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Small-angle X-ray scattering (SAXS) often includes an unwanted background,

which increases the required measurement time to resolve the sample structure.

This is undesirable in all experiments, and may make measurement of dynamic

or radiation-sensitive samples impossible. Here, we demonstrate a new

technique, applicable when the scattering signal is background-dominated,

which reduces the requisite exposure time. Our method consists of exploiting

coherent interference between a sample with a designed strongly scattering

‘amplifier’. A modified angular correlation function is used to extract the

symmetry of the interference term; that is, the scattering arising from the

interference between the amplifier and the sample. This enables reconstruction

of the sample’s symmetry, despite the sample scattering itself being well below

the intensity of background scattering. Thus, coherent amplification is used to

generate a strong scattering term (well above background), from which sample

scattering is inferred. We validate this method using lithographically defined test

samples.

1. Introduction

Designed nanomaterials hold the promise of vastly improved

functional response for a range of demanding applications.

The key to controlling functionality in these materials lies in

the precise control over the spatial arrangement of nano-

objects (e.g. nanoparticles), whose collective properties give

rise to tailored optical (Fan et al., 2010; Jones et al., 2011),

electrical (Tapio et al., 2016), or catalytic response (Daniel &

Astruc, 2004). A variety of methods have been developed to

precisely control the positioning of nanoscale components.

Lithography using light, electrons, or ions, can be used to

precisely scribe desired structures. Self-assembly can be used

to direct the organization of nanoparticles, forming complex

motifs ranging from extended three-dimensional superlattices

(Mirkin et al., 1996; Murray et al., 2000; Redl et al., 2003; Park

et al., 2008; Nykypanchuk et al., 2008; Zhang et al., 2013; Ye et

al., 2015), to finite-size clusters (Sharma et al., 2009; Lo et al.,

2010; Vial et al., 2013; Tan et al., 2014; Zhang et al., 2014; Tian

et al., 2015). A key challenge to continued progress in nano-

materials design is the structural characterization of these

mesoscale objects. Characterization is especially problematic

for self-assembled systems exploiting soft linkers and a solvent

(often aqueous) environment, since removal from this envir-

onment typically disrupts the ordering. Measurement in the

native environment is thus highly desirable, but this limits one

to measurement probes with long penetration depths and

small wavelengths. X-rays are particularly well suited for the

task, meeting both these criteria. Small-angle X-ray scattering
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(SAXS) is routinely used for the measurement of the structure

of extended superlattices, for example Jones et al. (2010),

Yager et al. (2014), Tian et al. (2015) and Senesi & Lee (2015).

The in-situ measurement of finite-sized meso-objects, which

are inherently small and weakly scattering, remains a serious

challenge. The sample environment (i.e. solution) introduces

significant background scattering. This greatly reduces the

overall signal-to-noise ratio per measurement, increasing the

required measurement time. This is especially problematic for

radiation-sensitive materials, such as DNA-mediated nano-

particle superlattices, which degrade under long X-ray expo-

sure. Here, we propose a new technique to overcome the

limitation of background-dominated measurement: coherent

X-ray amplification of sample scattering above background

(X-amp).

Our method consists of boosting the effective sample signal

by ensuring coherent interference between it and a designed

strongly scattering object. Our work builds upon previous

work in coherent interference, signal boosting (Shintake,

2008), and related work in Fourier transform holography

(McNulty et al., 1992; Eisebitt et al., 2004). Importantly, as

subsequently shown by Schropp & Schroer (2010), coherent

interference cannot boost the intrinsic signal-to-noise ratio of

a particular scattering entity. However, interference can boost

a weak signal to be above an otherwise dominating back-

ground. Although the sample scattering itself may be well

below the background, the ‘amplifier’ structure can be

designed to scatter very strongly; the coherent interference

between the sample and amplifier can thus be designed to be

above background, even though the sample scattering alone is

not. The interference signal appears as fringing of the total

scattering pattern, in the q-ranges where both the sample and

amplifier scatter. While the spacing of the fringes themselves

merely encodes the spatial separation between the sample and

amplifier (which is generally not of interest), the distribution

of fringes throughout q-space allows the scattering pattern of

the sample to be inferred. Thus, the interference scattering

encodes information about the sample structure. This infor-

mation can be robustly extracted by applying correlation

methods, which are well suited to identifying sample

symmetry.

Measuring the symmetry of X-ray scattering rings reveals

additional information about structural order beyond that

available in the isotropic scattering pattern. For extended

periodic materials (e.g. superlattices), the multiplicity of each

scattering peak is a unique signature of the lattice type. Per-

peak symmetry information can thus resolve ambiguities

between otherwise similar scattering patterns. Moreover,

lattice identification is typically impossible when only a single

scattering peak is measurable (due to low signal, sample

disorder, etc.); whereas the inclusion of symmetry information

can distinguish different candidate structures. For example,

the symmetries of the first-order peak for f.c.c. and h.c.p.

lattices are distinct (4-fold versus 6-fold). More broadly,

symmetry analysis probes crucial information about local

packing motifs (Wochner et al., 2009; Altarelli et al., 2010) and

orientational order in nanomaterials (Lehmkühler et al., 2014,

2016), which is especially important since the collective

properties exhibited by such materials depend strongly on the

local ordering (nearest- and next-nearest-neighbor interac-

tions). Finite-size meso-clusters represent another important

class of nanomaterials. Precise arrangements of nanoparticles

can now be generated using DNA origami frames (Liu et al.,

2016). Because of the finite size, these materials do not exhibit

sharp structural peaks, but instead exhibit complicated form

factor oscillations. By resolving the symmetry of the scattering

features, one can uncover the underlying structural motifs of

the assembly, and thus reconstruct the meso-cluster structure.

Thus, the measurement of symmetry provides crucial infor-

mation for periodic, disordered and finite-size nanomaterials.

There is a pressing need to be able to measure nanoscale order

in regimes of extremely low signal to noise: for organic

materials that scatter weakly, in solvent environments with

high background, and in kinetic series where each individual

frame may have very few photon counts. It is within this

context that improvements in the signal-to-noise ratio of

angular correlation methods have enormous value.

In this work, we demonstrate how a modified angular

correlation technique can be used to extract sample symmetry

from the coherent interference term. This enables measure-

ment of weakly scattering samples, and moreover allows

measuring sample symmetry (and thus local packing motifs)

beyond the ensemble limit. That is, one can measure aspects of

sample structure that are normally averaged-out in bulk

scattering from a large, isotropic distribution of meso-objects.

By boosting the effective signal-to-noise ratio of weakly

scattering samples, X-amp should make feasible a host of

previously impossible experiments, including the measure-

ment of individual meso-clusters in high-background solution

environments, the reconstruction of three-dimensional scat-

tering patterns of finite-sized entities, and in-situ measurement

of the dynamics and kinetics of self-assembling nanomaterials.

2. Methods

2.1. Experimental setup

Synchrotron experiments were performed at the coherent

hard X-ray (CHX, 11-ID) undulator beamline at the National

Synchrotron Light Source II (NSLS-II) at Brookhaven

National Laboratory (Fluerasu et al., 2011; Chubar et al., 2013;

Lhermitte et al., 2017). The X-ray energy was set to 8.9 keV

(1.4 Å wavelength) using a double-crystal monochromator

(energy resolution ��=� � 10�4). The partially coherent

beam was focused 0.5 m upstream of the sample position to a

spot size of 10 mm using a set of compound refractive lenses

(CRL) and kinoform lens (KL) closer to the sample (Chubar

et al., 2013). The sample–detector distance was set to 4.81 m.

The diffractometer used for sample mounting features two

independent stacks of stages (each with three translational

degrees of freedom), allowing for independent alignment and

motion of the sample substrate and amplifier substrate. For the

proof-of-principle measurements with the sample and ampli-
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fier fabricated on a single substrate, only a single motion stack

was required. The experimental setup is shown in Fig. 1.

High beam coherence was ensured by measuring a sample

of known scattering and ensuring the visibility of the expected

fringes for the same experimental setup. In this case, the

sample was a two-dimensional array of dots approximately

2.6 mm in extent (see supporting information), while beam

transverse coherence length is estimated to be 4 mm.

2.2. Sample preparation

The sample and amplifier structures were fabricated using

electron-beam lithography (Jeol-JBX6300-FS). In both cases,

gold nanostructures were fabricated on 150 mm thick silicon

substrate [using a similar protocol as in our previous work

(Lhermitte et al., 2017)]. The samples consist of a hexagonal

arrangement of dots, while the amplifier consists of concentric

rings. The radial periodicity of the rings scatters photons into

certain regions of q-space, increasing the scattered signal in

these regions. Circularly symmetric rings – as opposed to two-

dimensional arrays – were chosen to produce azimuthally (�)

isotropic scattering. The ring spacing is designed such that the

resultant scattering peak closely overlaps the scattering peaks

for the sample of interest (refer to the supporting information

for additional details). Samples were imaged using scanning

electron microscopy (SEM) to confirm their structure and

quality. Fig. 1 shows a validation structure where the sample

and amplifier are patterned on the same substrate. Similar

quality of structures were obtained when the sample and

amplifier were patterned on separate substrates.

3. Theory

The X-ray scattering signal measured on a detector follows

shot–noise counting statistics (Goodman, 1985). For a

measured intensity I for some pixel and exposure time �t,

with a mean counting value of I ¼ ��t (where � represents

the counts for some pixel per exposure time), the measured

signal is simply I. The noise is the variance

N ¼ ðhI2i � hIi2Þ
1=2
¼ ð��tÞ

1=2 where the last step assumes

that the intensity follows Poisson statistics and the angle

brackets denote an ensemble average over measurements

(Goodman, 1985). The signal-to-noise (S=N) ratio is:

S=N ¼ ð��tÞ
1=2: ð1Þ

For a fixed solid angle, the quality of a diffraction pattern

strongly depends on the exposure time. Typically, a good value

of signal-to-noise ratio for a collection of pixels is on the order

of 1, so that the average number of photons measured in a

given pixel is near 1. Higher criteria exist, such as a signal-to-

noise ratio of 4 or 5, which results in 16 to 25 photons per pixel

(Rose, 1974). For a desired signal-to-noise ratio of Creq, the

exposure time required scales as ð�tÞreq ¼ C2
req=�.

When a background is introduced, the mean intensity

becomes I ¼ Is þ Ibg where the subscripts s/bg refer to the

sample/background. The signal must now be discernible from

the background, and so the signal is the difference between

the sample and a measured background I � I 0bg, where I0bg is a

measured background. In the ideal case where the background

is perfectly measurable I0bg ¼
�IIbg, the signal is the average of

this quantity:

hI � Ibgi ¼ I � Ibg ¼ Is ¼ �s�t:

The noise is the variance of this quantity:

N ¼ ðI � IbgÞ
2

� �
� I � Ibg

� �2h i1=2

¼ hI2
i � 2hIiIbg þ I

2

bg � hIi
2
þ 2hIiIbg � I

2

bg

� �1=2

¼ hI2i � hIi2
� �1=2

¼ I
� � 1=2

¼ ð�s þ �bgÞ�t
� 	1=2

The signal-to-noise ratio is then:

S=N ¼ IsX�t
� �1=2

ð2Þ

X ¼ Is=Is þ Ibg ð3Þ

ð�tÞreq ¼ C2
req=ðIsXÞ: ð4Þ

Thus, to achieve the same signal-to-noise ratio of a diffraction

pattern with the presence of a background, one would need to

expose 1=X times longer than one would have needed to

successfully measure the sample on its own. In the limit of high

backgrounds, this reduces to Ibg=Is. The increase in measure-

ment time is of course inconvenient. In the case of radiation-
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Figure 1
Experimental setup. The amplifier (ring structure) is placed upstream of
the sample of interest. The X-ray beam is denoted by the large purple
cylinder; the inner cylinder denotes the approximate transverse
coherence length (the longitudinal coherence length is large). When
the sample and amplifier are within the same coherence volume, the
scattering pattern (lower left) exhibits fringes (circled in green) whose
spacing and direction are related to the transverse separation between
the two scattering entities (green arrow). The lower-right figure shows an
SEM image of a validation structure, where the sample and amplifier
were patterned on a single substrate.



sensitive or time-varying samples, the large requisite exposure

time may in fact make the measurement impossible.

3.1. Boosting by coherent interference

The intensity of coherently scattered photons, in the far

field, is given by the Born approximation (Als-Nielsen &

McMorrow, 2011), and proportional to the modulus squared

of the form factor:

I / jFðqÞj2 ð5Þ

FðqÞ ¼

Z
��0ðrÞ expðiq�rÞdr ð6Þ

where ��0 is an effective electron density difference taking into

account the medium electron density as well as energy-

dependent dispersion corrections (see the supporting infor-

mation for additional details). If we introduce an amplifier

within the coherence volume of a sample, equation (6) still

holds, and the scattered field may be broken into the integrals

centered over the sample and the amplifier volume at posi-

tions rs and ra, respectively:

FðqÞ ¼ FsðqÞ expðiq�rsÞ þ FaðqÞ expðiq�raÞ: ð7Þ

The resultant intensity is then:

I / jFðqÞj2 ð8Þ

¼ jFsðqÞj
2
þ jFaðqÞj

2
þ Re½FsðqÞF

�
a ðqÞ expðiq��rÞ� ð9Þ

/ Is þ Ia þ �Is;a ð10Þ

�r ¼ ra � rs; ð11Þ

where Re denotes the ‘real part of’. The coherent interference

results in an interference term �Is;a which encodes a combi-

nation of sample FsðqÞ and amplifier FaðqÞ form factors. This

interference term contains sets of fringes determined by the

relative distance expðiq��rÞ of sample and amplifier.

A simple example of this effect can be seen by examining

the scattering in Fig. 1 (lower left) of a sample and amplifier

(SEM in lower right). In addition to the sum of the diffraction

patterns from the sample and amplifier seen, one observes

fringes where the scattering patterns of the two overlap [FaðrÞ

and FsðqÞ nonzero].

The direction of the fringes is along the center to center

distance of the sample to amplifier (where the center is defined

by the form factor) with fringe spacing inversely proportional

to the sample-to-amplifier distance.

If background scattering is present, the overall scattering

intensity will include this contribution. Assuming that there is

no discernible coherent interference between the sample and

background, the contribution is purely additive:

I ¼ Is þ Ia þ �Is;a þ Ibg: ð12Þ

Examples of backgrounds like this are the scattering of

windows outside the coherence volume, or solvent molecules

within the coherence volume fluctuating on time scales much

faster than the measurement time. When the scattering (of

sample, amplifier, and background) is static, the noise of such

a term is simply due to Poisson statistics:

noise ¼ I
� � 1=2

¼ Is þ Ia þ �Is;a þ Ibg

� � 1=2
; ð13Þ

where an overbar indicates an average over time. To gain an

intuitive sense of the signal, we make the assumption that the

sample and amplifier are centrosymmetric, so their form

factors are real. The interference term is then:

FsðqÞFaðqÞRe½expðiq��rÞ� ¼ FsðqÞFaðqÞ cosðq��rÞ: ð14Þ

The sample and the amplifier will generally be spatially

separated by a length greater than their overall sizes; thus the

phase term will oscillate more rapidly than the variations in

reciprocal space of the sample or amplifier term. Thus the

‘signal’ from the interference term (in terms of S=N) will be

the difference between the maximum and minimum of the

fringes observed, or:

maxð�Is;aÞ �minð�Is;aÞ / 2FsðqÞFaðqÞ / 2 IsðqÞIaðqÞ
� 	 1=2

:

ð15Þ

The signal-to-noise ratio is then:

S=N ¼ 2 IsXa

� � 1=2
ð16Þ

Xa ¼
Ia

Is þ �Is;a þ Ia þ Ibg

: ð17Þ

In the case of a weak sample (Is � Ibg) and strong amplifier

(Ia 	 Ibg), the resultant signal-to-noise ratio approaches an

asymptotic value of 2ðIsÞ
1=2. Contrasting this to the signal-to-

noise ratio for a sample without amplifier, which approaches 0

in the limit of large background, this is quite a gain. On the

other hand, this signal-to-noise ratio may not improve upon

further increasing the amplifier signal beyond that of twice the

signal-to-noise ratio of the sample in the absence of back-

ground [ðIsÞ
1=2]. Two important conclusions may be drawn

from this. First, in regimes of strong background, a strong

amplifier may be used to improve the signal-to-noise ratio of a

sample. Second, the amplifier cannot amplify the sample’s

signal much beyond what it would have been had the sample

been measured on its own without a background [equation

(2)]. This has also been more rigorously shown by Schropp &

Schroer (2010). Thus, the utility of the proposed X-amp

method is not to amplify the sample scattering per se, but

rather to boost its signal above a background that would

otherwise obscure it.

3.2. Angular correlations

Angular correlation analysis can be used to extract

symmetry from noisy X-ray scattering data (Kurta et al., 2012;

Altarelli et al., 2010; Latychevskaia et al., 2015). One typically

measures multiple realizations of the sample over time and

averages quantities that are preserved across the ensemble of

samples (in this case angular symmetries). The angular

correlation is defined as:
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C1ðq;��Þ ¼ ½Iðq; �Þ�hIiNm;�
�½Iðq; �þ��Þ�hIiNm;�

�
� �

Nm;�
ð18Þ

¼ ðI�IÞðI 0�IÞ
� �

Nm;�
ð19Þ

where, for notational simplicity I 
 Iðq; �Þ, I 0 
 Iðq; �þ��Þ,
and I 
 hIiNm;�

and hiNm;�
denotes an average over angle and

measurements. In the event of large backgrounds, the signal-

to-noise ratio scales unfavorably, as Is=ðIs þ IbgÞ
� 	2

(Kirian et

al., 2011; Lhermitte et al., 2017). In the limit of a strong

amplifier (Xa � 1), the sample signal-to-noise ratio no longer

depends on background. One expects the same gains in the

corresponding angular correlation functions. A sensible

approach to attempt to improve this scaling is then to compute

angular correlations on the amplified X-ray scattering pattern.

However, it turns out that due to the extra phase expðiq��rÞ in

the interference term, this correlation function averages out to

zero when averaging over many sample realizations (see

Appendix A for details). Rather, a higher-order correlation

function is necessary:

C2ð��Þ ¼ ðI � IÞ
2
ðI0 � IÞ

2
� �

Nm;�
ð20Þ

c2ð��Þ ¼
C2ð��Þ

C2ð�� � 0Þ
; ð21Þ

where C2ð�� � 0Þ refers to taking the correlation function

near zero [as explained in Lhermitte et al. (2017)]. Assuming

that the amplifier is static and that the background dominates

the sample scattering, so that X< 0:1, the correlation function

is approximated to be:

c2ð��Þ � 4X2
s X2

a csð��Þcað��Þ; ð22Þ

where Xs and Xa are the ratio of the sample and amplifier

scattering to total scattering, respectively (proof is provided in

appendix 8). Intuitively, as there is a visible improvement in

the diffraction patterns by eye, one would also expect a signal-

to-noise improvement in the sample’s angular correlations.

This will be made explicit in later sections of this paper.

4. Results

In order to provide a proof-of-principle validation of the

X-amp technique, we first fabricated sample/amplifier pairs

where both structures are patterned side by side on a single

substrate (Fig. 1, lower right). This enables us to test coherent

interference, and associated signal amplification, under idea-

lized conditions; it guarantees that the sample and amplifier

are co-aligned with respect to the beam, within the same

coherence volume. Samples were located and aligned to the

beam center (to within 500 nm) using strongly scattering

fiducial structures patterned on the substrates (refer to the

supporting information for details on fabrication layout, and

procedures for locating and aligning structures). The test

samples were arrays of dots arranged into a two-dimensional

hexagonal lattice. Coherent interference was exploited by

placing these test samples with amplifiers consisting of a set of

concentric rings. The ring spacing was designed to match the

spacing of planes of the sample arrays, such that their scat-

tering peak coincides with the first-order peak from the

sample. Many variants of the samples [5 � 5 (Fig. 2b), 4 � 4

and 3� 3 (Fig. 2c) arrays] and amplifiers (5, 7 or 10 concentric

rings) were measured; representative results are presented

below. The hex arrays were patterned nearby the amplifier

structures, with multiple copies of the sample/amplifier pair

fabricated on a single substrate (randomly varying the sample

orientation) to simulate an ensemble of samples.

Examples of meso-objects probed using X-ray scattering

are shown in Fig. 2. As can be clearly seen, the effect of the

interference between the sample and amplifier is to produce a

fringed pattern in the parts of q-space where both the sample

and amplifier scatter strongly. For instance, interference

fringes can be seen in Fig. 2(d), where both the amplifier (ring

of scattering, Fig. 2a) and sample (six scattering peaks, Fig. 2b)

scatter. Fig. 2(c) shows the scattering pattern for an extremely

small meso-object: an array of exactly eight nanoparticles. This

ultra-small meso-object scatters so weakly that its scattering

pattern is not discernible above the experimental background.

However, in the presence of an amplifier, the sample’s scat-

tering peaks become visible as fringed regions of the total

scattering pattern (Fig. 2e). This qualitatively confirms that X-

amp can allow the measurement of samples whose signal-to-

noise ratio is below the experimental background.

4.1. Angular correlations

From the fringing observed in the scattering of a sample in

the presence of an amplifier, one can qualitatively discern the

structure of the sample scattering. However, to robustly

research papers

608 Julien R. Lhermitte et al. � X-ray scattering from meso-structures IUCrJ (2017). 4, 604–613

Figure 2
SEM images and SAXS data for a selection of meso-structures. (a) A
pattern of concentric rings generates a strong isotropic ring of scattering;
this structure is used as an amplifier. (b) A 5 � 5 hexagonal arrangement
of 23 dots, fabricated as a test sample. (c) A 3� 3 hexagonal arrangement
of 8 dots, which acts as a very weakly scattering sample. (d) When there is
coherent interference between a sample and the amplifier (in this
example, by patterning them side by side on a single substrate), fringes
appear in the scattering pattern, wherever both sample and amplifier
scatter strongly. (e) In the case of a very weakly scattering sample (which
cannot be discerned above the experimental background), coherent
interference with the amplifier nevertheless generates a visible fringe
pattern. In other words, although the sample alone cannot be resolved,
coherent amplification can be used to infer the sample’s scattering
pattern.



reconstruct the sample scattering, we exploit angular corre-

lation analysis. Angular correlations are, by construction,

insensitive to absolute orientation. Thus, although replicate

measurements of a sample at many different orientations

averages out the orientational (symmetry) information,

accumulation of the correlation functions instead reinforces

the orientational symmetry. This allows one to reduce image

exposures to a time shorter than the dynamics of the sample

and average their angular correlations to extract meaningful

information about their symmetry. Thus, in the X-amp

method, instead of reconstructing the sample’s reciprocal

space, we reconstruct the sample’s angular correlation map,

which provides a robust descriptor of sample structure.

Fig. 3 shows an example of this angular correlation analysis,

where the correlation functions for nine different orientations

of a sample are accumulated. We use our previously described

analysis pipeline (Lhermitte et al., 2017), which accounts for

image masking artifacts, but use the higher-order c2ðq;��Þ
correlation function.

The first-order correlation function (c1, red) does not

obviously reproduce the expected sample symmetry. The

structure in the curve is encoding the correlated (signed)

intensity variations of the interference term, including its

random phase. Averaging over multiple realisations then

averages out to a flat curve containing no information. The

second-order correlation function (c2, magenta), however,

robustly reconstructs the sample symmetry, as can be seen by

its close match to the computed idealized correlation curve

(blue). In the case of the second-order term, the correlation is

capturing the absolute (strictly positive) intensity deviations of

the interference term. Because the phase of the interference

term is random (between different realisations), the average

of the second-order correlation function reconstructs the

envelope of the interference term. Thus, the second-order

correlation function reproduces the underlying sample

symmetry.

4.2. Overcoming background

To test the ability of coherent interference to combat

background scattering, we performed a sequence of experi-

ments where the background was intentionally increased by

introducing sheets of a polyimide film known to generate

diffuse scattering. These sheets were placed a few centimeters

downstream of the sample, well outside the �500 mm

requirement. Fig. 4 shows data for a weakly scattering sample,

with substantial background scattering (3 � 75 mm of poly-

imide). With this background, the sample itself cannot be

discerned visually; nor can the sample symmetry be recovered

using a correlation analysis (Fig. 4, top). In short, the sample is

unmeasurable. However, when an identical sample is in the

presence of an amplifier, one can clearly distinguish both the

amplifier scattering, and also the fringes resulting from the

sample–amplifier interference. Performing a correlation

analysis on this data (averaging over nine realizations with

different sample orientations), we recover the correlation

function and thus the hexagonal symmetry of the sample (Fig.

4, bottom). This experimentally validates the proposed

method, allowing unmeasurable samples to be boosted above

the background noise.
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Figure 3
Diffraction pattern measured for a sample (3 � 3 hexagonal array) in the
presence of an amplifier (concentric ring structure). The corresponding
SEM is shown in the upper left. The ring along the blue contour is
remapped to a (average-subtracted) one-dimensional curve versus � (top
right). The first- and second-order angular correlations are plotted in the
lower-right figure. The first-order correlation (red) is flat and noisy.
However, the second-order correlation function (magenta) closely
matches the idealized expectation for the known sample symmetry
(blue). The interference fringes oscillate as the inverse sample–amplifier
distances ’ 2�/1 mm ’ 6 � 10�4 Å�1.

Figure 4
Example of a sample (5 � 5 hex array) where the background has been
intentionally increased (using the diffuse scattering of 3 � 75 mm of
polyimide material). The top row shows data for the sample alone. The
sample’s scattering peaks (which should appear along the cyan circle) are
not discernible (the blue square shows a zoomed-in region). The intensity
along this azimuthal arc (black curve, right) similarly shows no hint of the
sample peaks. Performing a correlation analysis (magenta curve) does not
recover the sample symmetry (which should match the model curve,
shown in red). The bottom row shows an equivalent sample in the
presence of an amplifier. Although the sample peaks still cannot be seen,
distinct interference fringes are clearly visible. The angular intensity
(black curve) can be analyzed to extract the second-order correlation
function (magenta), which closely matches the expected sample
symmetry (red). Thus, the interference fringes encode the sample’s
structural information. By exploiting interference between the sample
and an amplifier, the sample’s structure can be reconstructed, even
though the sample by itself cannot be measured.



4.3. Signal-to-noise estimates from simulations

The improvements in the signal-to-noise ratio of angular

correlations using an amplifier have so far been qualitative.

We provide here a brief demonstration of the signal-to-noise

gains using the amplification scheme in the presence of an

unstructured background. We use simulated scattering data in

order to quantify the scaling over a wide parameter space; the

simulation procedure is similar to that used in our previous

report (Lhermitte et al., 2017), and elaborated in the

supporting information. The signal-to-noise ratio is computed

for two cases: (1) the computation of the c1ð��Þ correlation of

the sample on its own in the presence of a background; (2) the

computation of the c2ð��Þ correlation function of the same

sample in the presence of an amplifier and background. We

define the boost factor as the ratio of the signal to noise in case

(2) versus case (1); thus it provides a measure of the gain one

can expect when employing the X-amp scheme. Fig. 5 shows

representative data for this boost factor, when varying the

background intensity Ibg and amplifier intensity Ia, but keeping

the sample scattering constant.

The contour of boost factor 1 represents the threshold

where the X-amp scheme is beneficial. The limiting behavior

of the boost matches what one expects intuitively from

inspection of the detector images. For low backgrounds, the

sample is best measured on its own, as the amplifier itself will

always introduce some additional noise to the system. For

higher backgrounds, stronger amplifiers are necessary in order

to overcome the noise of the background. Refer to the

supporting information for additional plots of the scaling of

the signal-to-noise ratio for the amplifier scheme.

4.4. Longitudinal displacement

The validation experiments described above located the

sample and amplifier within the same plane. As a general-use

technique, however, X-amp simply requires that the sample

and amplifier be within the same coherence volume. As such,

the amplifier can be fabricated separately, and aligned to the

beam center. Samples of interest can then be conveniently

translated into the beam center, whereupon they will coher-

ently interfere with the amplifier. In the small-angle limit, the

transverse coherence length (orthogonal to the beam) will be

considerably smaller than the longitudinal coherence length

(along the beam). For instance, the experimental setup used

herein had a transverse coherence of �4 mm and a long-

itudinal coherence of �3 mm (Lhermitte et al., 2017). Thus,

while great care must be taken to co-align the sample and

amplifier transversely (to bring them both within the same

coherence volume), there is a large longitudinal distance over

which they will coherently interfere.

5. Discussions

The presented technique enables the measurement of a

weakly scattering sample that is overwhelmed by strong

background scattering, by introducing a designed strongly

scattering amplifier. For a sufficiently strong amplifier, the

interference term will itself be intense, and thus above the

background noise level. This boosting thus allows otherwise

unmeasurable samples to be measured. Rather than recon-

struct the sample reciprocal space, we propose to exploit

angular correlation analysis to recover the sample’s symmetry,

which provides equivalent structural information. Crucially,

this technique requires one to resolve the interference fringes

arising from the coherent interference between the sample

and amplifier.

For a data feature to be completely determined, it must be

oversampled (Shannon, 1949). This requirement means that

two points must be sampled per period of the highest-

frequency term. Here, we select a measurement threshold

double this baseline requirement (four points per period) to

ensure we remain above this fundamental limit. In X-amp, the

highest frequency components are due to the largest separa-

tion between the sample and amplifier [equation (9)]. For a

reasonable setup with sample-to-detector distance of 4.81 m,

pixel size 75 mm, wavelength 1.4 Å, maximum scattering

wavevector 0.01 Å�1 (resolutions down to 62 nm) and

maximum sample amplifier displacement of 2 mm, the long-

itudinal displacement restriction is set at �z ’ 500 mm.

A second requirement is that a high degree of coherence

across the sample and amplifier must be satisfied in order to

resolve the fringes. Partial coherence has the effect of blurring

the fringes (Vartanyants & Robinson, 2001). For our experi-

mental setup, we verified high coherence by measuring the

diffraction of a sample 2.6 mm in spatial extent (in transverse

direction), where the sample fringes were resolvable. For the

longitudinal direction, coherence may be calculated as

previously discussed (Lhermitte et al., 2017). For the experi-

mental setup here, longitudinal coherence is 3 mm, which is
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Figure 5
We define a boost factor as the ratio of the signal to noise obtained with
coherent amplification to that obtained without using an amplifier. The
boost factor thus quantifies the experimental gain that can be achieved by
exploiting X-amp. The plot false color map shows the boost factor for
simulations using constant scattering of the sample (10 counts s�1 in the
data shown), but varying the scattering intensity of the background (Ibg)
and amplifier (Ia).



longer than the restriction set by the longitudinal displace-

ment described above.

Another requirement is that there be no discernible

coherent interference between the background source and the

sample. This may be assumed true in two main cases: (1) the

scattering entity generating the background is not located in

the same coherence volume as the sample; (2) the background

is located in the same coherence volume as the sample, but

fluctuates on timescales much shorter than the sample’s.

Although in this second case there is coherent interference

between the background and the sample, this interference

fluctuates rapidly, and may be averaged away by measuring for

longer than the background fluctuation timescale.

We have so far assumed that the background obeys Poisson

statistics; that is, that the variations observed in the back-

ground come from finite photon-counting statistics. In some

cases, the background scattering (even if temporally static)

may be non-uniform and structured. Consider, for instance,

the diffuse scattering arising from windows on sample cham-

bers (e.g. mica or Kapton). Such a background is temporally

static but structured (even if weakly and randomly); moreover

it varies randomly as the sample chamber is translated, and

different parts of the window are illuminated by the coherent

X-ray beam. The variance of the speckle from backgrounds

collected at different positions is �Ibg where � is the partial

coherence factor (Sutton, 2008). This was observed, e.g. in Fig.

4, where polyimide sheets were introduced to the beam. The

noise scales more unfavorably than that from Poisson statistics

[Ibg versus ðIbgÞ
1=2]. Since the X-amp method removes the

background dependence of the signal-to-noise ratio, the gains

from this more unfavorable scaling are then higher.

Another limitation of the X-amp technique is the quality of

the amplifier. The nanofabricated amplifier structure will

contain imperfections, which will introduce spurious correla-

tions to the analysis, both through the structuring of the

amplifier scattering, and their contribution to the interference

term. Thus, there are clear advantages to having extremely

high-quality, defect-free amplifier structures. Moreover –

obviously – there is a large advantage to fabricating amplifiers

with as large a scattering power as possible. Thus, one should

favor amplifiers made of strongly scattering materials (such as

gold, used herein), and being as thick as possible (in the beam

direction), to increase total scattering volume. Increasing the

size of the amplifier in the transverse direction, however, has

more limited utility. Firstly, one cannot increase the size of the

object beyond the transverse coherence length. Secondly,

larger amplifier objects will introduce higher-frequency

components to the total scattering image, obscuring the

fringing effect one desires to resolve.

Finally, the obvious limitation is the asymptotic limit

referred to in equation (16), stressed throughout the paper. If

the sample cannot be measured on its own without back-

ground, then it will not be visible via amplification. Thus, the

purpose of X-amp is not to boost the sample scattering per se

but rather to amplify it above a given background.

The use of an amplifier to enhance measurements of meso-

clusters may or may not be of use depending on the applica-

tion and details of the noise contributions. It is important to

assess all the limits described here before choosing to proceed

with the scheme.

6. Conclusion

We have presented a technique to boost the sample scattering

signal above an incoherent background. Coherent amplifica-

tion cannot boost a sample’s intrinsic signal-to-noise ratio; that

is, the signal-to-noise ratio for the material measured in an

idealized zero background context. However, experimental X-

ray scattering measurements very frequently include a non-

trivial background. In the case of measuring extremely weakly

scattering samples, such as finite-size meso-objects, the back-

ground scattering may overwhelm that of the sample. For

instance, sample cell windows and ambient liquid – frequently

present during in-situ measurements – unavoidably introduce

background. The methodology presented here allows one to

amplify sample scattering above background, and thereby

allows the reconstruction of sample symmetry in cases where

the sample is otherwise buried below the background scat-

tering noise floor. We have demonstrated here on static

samples how this technique can be used to amplify the signal-

to-noise ratio for a sample. The presented technique is well

matched to studying meso-objects in solution environments. In

such a case, sample concentrations are often dilute, while the

liquid environment generates a significant background; in

other words, the sample scattering is overwhelmed by back-

ground. For large meso-clusters, the sample dynamics (trans-

lation and rotation in solution) will be orders of magnitude

slower than the fluctuation of the liquid itself (which occurs

over molecular timescales). In such a case, an exposure time

can be selected that yields a non-coherent background (fluc-

tuations averaged out) but an essentially static sample.

Conceptually, X-amp can be used in such a case to repeatedly

measure the sample (as it tumbles in solution), and the

average of the second-order correlation curves can be used to

reconstruct the sample symmetry. We also note that nano-

structures and meso-structures assembled using soft linkers

are typically radiation sensitive. Thus, the ability of X-amp to

reduce the requisite exposure time is extremely beneficial.

The experiments presented here validate that this technique

can be used to amplify sample scattering to overcome a

background, and reconstruct sample symmetry. We note that

the sample-to-amplifier displacement should be kept as small

as possible, but that it is experimentally feasible to bring both

within a coherence volume, and to minimize Ewald curvature

effects to a point where robust data can be recovered. Overall,

this technique may be of great utility as nanoscience delves

into small, finite-size meso-objects that scatter very weakly

compared to their assembly environments.

APPENDIX A
First-order angular correlation

This derivation demonstrates why the first-order angular

correlation yields no structural information, in the limit of
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high background (small X). First, it is assumed that the

sample–amplifier distance �r is random and uncorrelated with

the sample orientation The correlation of the terms in equa-

tion (12) is:

hðI � IÞðI0 � IÞi

¼ ðIs þIa þ �Is;a þ Ibg � IÞðI0s þ I0a þ �I
0
s;a þ I 0bg � IÞ

� �
Nm;�
ð23Þ

¼ �Is þ �Ia þ �Is;a þ �Ibg

� �
�I0s þ �I

0
a þ �I

0
s;a þ �I

0
bg

� �� �
Nm;�

ð24Þ

I ¼ Is þ Ia þ Ibg ð25Þ

�Is=a=bg ¼ Is=a=bg � Is=a=bg ð26Þ

�I 0s;a ¼ E0sE
0�
a expðiR�q��rÞ þ c:c:

� 	
ð27Þ

where R refers to the rotation matrix used to rotate the

diffraction pattern by the �� angle and ‘c.c.’ refers to the

complex conjugate of the preceding term. Cross terms

between the interference term and the amplifier or sample

intensity are zero since they’re uncorrelated and the inter-

ference term averages to zero from the random phase

expðiq��rÞ or expðiR�q��rÞ. The remaining terms are:

I � I
� �

I0 � I
� �� �

¼ h�Is�I
0
si þ h EsE

�
a expðiq��rÞ þ c:c:

� 	
� E0sE

0�
a expðiR�q��rÞ þ c:c:

� 	
i

þ h�Ia�I
0
ai þ h�Ibg�I

0
bgi ð28Þ

¼ h�Is�I
0
si þ h�Ia�I

0
ai þ h�Ibg�I

0
bgi ð29Þ

Correlation in the amplified interference term may thus not be

extracted through the use of first-order correlation functions.

APPENDIX B
Second-order correlation functions

This derivation demonstrates that the second-order correla-

tion function yields the desired signal. The second-order

correlation function is defined as:

C2ð��Þ ¼ ðI � IÞ
2
ðI 0 � IÞ

2
� �

ð30Þ

¼ ð�Is þ �Ia þ �Is;aÞ
2
ð�I0s þ �I

0
a þ �I

0
s;a þ �IbgÞ

2
� �

ð31Þ

Now, we can throw away a few terms. Odd moments of �Is;a

will vanish due to the averaging of the random phase term eiq��r

or eiR�q��r. Next, to elucidate the desired term we make the

assumptions that Ia 	 Is and that Ia and Ibg are constant along

�, we get just one surviving term:

C2ð��Þ ¼ h�I
2
s;a�I

02
s;ai ð32Þ

h�I2
s;a�I

02
s;ai ¼

�
EsE

�
a exp iq��rð Þ þ c:c:

� 	2

� E0sE
0�
a exp iR�q��rð Þ þ c:c:

� 	2�
ð33Þ

¼ 4hjEsj
2
jE0sj

2
jEaj

2
jE0aj

2
i ð34Þ

¼ 4hIsI
0
sihIaI0ai ð35Þ

¼ 4hIi4X2
a X2

s csð��Þcað��Þ ð36Þ

C2ð��Þ ¼ 4hIi4X2
a X2

s csð��Þcað��Þ ð37Þ

Xs ¼ Is=I ð38Þ

Xa ¼ Ia=I ð39Þ

The second-order correlation effectively recovers the corre-

lation of the amplified term, which was lost in the first-order

correlation.

Funding information

This research used resources of the Center for Functional

Nanomaterials, and the National Synchrotron Light Source II,

which are US DOE Office of Science Facilities, operated at

Brookhaven National Laboratory under Contract No. DE-

SC0012704.

References

Als-Nielsen, J. & McMorrow, D. (2011). Elements of Modern X-ray
Physics. Chichester: John Wiley.

Altarelli, M., Kurta, R. P. & Vartanyants, I. A. (2010). Phys. Rev. B,
82, 104207.

Chubar, O., Fluerasu, A., Berman, L., Kaznatcheev, K. & Wiegart, L.
(2013). J. Phys. Conf. Ser. 425, 162001.

Daniel, M.-C. & Astruc, D. (2004). Chem. Rev. 104, 293–346.
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