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Abstract

It is well documented that people are good at the rapid representation of multiple objects in

the form of ensemble summary statistics of different types (numerosity, the average feature,

the variance of features, etc.). However, there is not enough clarity regarding the links

between statistical domains. The relations between different-type summaries (numerosity

and the mean) are of particular interest, since they can shed light on (1) a very general func-

tional organization of ensemble processing and (2) mechanisms of statistical computations

(whether averaging takes into account numerical information, as in regular statistics). Here,

we show no correlation between the precision of estimated numerosity and that of the esti-

mated mean. We also found that people are very good at dividing attention between numer-

osity and the mean size of a single set (Experiment 1); however, they show some cost of

dividing attention between two same-type (two numerosities or two mean sizes, Experiment

2) and two different-type (one numerosity and one mean size, Experiment 3) summaries

when each summary is ascribed to a different set. These results support the idea of domain

specificity of numerosity and mean size perception, which also implies that, unlike regular

statistics, computing the mean does not require numerosity information. We also conclude

that computational capacity of ensemble statistics is more limited by encoding several

ensembles than computing several summaries.

Introduction

Numerous studies have shown that the visual system is very efficient at rapid representation of

multiple objects in the form of ensemble summary statistics such as numerosity [1–5], the

mean along a dimension–size ([6,7], etc.), orientation [8–10], color [11,12], speed [13], bright-

ness [14], even emotional expression and gender [15,16], as well as variance [17–19]. There is

evidence that the summary statistics are encoded directly as visual properties rather than

inferred by any means, as they are prone to adaptation aftereffects [1,18,20]. The ensemble

summaries are computable when conscious access to individual objects is limited [6,10,21,22].

Neurophysiological data also support the notion that the representation of ensembles as sum-

maries is not based on the properties of individual objects [23,24].
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Ensemble summary statistics give us some evident advantages. One such advantage is that

they serve as better estimates of the set in general than each single item does [25]. Another

advantage is that the summaries are efficient means for organizing multiple items into chunks

[26–29] and for surviving the severe limitations of the processing bottleneck. Although it is a

subject of debate whether extracting summary statistics is based on a genuine parallel repre-

sentation of all presented items at one time [6,25,30–36] or on limited capacity sampling of

just a few objects [37–41], it is generally admitted that it leads to fairly efficient approximation

of multiple properties in the entire display in terms of both precision [6,25,32,42,43] and speed

[7,34,44].

The functional structure of ensemble statistics: Correlation and

parallelism

Many of the previously reported studies tested the properties and mechanisms of ensemble

perception within separate domains (e.g., average size, average orientation, and numerosity).

Together, they showed robustness in core phenomenology–an ability to judge generalized sta-

tistical features at a brief glance with relatively good accuracy. This finding naturally leads to

the question of whether these local domains are linked together. One possibility is that there is

high processing specialization between domains (for example, retinotopic feature maps, which

are supposed to be rather independent in the visual cortex, or modular [45]), so computing sta-

tistical summaries is a part of processing within each module. Alternatively, it is possible that

there is a locus within the cognitive system where different domains overlap, and some shared

factors affect the resulting ensemble perception.

One approach to probing the functional relations between the domains is measuring corre-
lations between tasks across observers [46,47]. The logic of measuring correlations is straight-

forward: if the tasks are correlated, then the domains addressed by these tasks have some

overlap; if they are not correlated, they are likely separate and not supported by any common

mechanism. In their recent study, Haberman, Brady, and Alvarez [48] implemented this

approach in the field of ensemble perception. Specifically, they were interested in whether

there are any common mechanisms/factors underlying ensemble averaging across a variety of

visual domains. The authors tested the precision of reporting the average color; average orien-

tation in two types of objects (Gabor patches and isosceles triangles); average emotional

expression and average identity of human faces. In each experiment, Haberman et al. [48] ran

a pair of tasks using the same participants. In total, eight experiments allowed the estimation

of pairwise correlations between the majority of the tested summaries. Haberman et al. [48]

found high correlations between the ‘low-level’ summaries (color and orientations), as well as

between the ‘high-level’ summaries (emotional expression and face identity). However, cross-

level correlations were low: The precision of color or orientation averaging did not correlate

with that of emotion or face identity. Moreover, these cross-level correlations did not exceed a

correlation between a summary statistics task and a verbal working memory task requiring no

ensemble representation. This result led Haberman et al. [48] to conclude that there is no sin-

gle domain-general averaging mechanism that could analyze information from all visual mod-

ules. At the same time, their results show some narrower generality spreading within the levels

of the visual hierarchy (for example, for computing mean color and mean orientation). How-

ever, the authors admit that the conclusion drawn from the latter result is ambiguous. On one

hand, this result can indicate the existence of a common computational statistical mechanism

within each level. On the other hand, the correlations can be explained by some shared source

of noise arising between features lying closer in the representational space (e.g., color and ori-

entation) but not between remote features (e.g., orientation and facial expression).

Numerosity and mean size perception
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Apart from testing correlations between tasks, there is another useful approach that is rele-

vant for studying the functional organization. We will refer to it as testing parallelism. While

correlational studies concern the overlap between different domains, parallelism studies raise a

rather different question. Whether two domains overlap or not, it is important to know how

they are coordinated in gaining access to conscious perception. For example, if we look at cars

on a road trying to estimate their mean speed and mean size at one time, how would the infor-

mation from the two domains be processed? Will we observe the same efficiency as reported

in the numerous ensemble studies within separate domains–unlimited capacity, or parallel

processing? Or, will we observe decrement in judging one or both summaries, suggesting

interference between the domains? In terms of the functional organization, parallelism

addresses the question whether a limited-capacity bottleneck is present anywhere in the system

and makes various domains compete to be fully implemented.

Studies on task parallelism for probing functional organization have a long history in the

field of attention [49–52]. As the role of attention in ensemble perception is a subject of ongo-

ing discussion [8,21,25,53], a number of studies have also addressed the existence of the lim-

ited-capacity bottleneck in processing several summaries. Some of these studies have focused

on an ability to process more than one summary along a single dimension (for example, the

mean sizes of two color sets of dots). Chong and Treisman [54] have shown that it is possible

to estimate the average sizes of two ensembles in parallel as accurately as the average size of

only one ensemble: participants in their experiment were equally good at judging the average

size of a relevant color set when the color was both precued (attention is paid to a relevant set)

and postcued (attention is divided between the sets). Later, other studies have shown that no

more than two [28] mean sizes can be stored in working memory and that probably only one

mean size or mean orientation can be perfectly attended to at one time [30,31]. Halberda et al.

[5] have also shown the two-set limit for parallel processing of several numerosities (plus

superset numerosity that is always available, regardless of the number of sets). Note that, based

on these results, it is difficult to say whether observed limitations in parallel computation

reflect the bottleneck in multiple statistical computations or in the division of attention

between different sets. From the object perception literature, it is known that it is harder to

attend to different objects than to different features of one object [55].

More important for the issue of functional organization are the studies where division of

attention between two different summaries are tested. Emmanouil and Treisman [56] showed

that dividing attention between the mean size and the mean speed or between the mean size

and the mean orientation yields a cost in performance that is not found in the division of

attention between two mean sizes. Moreover, the cost is even more dramatic if the mean size is

to be estimated in one set and the mean speed (or orientation) is to be estimated in another

set. Huang [57] showed that a cost of dividing attention between the orientation summary

(prevalence of vertical items over horizontal ones or vice versa) of one ensemble and the color

summary (prevalence of reddish items over greenish ones or vice versa) of another is compara-

ble with the cost of dividing attention between features of different objects. An idea that the

observed limits of parallel statistical processing has more to do with limits in encoding several

sets than statistics per se is supported by other researchers [58,59]. This concept complicates

conclusions about the single vs. multiple processors. We will address these complications in

our experiments.

Numerosity and the mean

In previous section, we reviewed the studies probing the functional links between ensemble

summaries of the same type, mostly two means (or prevalence [57], which can be considered
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as just an alternative measure of the central tendency). However, for a more comprehensive

view of the architecture underlying ensemble summary statistics, it is necessary to address the

link between summaries of different types, e.g., numerosity and the mean.

Although Haberman et al. [48] demonstrated that even two summaries of the same type

can be computed independently (e.g., mean orientation and mean facial expression), it does

not necessarily imply that two summaries of different types are also independent. This doubt

comes from regular mathematical statistics. You can measure two or more attributes in a sam-

ple and calculate mean values from each of them, so that each such calculation will be indepen-

dent from others (e.g., you do not need to know the mean size to calculate the mean speed).

However, you cannot calculate the mean without knowing the number of observations

(numerosity). Similarly, you cannot calculate the variance without knowing the mean and the

number. Therefore, according to regular statistics, summaries of the same type can be calcu-

lated independently (which is also the case in ensemble perception [48]), but summaries of dif-

ferent types cannot. Is that also true for ensemble summary statistics? It is easy to see that

answering this question can not only shed light not only on between-domain links, it can also

inform us about the nature of computations in the core of statistical representations in vision

(although we admit that this is an indirect way to study these computations).

Recently, Lee, Baek, and Chong [60] addressed the link between these different types of

summaries. Their participants had to estimate the average size, the number, or the total area of

a set of circles. The authors then estimated how well each of the parameters could be predicted

by the remaining two parameters. They found that the total area is predicted by both the mean

size and numerosity much better than other summaries are predicted by any of the rest. This

finding led the authors to conclude that the mean size and numerosity can be processed inde-

pendently, and the total area is computed as the mean multiplied by numerosity.

The study by Lee et al. [60] is an example of the correlational approach to the functional

organization of ensemble perception. However, the authors tested the perception of numeros-

ity, mean, and total area in separate blocks, so their paradigm required participants to pay

attention to one summary at a time. In our opinion, however, parallelism should also be tested

for a more complete view of the visual statistical system at work. Given the independence

between numerosity and the mean size obtained in the separate tests [60], we can ask how

these two systems are coordinated when attempting to extract different summaries from the

same stimulus. Is there a processing bottleneck limiting their concurrent efficiency? Or, in

contrast, can they work in parallel, providing lossless computation of both numerosity and the

mean? We will address this issue in our experiments.

Our study

As noted above, Lee and colleagues [60] made the first step to shape the functional relation-

ships between the mean and numerosity. Their findings are based on the correlational design.

Here, we combine the correlational approach with that aimed at testing parallelism. It is based

on the precue-postcue paradigm. Earlier, Emmanouil and Treisman [56] and Huang [57] used

this paradigm to test whether two same-type summaries (two means or two prevalence statis-

tics in different sensory domains) can be estimated together without loss in performance. We

use this paradigm to test coordination between two different-type summaries. Combining

both tests–correlation and parallelism–in one study has some important advantages. First, it

allows deeper probing of the functional structure of ensemble summary statistics, because two

different aspects of that structure are tested rather than one. Second, measuring each summary

under two different conditions–precue and postcue–provides additional inputs for evaluating

in the correlational matrix. Instead of looking at one correlation between two separately

Numerosity and mean size perception
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measured rates (as in typical correlational studies, e.g., [46, 48, 60]), we can look at precue-

postcue correlations within each summary and compare two between-summary correlations

observed under different cue conditions. The precue-postcue correlations are informative

because they can show whether our tests are reliable and whether the tested abilities are robust

across tasks. In turn, comparing the between-summary correlations can show whether the

whole tested structure is reliable and stable. In other words, it can show whether an attempt to

process two summaries at once changes the functional links between these two domains.

Based on this approach, we conducted three experiments testing correlation and parallelism

in the perception of numerosity and mean size. In Experiment 1, we tested how these two sum-

maries are computed within a single set. Experiments 2 and 3 aimed to compare the efficiency

of concurrent computation of two of the same summaries (mean-mean or numerosity-numer-

osity) with the efficiency of concurrent computation of two different summaries (mean-

numerosity). Since it is impossible to assign two mean sizes or two numerosities to the same

set, in both Experiment 2 and 3, we used two sets with only one relevant parameter assigned to

each set. Together with Experiment 1, this allowed dissociation of the cost caused by attending

to two summaries from that caused by attending to two sets.

Experiment 1

Method

Participants. For determining the sample size, we used the statistical tool G�Power 3.0.10

[61]. We set required statistical power at .8, a Type I error at .05, and an expected Cohen’s d at

.6. The expected effect size was set based on the previous research of cue effects on numerosity

and mean size perception [5,56,59]. These values led us to a minimum sample size of nineteen

participants. Considering a possibility of technical problems or poor performance in some par-

ticipants, we recruited twenty-three participants. Psychology students of the Higher School of

Economics (HSE) took part in the experiment for extra course credit (14 females, ages ranging

between 18 and 22 years). All participants reported having normal or corrected-to-normal

vision and no neurological problems. The participants were unaware of the purpose of the

experiment. Before beginning the experiment, they signed an informed consent form for the

procedure, which had been approved by the Institutional Review Board at HSE.

Apparatus and stimuli. Stimulation was developed and presented through PsychoPy [62]

for Linux. Stimuli were presented on a standard VGA monitor at a refresh frequency of 75 Hz

with 800 × 600-pixel spatial resolution. A homogeneous gray field subtending approximately

19.44˚ × 19.44˚ was used for stimulus presentation. The rest of the screen space was black and

not used for presentation. The “working” gray field was divided into 6 × 6 imaginary cells,

each having a side length of 3.24˚. These imaginary cells served for item positioning, as

described in the next paragraph.

Filled white circles with different diameters were used as items in a sample set. Each circle

could be located within one of the 36 imaginary cells, and each cell could be occupied by only

one circle or left empty. Each circle could be placed at a random position within a cell with a

restriction that its center be located at least one radius + .16˚ away from any cell border along

cardinal axes. This restriction meant that no circle ever overlapped with another. On the other

hand, sets looked rather random in terms of spatial arrangement.

The number of circles could vary between 7 and 36; random cells were chosen on each trial

for placing the circles. The diameters of the circles were randomly drawn from the following

list: .86˚, 1.03˚, 1.19˚, 1.35˚, 1.51˚, 1.67˚, and 1.84˚. The mean diameter of the circles in each

drawn display ranged between trials from 1.08˚ to 1.67˚. The standard deviation of the diame-

ter in each display ranged from .14˚ to .21˚.

Numerosity and mean size perception
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For precue, the Russian equivalents of either the word “NUMBER” or “MEAN” were used.

The words were printed in white Arial (letter height 1.6˚) and located in the center of the

screen. For postcue, six question marks were presented instead of the words. For numerosity

reports, a white cursor appeared below the gray “working” field to type in a number. For mean

size reports, a white adjustable probe circle was presented at the center of the screen. The start-

ing size of the probe varied randomly between .43˚ and 2.21˚.

Procedure. Experimental sessions were run in a darkened room. Participants were seated

approximately 50 cm from a monitor. They were instructed to estimate and report the number

or/and the mean size of a set of briefly presented circles.

Each trial started with a presentation of a cue screen for 500 ms that also served for gaze fix-

ation on the center of a screen. In the precue trials, a word, either “NUMBER” or “AVER-

AGE,” appeared saying which of the summaries were to be reported in the end of the trial (Fig

1). In the postcue trials, six question marks appeared warning that the relevant parameter

would be known after sample presentation (Fig 1). The cue screen was followed by a 500-ms

blank screen that was, in turn, followed by the presentation of a sample set for another 500 ms.

Immediately after the sample, a test screen was presented. The participants had to type in the

number of circles in the sample [5] or adjust a probe circle to match the average size of the cir-

cles in the sample [38]. The appearance of the probe screen (a cursor for typing or the probe

circle) also informed the participants about their task in the postcue trials (Fig 1). For typing

the numbers, a numerical pad of a standard keyboard was used (arrow, “DEL”, and “BACK-

SPACE” keys could be used for editing an entry). To increase or decrease the size of the probe

pixel by pixel, right and left arrow keys were used. The time for response was not limited. To

confirm their response and quit the trial, participants had to press ENTER. The next trial

started upon pressing SPACE, so participants could progress at a comfortable pace and take a

rest whenever they wanted.

Design and data analysis. In this experiment, we used a 2 (Cue–precue vs. postcue) × 2

(Task–numerosity vs. mean size estimation) within-subject design. The number of trials per

condition was 60 (two repetitions of 30 displays covering the whole range of numbers from 7

to 36). An experimental block, therefore, consisted of 2 × 2 × 60 = 240 trials presented in a ran-

dom order. The experimental block was preceded by 8 practice trials that were not included in

the data analysis.

Fig 1. An example of a single trial with time course in Experiment 1. (A) precue and (B) postcue

conditions.

https://doi.org/10.1371/journal.pone.0185452.g001
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For the analysis, a relative error magnitude was calculated on each trial as an absolute devia-

tion of the observer’s response from the correct response divided by the correct response. The

relative error was considered to characterize the precision of numerosity or mean size

judgments.

Two types of analysis were then applied to the relative errors. First, we estimated an effect

of Cue on each of the tasks using a standard t-test along with a Bayesian t-test. The latter is

considered to be an alternative to classical significance testing [63] and is based on comparing

evidence for H1 against H0. The H1-to-H0 likelihood ratio–the Bayes factor (BF10)–is a princi-

pal quantitative measure of evidence of one hypothesis over another [64,65]. Bayesian analysis

was run using JASP software [66]. The prior effect size distribution was set as a Cauchy with a

median of 0 and a width of .707, a default setting recommended when no information about

the expected effect size is available in advance [66]. To interpret the Bayes factors, we used Jef-

freys’ scale [64] with Kass and Raftery’s adjustment [65], where 1< BF10 < 3 is evidence for

H1 that is “not worth more than a bare mention” ([65], p. 777), where 3< BF10 < 20 is positive

evidence for H1, 20< BF10 < 150 is strong evidence for H1, and where BF10 > 150 is very

strong evidence for H1; the inverse ratios define symmetrical evidence ranges for H0.

Second, a correlation analysis was applied to the data. Averaged relative error values were

also calculated for each participant for all four factorial cells. We then estimated correlations

between these four data points across participants. There were four correlations of particular

interest for us. Correlations between the same type of summaries in different cue conditions

(“Numerosity—Precue” with “Numerosity—Postcue”, and “Mean size—Precue” with “Mean

size—Postcue”) were to estimate consistency of the tested abilities across cue conditions. Cor-

relations between different summaries at same-cue conditions (“Numerosity—Precue” with

“Mean size—Precue”, and “Numerosity—Postcue” with “Mean size—Postcue”) were to show

if any interrelation exists between numerosity and mean size estimation. Again, two methods

were applied for judging whether the correlations exist: (1) the standard significance tests and

(2) computing Bayes factors for estimating whether posterior distributions of correlation coef-

ficients more likely have a higher (H0) or lower (H1) density around 0 than a homogeneous

prior distribution (beta-distribution with a width of 1 [JASP Team]).

Results and discussion

We found no effects of Cue on the relative error (Fig 2A), both in the numerosity task (t(22) =

1.486, p = .151, d = .310, BF10 = .573) and in the mean size task (t(22) = 1.540, p = .138, d =

.321, BF10 = .613). Therefore, Experiment 1 showed no evidence for cost of dividing attention

between the two summaries.

Fig 2B and 2C illustrate the informative correlations. We found very high positive precue-

postcue correlations within each summary (“Numerosity—Precue” with “Numerosity—Post-

cue”: r = .904, p< .001, BF10 = 3.349 × 106; “Mean size—Precue” with “Mean size—Postcue”: r
= .939, p< .001, BF10 = 1.566 × 108; Fig 2B). These correlations show high consistency between

the two conditions in which each summary is measured. From a more general viewpoint, they

suggest that the individual differences in both measured abilities–enumeration and averaging–

are robust against cue manipulations. In contrast, we found no correlations between different

summaries within same-cue conditions (“Numerosity—Precue” with “Mean size—Precue”: r
= .085, p = .700, BF10 = .277; “Numerosity—Postcue” with “Mean size—Postcue”: r = .050, p =

.820, BF10 = .265; Fig 2C). This lack of correlation suggests the absence of a common mecha-

nism for the perception of numerosity and the mean size.

In sum, two results of Experiment 1 are most important in terms of the topic. First, we

found no cost of division of attention between the numerosity and the mean size of a set.

Numerosity and mean size perception
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Second, we found no correlation between the precision of judging numerosity and the mean.

Taken together, these findings suggest that these two tasks can be carried out in parallel and

independently of each other, at least when both summaries are estimated within one set of

Fig 2. Results of Experiment 1. (A) cue effects on the relative error of numerosity and mean size judgments

(error bars denote ±95% CI); and scatterplots showing (B) precue-postcue correlations within summaries and

(C) between-summary correlations within different cue conditions.

https://doi.org/10.1371/journal.pone.0185452.g002
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objects. This is consistent with the idea of non-overlapping well-coordinated mechanisms for

computing numerosity and the mean size.

In Experiment 1, observers had to compute two summaries at one time (in the postcue tri-

als). Adopting the idea of the separate computational mechanisms, we assume that each com-

putation is carried independently and share no processing bottleneck. This allows to avoid

interference. We can call it distributed computation. In the next experiments, we compare this

distributed computation (two concurrent computations, each is performed by a separate

mechanism) with a situation where a single processor is busy computing two summaries (that

we can call shared computation). We suppose that shared computation occurs when two same-

type summaries are estimated. In Experiment 2, we tested this in a task requiring the distribu-

tion of attention between two numerosities or two mean sizes. Obviously, it is impossible to

have two same-type summaries within one set, so two sets are always required. As we noted

earlier, this causes certain problems in interpretation, because it is hard to dissociate between

parallel statistical computations and parallel attending to two sets [56,57]. For this reason, it

would be difficult to compare Experiment 2 (same summary in two sets) with Experiment 1

(different summaries in one set). In Experiment 3, we solved this problem by introducing

combined conditions, namely, different summaries in different sets.

Experiment 2

Method

Participants. Nineteen psychology students of the Higher School of Economics took part

in the experiment for extra course credit (10 females, ages ranging between 18 and 22 years).

All reported having normal or corrected-to-normal vision and no neurological problems. The

participants were unaware of the purpose of the experiment. Before beginning the experiment,

they signed an informed consent for the procedure approved by the Institutional Review

Board at HSE.

Apparatus and stimuli. Apparatus and stimulation were the same as in Experiment 1,

except for a few important differences. Circles in a whole sample set (“the superset”) were col-

ored in yellow or blue and intermixed by color in the space of a screen (Fig 3). This led the

superset to form two overlapping color subsets. The total number of circles in a set varied

from 10 to 36. As can be noted, the lower limit of the total number was higher than in Experi-

ment 1. This was done to ensure that the number of circles within any subset was no fewer

than five. We did not use subsets containing under five circles because small sets of objects (1

to ~4) are typically enumerated differently than larger sets [3]. The maximum number of cir-

cles in a subset was 23.

The mean size and standard deviation of the circles of the supersets ranged exactly as in

Experiment 1. The mean size of each subset differed, on average, by 21% from the mean size of

the other subset in a display and by 11% from the overall mean size of all circles. These differ-

ences ensured that participants could not reliably report the mean size of a given subset by

deriving it from another attended subset or from the entire set. This encouraged the partici-

pants to divide their attention between the subsets when it was demanded by the task. As the

standard deviations of the supersets were inherited from Experiment 1, keeping the systematic

differences between mean sizes in the subsets inevitably reduced the local standard deviations

in the subsets. They ranged from .05˚ to .19 (.10˚ on average).

For the precue, the Russian equivalents of either the word “YELLOW” (printed with a yel-

low font) or “BLUE” (printed with a blue font) were used. For the postcue, six question marks

were presented, printed with a neutral white font. The cursor for typing a number and probe

circles for adjusting the mean size could also be yellow or blue.
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Procedure. As in Experiment 1, the participants had to report either the number or the

mean size of circles presented in a sample set. The time course of a trial was the same as in

Experiment 1. However, there were some important differences. Instead of reporting the rele-

vant summary of the whole set, the participants were instructed to report the summary of a yel-

low or a blue subset. “Number” trials were presented in a separate block from “mean” trials, so

a relevant parameter was always known to the participants. Therefore, their attention was

always focused on one summary but could be divided between two subsets.

In the precue condition, a word “YELLOW” or “BLUE” appeared at the beginning of the

trial informing the participant about the color of a relevant subset (Fig 3). In the postcue con-

dition, six question marks replaced the cue. 500 ms after the cue, a sample set was presented

for 500 ms, followed by the cursor or a probe circle (Fig 3). The cursor or a circle had the color

of the relevant subset. That informed the participant about the relevant subset in the postcue

trials and served as a reminder in the precue trials.

It is important to note that, in trials where one (the smaller) of the subsets contained fewer

than five items, reports were demanded only on a larger subset, both in the numerosity and

the mean size task. Nonetheless, the participants were not warned that they would never be

asked about the small sets, so they divided their attention between both subsets anyway (unless

the relevant subset was precued).

Design and data analysis. In this experiment, we used a 2 (Cue–precue vs. postcue) × 2

(Task–numerosity vs. mean size estimation) within-subject design. The number of trials per

condition was 54 (two repetitions of 27 displays covering the whole range of numbers from 10

to 36). The experiment was divided into two blocks, one for the numerosity task and another

for the mean size task. The order of block presentation varied across participants. The total

number of trials in the two blocks was, therefore, 2 × 2 × 54 = 216 trials presented in a random

order within each block (108 trials per block). Each block was preceded by 8 practice trials that

were not included in the data analysis.

Data analyses were the same as in Experiment 1.

Results and discussion

We found a strong effect of Cue on the relative error (Fig 4A) in the numerosity task (t(18) =

7.273, p< .001, d = 1.669, BF10 = 19202.171) and a moderate effect in the mean size task (t(18) =

Fig 3. An example of a single trial with time course in Experiment 2. (A) precue and (B) postcue

conditions.

https://doi.org/10.1371/journal.pone.0185452.g003
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3.196, p = .005, d = .733, BF10 = 9.287). In both cases, the precue led to smaller relative errors

compared to the postcue (Fig 4A). We therefore found evidence for the cost of dividing attention

between two summaries of the same type when they belong to different sets.

Fig 4. Results of Experiment 2. (A) cue effects on the relative error of numerosity and mean size judgments

(error bars denote ±95% CI); and scatterplots showing (B) precue-postcue correlations within summaries and

(C) between-summary correlations within different cue conditions.

https://doi.org/10.1371/journal.pone.0185452.g004
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Fig 4B and 4C illustrate the informative correlations. The results were very similar to the

results of Experiment 1. Precue-postcue correlations were high within each of the summaries

(“Numerosity—Precue” with “Numerosity—Postcue”: r = .885, p< .001, BF10 = 73149; “Mean

size—Precue” with “Mean size—Postcue”: r = .899, p< .001, BF10 = 78566; Fig 4B) showing

high consistency between the measurements across the cue conditions. We also found no evi-

dence for correlations between different summaries within same-cue conditions (“Numerosity

—Precue” with “Mean size—Precue”: r = .016, p = .938, BF10 = .284; “Numerosity—Postcue”

with “Mean size—Postcue”: r = .141, p = .565, BF10 = .339; Fig 4C). These results replicated the

absence of correlation that supports the validity of the conclusion from Experiment 1, that

there is probably no common mechanism in the processing of numerosity and the mean.

In Experiment 2, the participants did not divide their attention between numerosity and

the mean, as each of the tasks was presented as a separate block. Instead, the participants

divided their attention between two numerosities or two mean sizes of different subsets. We

found a cost of dividing attention under this condition compared to focusing on only one

summary. These results somewhat contradict previous work showing that observers are

equally good at representing the numerosities [5] and mean sizes ([54], Experiment 3; see also

[28]) of two subsets under both the precue and postcue conditions. One difference that could

explain the discrepancy between our data and that of Chong and Treisman [54] was the sensi-

tivity of the test. While Chong and Treisman [54] used a two-alternative choice (their partici-

pants decided which of two probes had the mean size), our participants performed continuous

adjustment, increasing or decreasing the probe in a pixel-by-pixel manner. These continuous

estimates could be sufficient to reveal slight but significant differences between the precue and

postcue conditions. However, this speculation requires further experiments to be tested. Hal-

berda et al. [5] used a very similar procedure for number estimation to ours and even more dif-

ficult presentation conditions (their samples were masked both forward and backward) and

found that most of their participants had shown no postcue cost for up to two subsets. How-

ever, Poltoratski and Xu ([59], Experiment 1), in their replication of Halberda et al. [5]’s study,

found evidence for that cost for two subsets. It appears, therefore, that some differences in sti-

muli, procedures, or samples of observers can have something to do with the discrepancies in

the results. More importantly, most of the mentioned studies explicitly show that the concur-

rent computation of summary statistics in different sets is prone to severe capacity limitations

[28,30,31], which can be probed with the precue [5,59]. It also appears that, in Experiment 2,

we found those limitations for both numerosity and the mean when they are tested indepen-

dently. This finding is a baseline for Experiment 3, where the two summaries are estimated in

different subsets concurrently.

Experiment 3

Method

Participants. Twenty-three psychology students of the Higher School of Economics took

part in the experiment for extra course credit (18 females, ages ranging between 18 and 22

years). All reported having normal or corrected-to-normal vision and no neurological prob-

lems. The participants were unaware of the purpose of the experiment. Before beginning the

experiment, they signed an informed consent for the procedure approved by the Institutional

Review Board at HSE.

Apparatus and stimuli. Apparatus was the same as in the previous experiments. Stimula-

tion was the same as in Experiment 2 concerning sample sets and report screens. Cue screens

were the same as in Experiment 1 (words “NUMBER” and “MEAN” as precues, or a string of
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question marks as postcues) with an addition that the precue words could be colored in blue

or yellow.

Procedure. In Experiment 3, participants were instructed to report the number of one color

subset and the mean size of another one. For example, if a relevant subset on a trial was yellow,

then the participant had to report its numerosity; if a relevant subset was blue, then the partici-

pant had to report its mean size (Fig 5). The participants had, therefore, to encode two different

summaries–one from each subset [55]. In precue trials, a word informing about the relevant

summary was presented on the cue screen. The precue word was printed in a color correspond-

ing to the color of a subset assigned to the requested summary (Fig 5). In postcue trials, six white

question marks appeared on the cue screen. As in the previous experiments, either the cursor or

a probe circle appeared at the end of trial. These were also colored in accordance with the rele-

vant subset (Fig 5). The rest details of the procedure were same as in previous experiments.

Design and data analysis. The design and the number of trials per condition were the

same as in Experiment 2. There were only two differences. First, numerosity and mean size tri-

als were randomly intermixed rather than blocked. Second, the colors of “numerosity” and

“mean” trials varied across participants: One half of the participants had to report the number

of yellow and the mean size of blue circles, while another half had to report the number of blue

and the mean size of yellow circles. Only one practice block of 8 trials preceded the experimen-

tal block.

Data analyses were the same as in the previous two experiments.

Results and discussion

The data of one participant were removed from the analysis as an outlier because of the sys-

tematic tendency to overestimate the number of circles by approximately 100% on average.

This tendency led to the relative error in the numerosity task far exceeding three standard

deviations. Therefore, data from 22 participants were used for further analysis.

We found strong effects of Cue on the relative error (Fig 4A), both in the numerosity task

(t(21) = 4.337, p< .001, d = .925, BF10 = 106.3) and in the mean size task (t(21) = 4.597, p<
.001, d = .980, BF10 = 184.4). In both cases, the precue led to smaller relative errors compared

to the postcue (Fig 6A). These results suggest that there was a cost of dividing attention

between numerosity and the mean size when these summaries belong to different sets.

Fig 5. An example of a single trial with time course in Experiment 3. (A) precue and (B) postcue

conditions.

https://doi.org/10.1371/journal.pone.0185452.g005
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Fig 6B and 6C illustrate the informative correlations. Precue-postcue correlations were high

within each of the summaries (“Numerosity—Precue” with “Numerosity—Postcue”: r = .670,

p = .001, BF10 = 48.163; “Mean size—Precue” with “Mean size—Postcue”: r = .771, p< .001,

Fig 6. Results of Experiment 3. (A) cue effects on the relative error of numerosity and mean size judgments

(error bars denote ±95% CI); and scatterplots showing (B) precue-postcue correlations within summaries and

(C) between-summary correlations within different cue conditions.

https://doi.org/10.1371/journal.pone.0185452.g006
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BF10 = 953.552; Fig 6B) showing high consistency between the measurements across cue con-

ditions. Correlations between different summaries within same cue conditions were non-sig-

nificant (“Numerosity—Precue” with “Mean size—Precue”: r = .131, p = .561, BF10 = .320;

“Numerosity—Postcue” with “Mean size—Postcue”: r = .137, p = .543, BF10 = .315; Fig 6C).

This pattern replicates the patterns from Experiments 1 and 2, suggesting the absence of a

common mechanism in the processing of numerosity and the mean. We conclude that these

two summaries are processed independently.

Like in Experiment 1, our participants had to divide their attention between numerosity

and the mean size on postcue trials. Like in Experiment 2, they also divided their attention

between subsets when estimating those statistics. We found evidence for some cost of divided

attention that we did not observe in Experiment 1. However, a similar cost was found in

Experiment 2 when only one of the “processors” was always enabled on each block of trials.

Therefore, we can conclude that the postcue cost in Experiment 3 was likely to be caused by

dividing attention between two subsets rather than two summary statistics.

General discussion

Summarizing the results from Experiments 1–3, we came to three important findings. First,

our observers had no difficulties in dividing their attention between the numerosity and the

mean size of the same set (Experiment 1). Second, there was no correlation between the preci-

sion of numerosity and mean judgments, and this result was highly consistent across all experi-

ments and conditions. Third, the division of attention between same-type (Experiment 2) or

different-type (Experiment 3) summaries yielded some costs if these summaries belonged to

different sets. We discuss the theoretical implications of these findings below.

Independence and parallelism: Implications for visual statistical

processing

In our experiments, we combined a correlational approach [48,60] with the precue-postcue

paradigm [5,54,55,57] in order to test correlation and parallelism between two domains of

ensemble summary statistics–numerosity and mean size. As we noted above, both these tests

focus on different aspects of the functional organization of ensemble perception. Without test-

ing parallelism, the observed uncorrelatedness (independence) only shows the absence of a

potential overlap between different domains, but not their coordination in conscious percep-

tion when multiple statistics are required for a rich description of a stimulus. Likewise, without

testing correlation, it is hard to say whether the observed parallel statistical computations are

provided by truly independent domains or by a unitary algorithm that comprises all computa-

tions (e.g., computing the average using numerosity information). Experiment 1 was the main

and most straightforward test for both correlation and parallelism, given that only one ensem-

ble has always been processed but two different statistical summaries have been extracted. The

results of this experiment showed consistency with an idea of two well-separated domains for

numerosity and the mean size, as we found no correlation between these tasks and no signs of

interference.

In Experiments 2 and 3, we tested the tasks in which the visual system was busy with two

summaries of different types, with the tasks in which it was busy with two same-type summa-

ries. This testing scheme allowed us to compare the supposed distributed computation (when

coordination between the domains is required) with shared computation (when no coordina-

tion is required because only one processor is always used). We also addressed the controver-

sial issue of dividing attention between summaries vs. sets. It turned out that both distributed

and shared computations showed the cost of divided attention. The whole triplet of the
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experiments eventually provided us with important information about the capacity limitations

of ensemble summary statistics. Comparing Experiments 1 and 3, both requiring distributed

computation but differing in the number of attended sets, we can see that it is attending to two

sets that causes interference. Therefore, when we turn to Experiment 2, requiring the shared

computation of two same-type statistics in two sets, we should conclude that there are proba-

bly no specific constraints in computational capacities per se, even when they share a single

mechanism. This conclusion is supported by the high precue-postcue correlations in same-

type summaries in Experiment 2: These correlations show that, if ensemble summary is esti-

mated precisely in one ensemble, it is also estimated precisely in two ensembles, yet with some

loss in both. In line with other previous studies [57–59], we conclude that capacity limitations

of ensemble summary statistics are associated with the limits in parallel encoding of multiple

sets. Beyond this limitation, computational capacity for estimating summary statistics can be

rather large, both in distributed and shared computations.

An idea of a single “statistical processor” performing numerous ensemble computations

looks intuitively appealing when we borrow terms and concepts from a different discipline–

regular mathematical statistics–to describe a part of visual reality. In addition, it seems even

more plausible given interesting data in favor of a possible connection between some ensemble

statistics (numerosity) and more generic and not purely visual mathematical abilities [67].

However, our results, along with the previously reported data [48,60], go against the idea of

such a general processor. Perhaps some overlap (correlation or interference) between ensem-

ble summaries is possible, but so far it has been documented only between a few combinations

of basic features–mean size and mean speed, mean size and mean orientation [55], mean ori-

entation and mean color [48]. For more “remote” summaries, such as numerosity and the

mean size, there is no evidence for such an overlap.

The parallel and independent character of numerosity and mean size processing leads us to

an idea of a more modular (domain-specific) architecture [68] underlying a variety of phe-

nomena referred to as ensemble summary statistics. Modularity implies that a number of

highly domain-specific structures work on various ensemble properties, each within its

domain specificity, and the modules do not overlap. Our claim that the computation of

numerosity and the mean size are provided by separate domain-specific “modules” is sup-

ported by neural data. It is shown that numerical functions, including numerosity estimation

in multiple objects, are associated with increased activity in the parietal cortex, especially the

intraparietal sulcus [69,70], and activity in the prefrontal cortex [70]. On the other hand, Cant

and Xu [23] have recently shown that the processing of shape statistics in photorealistic multi-

ple objects is associated with increased activity in the parahippocampal place area and lateral

occipital area, known to respond to intrinsic properties of objects and scenes.

How can ensemble summary statistics be calculated?

The second important issue associated with the links between the mean and numerosity is the

question whether, like in regular statistics, calculating the mean requires information about

the number (as the number of items in a sample is the denominator in the formula to calculat-

ing the mean). Applying this idea to our tasks, it could be supposed that, for size averaging, the

visual system roughly estimates individual sizes and the number of circles, then sums the sizes,

and divides by the number. However, the data from all three of our experiments show that this

scenario is unlikely. If two processors, as shown, are independent, then they hardly “know”

what calculations the other is doing and what result is being reached. This concept is supported

by the absence of significant correlations between the precision of number estimation and that

of mean size estimation, which is consistent with the conclusion made by Lee et al. [60].
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The finding that the visual system does not act like a regular statistician while calculating

the average makes us consider alternative mechanisms that could lie within a core of represent-

ing ensemble summary statistics. One approach that could suggest a potential explanation is

based on the idea of sampling, which resonates particularly in studies of size and color averag-

ing [37,38,40,41]. Sampling implies that the mean can be efficiently estimated based on just

few items (2 to 4) that occur to be attended to and loaded into working memory. Therefore, if

only a sample of items is averaged, then there is no need for the knowledge of the total number

of items in a display: The system averages these few items and approximates the estimate for

the rest, regardless of their number. However, a number of studies tend to disprove the lim-

ited-capacity sampling mechanism of averaging [30–34,36,71]. This also questions the sample-

based explanation of the absence of links between the mean size and numerosity.

The second possible idea that potentially can explain how visual averaging bypasses operat-

ing numerosity is based on the concept of pooling. It refers to the mechanism of accumulating

signals by higher levels of the visual hierarchy from its lower levels in the feedforward process-

ing stream. The idea of pooling as a mechanism of representing summary statistics is wide-

spread [10,25,43,72–74], and for ensemble averaging, it is well explained by Haberman and

Whitney [42]. At the lower levels of analysis (for example, at the level of V1), every ensemble

element is represented by a population response of feature-selective neurons with narrow

receptive fields, that is, every such population is very locally tuned to a small piece of the visual

field. On higher levels, receptive fields become larger, accumulating information from several

lower receptive fields. Therefore, neurons in those large receptive fields can be selectively acti-

vated by a combination of lower-level signals. Presumably, the peak activation will be pro-

duced by neurons responsive to the average value of the lower-level signals [24]. That process

can explain how the mean ensemble feature can be encoded directly as a sensory property

[20]–which is of particular importance for our topic–without taking the number of elements

into account. Nevertheless, our data reported in this article do not allow us to directly conclude

which of the strategies is actually used for “numerosity-free” computation of the mean size.

Further experiments are required to clarify this point.

Conclusions

Numerous demonstrations of rapidly computed ensemble summary statistics raise the ques-

tion of what performs these computations. Is it a single general structure that can perform a

broad range of statistical transformations on data from different sensory domains? Our find-

ings described in this article suggest that different statistical estimates–numerosity and the

mean size–extracted from exactly the same stimulus are likely to be provided by independent

domain-specific mechanisms, rather than by a single domain-general one. This result also

implies that, unlike mathematical statistics, visual averaging does not operate information

about the number of individual objects which, in turn, questions whether ensemble perception

is based on a set of transformations reproducing regular statistics literally.
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