(FDR� 0.25) and was also nominally significance in MCS JPN (JPN517). Given this strong

support across different cohorts, we further investigated this pathway.

Identifying genes contributing to pathway-level statistics. Given the glutathione conju-

gation pathway’s emergence as an interaction hub, we wanted to determine which genes in the

pathway were driving these interactions. To understand this, we performed an interaction

degree analysis on glutathione conjugation genes using the MCS LTN (LTN517), SBCGS

(CHN799) and MCS JPN (JPN517) cohorts. We first calculated the interaction degree for all

glutathione conjugation SNPs and then summarized them at the gene level. To enable compar-

ison across cohorts, we measured a fold enrichment for each gene. More specifically, we first

computed the interaction rate (interaction degree divided by total number of SNPs in the net-

work) and then divided it by the background interaction density in each dataset. This fold

enrichment was averaged across all SNPs mapping to each gene in cases where there was more

than one. This analysis showed that GSTM1, GSTM4, GSTP1, GSTA5’s interactions are

1.5-fold higher than background interactions in all three cohorts. These results are included in

Fig 6A.

Identifying between-pathway interactions associated with the glutathione conjugation

pathway. Although the glutathione conjugation pathway was enriched for interactions across

the genome in multiple cohorts (pathway hub model), BridGE was not able to discover

between-pathway or within-pathway interactions associated with glutathione conjugation

when run independently on each of the three cohorts. To identify which pathways were inter-

acting with glutathione conjugation gene set, we re-ran BridGE on two of the cohorts (MCS
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LTN517 and SBCGS CHN799-imputed), but only focused on identifying interactions with

glutathione conjugation gene set. Specifically, we limited our hypothesis tests to only BPMs

that involved glutathione conjugation. This reduced the number of hypotheses test from more

than 400k to less than 2k, substantially improving our power to detect interactions with gluta-

thione conjugation. We detected 16 pathways interacting with glutathione conjugation in

MCS LTN (LTN517) and 73 in SBCGS (CHN799-imputed) (FDR� 0.25), three of which were

in common. All glutathione conjugation related between-pathway interactions that are sup-

ported by at least one cohort (FDR� 0.25) are listed in S10 Table.
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S1 Table. BridGE results from BPC3 cohort based on recessive/dominant combined dis-

ease model. (A) List of between-pathway interactions discovered in this cohort; (B) List of

within-pathway interactions discovered in this cohort; (C) List of pathway hub interactions
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S2 Table. Replication analysis using BPC3 as discovery cohort and CGEMS as confirma-

tion cohort. (A) List of replicated between-pathway interactions (BPMs); (B) Replication sta-

tistics.
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S3 Table. Detailed information about interaction between steroid hormone biosynthesis

(SHB) and acute myeloid leukemia (AML).

(XLSX)

S4 Table. BridGE results from CGEMS cohort based on dominant disease model. (A) List

of within-pathway interactions discovered in this cohort; (B) List of pathway hub interactions

discovered in this cohort.

(XLSX)

S5 Table. Consensus summary of BridGE results across 5 different cohorts. (A) List of

between-pathway interactions from the consensus analysis; (B) List of within-pathway interac-

tions from the consensus analysis; (C) List of pathway hub interactions from the consensus

analysis; (D) Statistical significance results for consensus analysis; (E) Corresponding pathway

names for Fig 4.

(XLS)

S6 Table. BridGE results from MCS LTN cohort based on dominant disease model. (A)

List of pathway hub interactions discovered in this cohort.

(XLSX)

S7 Table. BridGE results from SBCGS CHN cohort based on recessive/dominant combined

disease model. (A) List of between-pathway interactions discovered in this cohort; (B) List of

within-pathway interactions discovered in this cohort; (C) List of pathway hub interactions

discovered in this cohort.

(XLSX)

S8 Table. BridGE results from MCS JPN cohort based on dominant combined disease

model. (A) List of between-pathway interactions discovered in this cohort; (B) List of within-

pathway interactions discovered in this cohort; (C) List of pathway hub interactions discovered

in this cohort.

(XLSX)
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60. Kayser S, Döhner K, Krauter J, Köhne CH, Horst HA, Held G, et al. The impact of therapy-related acute

myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood. 2011;

117(7):2137–45. Epub 2010/12/02. https://doi.org/10.1182/blood-2010-08-301713 PMID: 21127174.

Genetic interactions in breast cancer

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006973 September 28, 2017 27 / 29

http://www.ncbi.nlm.nih.gov/pubmed/10695593
https://doi.org/10.1038/ng.3041
http://www.ncbi.nlm.nih.gov/pubmed/25038754
http://www.ncbi.nlm.nih.gov/pubmed/9847135
https://doi.org/10.1126/science.1180823
http://www.ncbi.nlm.nih.gov/pubmed/20093466
https://doi.org/10.1038/ng.669
https://doi.org/10.1038/ng.669
http://www.ncbi.nlm.nih.gov/pubmed/20852631
https://doi.org/10.1158/1055-9965.EPI-07-2680
https://doi.org/10.1158/1055-9965.EPI-07-2680
http://www.ncbi.nlm.nih.gov/pubmed/18483327
https://doi.org/10.1093/jnci/djj376
http://www.ncbi.nlm.nih.gov/pubmed/17018787
https://doi.org/10.1093/jnci/djh336
http://www.ncbi.nlm.nih.gov/pubmed/15601642
https://doi.org/10.2217/17455057.4.2.151
https://doi.org/10.2217/17455057.4.2.151
http://www.ncbi.nlm.nih.gov/pubmed/19072517
https://doi.org/10.1200/jco.2007.12.0832
https://doi.org/10.1200/jco.2007.12.0832
http://www.ncbi.nlm.nih.gov/pubmed/17664457
https://doi.org/10.4084/MJHID.2011.069
https://doi.org/10.4084/MJHID.2011.069
http://www.ncbi.nlm.nih.gov/pubmed/22220266
https://doi.org/10.1038/nrc3877
http://www.ncbi.nlm.nih.gov/pubmed/25592647
https://doi.org/10.4161/cc.10.20.18029
https://doi.org/10.4161/cc.10.20.18029
http://www.ncbi.nlm.nih.gov/pubmed/22024923
https://doi.org/10.1242/dmm.015040
https://doi.org/10.1242/dmm.015040
http://www.ncbi.nlm.nih.gov/pubmed/24626992
https://doi.org/10.1186/s13045-017-0462-7
http://www.ncbi.nlm.nih.gov/pubmed/28412963
https://doi.org/10.1002/cncr.29615
http://www.ncbi.nlm.nih.gov/pubmed/26641009
https://doi.org/10.1002/cncr.26735
http://www.ncbi.nlm.nih.gov/pubmed/22180297
https://doi.org/10.1182/blood-2010-08-301713
http://www.ncbi.nlm.nih.gov/pubmed/21127174
https://doi.org/10.1371/journal.pgen.1006973


61. Shivakumar R, Tan W, Wilding GE, Wang ES, Wetzler M. Biologic features and treatment outcome of

secondary acute lymphoblastic leukemia—a review of 101 cases. Ann Oncol. 2008; 19(9):1634–8.

Epub 2008/05/07. https://doi.org/10.1093/annonc/mdn182 PMID: 18467310; PubMed Central PMCID:

PMC2733065.

62. Wolff AC, Blackford AL, Visvanathan K, Rugo HS, Moy B, Goldstein LJ, et al. Risk of marrow neoplasms

after adjuvant breast cancer therapy: the national comprehensive cancer network experience. J Clin

Oncol. 2015; 33(4):340–8. Epub 2014/12/22. https://doi.org/10.1200/jco.2013.54.6119 PMID:

25534386; PubMed Central PMCID: PMC4302215.

63. Welter D MJ, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, Hindorff L, and Par-

kinson H. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids

Research. 2014; 42(Database issue):D1001–D6. https://doi.org/10.1093/nar/gkt1229 PMID: 24316577

64. Bhutia YDB, Ellappan, Prasad PD, Ganapath V. The amino acid transporter SLC6A14 in cancer and its

potential use in chemotherapy. Asian Journal of Pharmaceutical Sciences2014. p. 292–303.

65. Michels KB, Solomon CG, Hu FB, Rosner BA, Hankinson SE, Colditz GA, et al. Type 2 diabetes and

subsequent incidence of breast cancer in the Nurses’ Health Study. Diabetes Care. 2003; 26(6):1752–

8. PMID: 12766105.

66. Gu L, Lau SK, Loera S, Somlo G, Kane SE. Protein kinase A activation confers resistance to trastuzu-

mab in human breast cancer cell lines. Clin Cancer Res. 2009; 15(23):7196–206. https://doi.org/10.

1158/1078-0432.CCR-09-0585 PMID: 19920112; PubMed Central PMCID: PMC2787631.

67. Cho YS, Park YG, Lee YN, Kim MK, Bates S, Tan L, et al. Extracellular protein kinase A as a cancer bio-

marker: its expression by tumor cells and reversal by a myristate-lacking Calpha and RIIbeta subunit

overexpression. Proc Natl Acad Sci U S A. 2000; 97(2):835–40. PMID: 10639166; PubMed Central

PMCID: PMC15417.

68. Bogdanova N, Helbig S, Dörk T. Hereditary breast cancer: ever more pieces to the polygenic puzzle.

Hered Cancer Clin Pract. 2013; 11(1):12. https://doi.org/10.1186/1897-4287-11-12 PMID: 24025454;

PubMed Central PMCID: PMC3851033.

69. Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer

therapeutics. Nat Rev Cancer. 2007; 7(9):684–700. https://doi.org/10.1038/nrc2196 PMID: 17721433.

70. Bertone-Johnson ER, Chen WY, Holick MF, Hollis BW, Colditz GA, Willett WC, et al. Plasma 25-hydro-

xyvitamin D and 1,25-dihydroxyvitamin D and risk of breast cancer. Cancer Epidemiol Biomarkers Prev.

2005; 14(8):1991–7. https://doi.org/10.1158/1055-9965.epi-04-0722 PMID: 16103450.

71. Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol. 2005;

45:51–88. https://doi.org/10.1146/annurev.pharmtox.45.120403.095857 PMID: 15822171.

72. Roodi N, Dupont WD, Moore JH, Parl FF. Association of homozygous wild-type glutathione S-transfer-

ase M1 genotype with increased breast cancer risk. Cancer Res. 2004; 64(4):1233–6. PMID:

14973116.

73. Benhamou S, Lee WJ, Alexandrie AK, Boffetta P, Bouchardy C, Butkiewicz D, et al. Meta- and pooled

analyses of the effects of glutathione S-transferase M1 polymorphisms and smoking on lung cancer

risk. Carcinogenesis. 2002; 23(8):1343–50. PMID: 12151353.

74. Stoehlmacher J, Park DJ, Zhang W, Groshen S, Tsao-Wei DD, Yu MC, et al. Association between glu-

tathione S-transferase P1, T1, and M1 genetic polymorphism and survival of patients with metastatic

colorectal cancer. J Natl Cancer Inst. 2002; 94(12):936–42. PMID: 12072547.

75. Dasgupta RK, Adamson PJ, Davies FE, Rollinson S, Roddam PL, Ashcroft AJ, et al. Polymorphic varia-

tion in GSTP1 modulates outcome following therapy for multiple myeloma. Blood. 2003; 102(7):2345–

50. https://doi.org/10.1182/blood-2003-02-0444 PMID: 12791655.

76. Allan JM, Wild CP, Rollinson S, Willett EV, Moorman AV, Dovey GJ, et al. Polymorphism in glutathione

S-transferase P1 is associated with susceptibility to chemotherapy-induced leukemia. Proc Natl Acad

Sci U S A. 2001; 98(20):11592–7. https://doi.org/10.1073/pnas.191211198 PMID: 11553769; PubMed

Central PMCID: PMC58774.

77. Laborde E. Glutathione transferases as mediators of signaling pathways involved in cell proliferation

and cell death. Cell Death Differ. 2010; 17(9):1373–80. https://doi.org/10.1038/cdd.2010.80 PMID:

20596078.

78. Paumi CM, Smitherman PK, Townsend AJ, Morrow CS. Glutathione S-transferases (GSTs) inhibit tran-

scriptional activation by the peroxisomal proliferator-activated receptor gamma (PPAR gamma) ligand,

15-deoxy-delta 12,14prostaglandin J2 (15-d-PGJ2). Biochemistry. 2004; 43(8):2345–52. https://doi.

org/10.1021/bi035936+ PMID: 14979731.

79. Romero L, Andrews K, Ng L, O’Rourke K, Maslen A, Kirby G. Human GSTA1-1 reduces c-Jun N-termi-

nal kinase signalling and apoptosis in Caco-2 cells. Biochem J. 2006; 400(1):135–41. https://doi.org/10.

1042/BJ20060110 PMID: 16836488; PubMed Central PMCID: PMC1635444.

Genetic interactions in breast cancer

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006973 September 28, 2017 28 / 29

https://doi.org/10.1093/annonc/mdn182
http://www.ncbi.nlm.nih.gov/pubmed/18467310
https://doi.org/10.1200/jco.2013.54.6119
http://www.ncbi.nlm.nih.gov/pubmed/25534386
https://doi.org/10.1093/nar/gkt1229
http://www.ncbi.nlm.nih.gov/pubmed/24316577
http://www.ncbi.nlm.nih.gov/pubmed/12766105
https://doi.org/10.1158/1078-0432.CCR-09-0585
https://doi.org/10.1158/1078-0432.CCR-09-0585
http://www.ncbi.nlm.nih.gov/pubmed/19920112
http://www.ncbi.nlm.nih.gov/pubmed/10639166
https://doi.org/10.1186/1897-4287-11-12
http://www.ncbi.nlm.nih.gov/pubmed/24025454
https://doi.org/10.1038/nrc2196
http://www.ncbi.nlm.nih.gov/pubmed/17721433
https://doi.org/10.1158/1055-9965.epi-04-0722
http://www.ncbi.nlm.nih.gov/pubmed/16103450
https://doi.org/10.1146/annurev.pharmtox.45.120403.095857
http://www.ncbi.nlm.nih.gov/pubmed/15822171
http://www.ncbi.nlm.nih.gov/pubmed/14973116
http://www.ncbi.nlm.nih.gov/pubmed/12151353
http://www.ncbi.nlm.nih.gov/pubmed/12072547
https://doi.org/10.1182/blood-2003-02-0444
http://www.ncbi.nlm.nih.gov/pubmed/12791655
https://doi.org/10.1073/pnas.191211198
http://www.ncbi.nlm.nih.gov/pubmed/11553769
https://doi.org/10.1038/cdd.2010.80
http://www.ncbi.nlm.nih.gov/pubmed/20596078
https://doi.org/10.1021/bi035936+
https://doi.org/10.1021/bi035936+
http://www.ncbi.nlm.nih.gov/pubmed/14979731
https://doi.org/10.1042/BJ20060110
https://doi.org/10.1042/BJ20060110
http://www.ncbi.nlm.nih.gov/pubmed/16836488
https://doi.org/10.1371/journal.pgen.1006973


80. Ryoo K, Huh SH, Lee YH, Yoon KW, Cho SG, Choi EJ. Negative regulation of MEKK1-induced signal-

ing by glutathione S-transferase Mu. J Biol Chem. 2004; 279(42):43589–94. https://doi.org/10.1074/jbc.

M404359200 PMID: 15299005.

81. Cho SG, Lee YH, Park HS, Ryoo K, Kang KW, Park J, et al. Glutathione S-transferase mu modulates

the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J Biol Chem. 2001;

276(16):12749–55. https://doi.org/10.1074/jbc.M005561200 PMID: 11278289.

82. Louie SM, Grossman EA, Crawford LA, Ding L, Camarda R, Huffman TR, et al. GSTP1 Is a Driver of Tri-

ple-Negative Breast Cancer Cell Metabolism and Pathogenicity. Cell Chem Biol. 2016; 23(5):567–78.

https://doi.org/10.1016/j.chembiol.2016.03.017 PMID: 27185638; PubMed Central PMCID:

PMC4876719.

83. Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and dis-

ease. J Clin Invest. 2006; 116(3):615–22. https://doi.org/10.1172/jci27794 PMID: 16511594; PubMed

Central PMCID: PMC1386111.

84. Wirtenberger M, Tchatchou S, Hemminki K, Schmutzhard J, Sutter C, Schmutzler RK, et al. Associa-

tions of genetic variants in the estrogen receptor coactivators PPARGC1A, PPARGC1B and EP300

with familial breast cancer. Carcinogenesis. 2006; 27(11):2201–8. https://doi.org/10.1093/carcin/

bgl067 PMID: 16704985.

85. Petersen RK, Larsen SB, Jensen DM, Christensen J, Olsen A, Loft S, et al. PPARgamma-PGC-1alpha

activity is determinant of alcohol related breast cancer. Cancer Lett. 2012; 315(1):59–68. https://doi.org/

10.1016/j.canlet.2011.10.009 PMID: 22050908.

86. Shimada T, Kojima K, Yoshiura K, Hiraishi H, Terano A. Characteristics of the peroxisome proliferator

activated receptor gamma (PPARgamma) ligand induced apoptosis in colon cancer cells. Gut. 2002; 50

(5):658–64. PMID: 11950812; PubMed Central PMCID: PMC1773196.

87. Elstner E, Müller C, Koshizuka K, Williamson EA, Park D, Asou H, et al. Ligands for peroxisome prolif-

erator-activated receptorgamma and retinoic acid receptor inhibit growth and induce apoptosis of

human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci U S A. 1998; 95(15):8806–11.

PMID: 9671760; PubMed Central PMCID: PMC21158.

88. Jiang WG, Douglas-Jones A, Mansel RE. Expression of peroxisome-proliferator activated receptor-

gamma (PPARgamma) and the PPARgamma co-activator, PGC-1, in human breast cancer correlates

with clinical outcomes. Int J Cancer. 2003; 106(5):752–7. https://doi.org/10.1002/ijc.11302 PMID:

12866036.

89. Wang X, Southard RC, Kilgore MW. The increased expression of peroxisome proliferator-activated

receptor-gamma1 in human breast cancer is mediated by selective promoter usage. Cancer Res. 2004;

64(16):5592–6. https://doi.org/10.1158/0008-5472.CAN-04-0043 PMID: 15313896.

90. Lamphier MS, Sirois CM, Verma A, Golenbock DT, Latz E. TLR9 and the recognition of self and non-

self nucleic acids. Ann N Y Acad Sci. 2006; 1082:31–43. https://doi.org/10.1196/annals.1348.005

PMID: 17145922.

91. Sandholm J, Selander KS. Toll-like receptor 9 in breast cancer. Front Immunol. 2014; 5:330. https://doi.

org/10.3389/fimmu.2014.00330 PMID: 25101078; PubMed Central PMCID: PMC4105583.

92. Altshuler DM, Gibbs RA, Peltonen L, Dermitzakis E, Schaffner SF, Yu F, et al. Integrating common and

rare genetic variation in diverse human populations. Nature. 2010; 467(7311):52–8. https://doi.org/10.

1038/nature09298 PMID: 20811451; PubMed Central PMCID: PMC3173859.

93. Subramanian A, Tamayo P, Mootha VK, others. Gene set enrichment analysis: A knowledge-based

approach for interpreting genome-wide expression profiles. PNAS. 2005; 102(43):15545–50. https://

doi.org/10.1073/pnas.0506580102 PMID: 16199517

Genetic interactions in breast cancer

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1006973 September 28, 2017 29 / 29

https://doi.org/10.1074/jbc.M404359200
https://doi.org/10.1074/jbc.M404359200
http://www.ncbi.nlm.nih.gov/pubmed/15299005
https://doi.org/10.1074/jbc.M005561200
http://www.ncbi.nlm.nih.gov/pubmed/11278289
https://doi.org/10.1016/j.chembiol.2016.03.017
http://www.ncbi.nlm.nih.gov/pubmed/27185638
https://doi.org/10.1172/jci27794
http://www.ncbi.nlm.nih.gov/pubmed/16511594
https://doi.org/10.1093/carcin/bgl067
https://doi.org/10.1093/carcin/bgl067
http://www.ncbi.nlm.nih.gov/pubmed/16704985
https://doi.org/10.1016/j.canlet.2011.10.009
https://doi.org/10.1016/j.canlet.2011.10.009
http://www.ncbi.nlm.nih.gov/pubmed/22050908
http://www.ncbi.nlm.nih.gov/pubmed/11950812
http://www.ncbi.nlm.nih.gov/pubmed/9671760
https://doi.org/10.1002/ijc.11302
http://www.ncbi.nlm.nih.gov/pubmed/12866036
https://doi.org/10.1158/0008-5472.CAN-04-0043
http://www.ncbi.nlm.nih.gov/pubmed/15313896
https://doi.org/10.1196/annals.1348.005
http://www.ncbi.nlm.nih.gov/pubmed/17145922
https://doi.org/10.3389/fimmu.2014.00330
https://doi.org/10.3389/fimmu.2014.00330
http://www.ncbi.nlm.nih.gov/pubmed/25101078
https://doi.org/10.1038/nature09298
https://doi.org/10.1038/nature09298
http://www.ncbi.nlm.nih.gov/pubmed/20811451
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1073/pnas.0506580102
http://www.ncbi.nlm.nih.gov/pubmed/16199517
https://doi.org/10.1371/journal.pgen.1006973

