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An algorithm for modelling the background for each Bragg reflection in a series

of X-ray diffraction images containing Debye–Scherrer diffraction from ice in

the sample is presented. The method involves the use of a global background

model which is generated from the complete X-ray diffraction data set. Fitting

of this model to the background pixels is then performed for each reflection

independently. The algorithm uses a static background model that does not vary

over the course of the scan. The greatest improvement can be expected for data

where ice rings are present throughout the data set and the local background

shape at the size of a spot on the detector does not exhibit large time-dependent

variation. However, the algorithm has been applied to data sets whose

background showed large pixel variations (variance/mean > 2) and has been

shown to improve the results of processing for these data sets. It is shown that

the use of a simple flat-background model as in traditional integration programs

causes systematic bias in the background determination at ice-ring resolutions,

resulting in an overestimation of reflection intensities at the peaks of the ice

rings and an underestimation of reflection intensities either side of the ice ring.

The new global background-model algorithm presented here corrects for this

bias, resulting in a noticeable improvement in R factors following refinement.

1. Introduction

In macromolecular crystallography (MX), for data collected

using the rotation method, a data set is typically composed of

a sequence of X-ray diffraction images (Arndt & Wonacott,

1977); each image covers a fixed oscillation and, as the crystal

is rotated, individual reflections enter and subsequently exit

the diffracting condition. Integration programs, such as

MOSFLM (Leslie, 1999), XDS (Kabsch, 2010), d*TREK

(Pflugrath, 1999), HKL-2000/DENZO (Otwinowski & Minor,

1997) and DIALS (Waterman et al., 2013), are used to predict

where each Bragg reflection will appear on the detector and

then to provide an estimate of the intensity of each reflection.

The simplest method for computing the reflection intensities is

via summation integration; most integration programs provide

an implementation and, whilst the details may differ, the

procedure is generally the same.

(i) Firstly, the location and extent of each reflection on the

detector is predicted and, for each reflection, pixels are

assigned as either foreground or background depending on

whether or not they are predicted to contain signal from the

Bragg reflection.
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(ii) The background under the reflection peak is then esti-

mated. Since it is not possible to measure the background

under the peak directly, the background in the foreground

pixels is estimated from the surrounding background pixels.

As such, a model of the background is required and the model

is fitted to the background pixel data.

(iii) Finally, the reflection intensity is estimated by summing

the total counts in the foreground region and subtracting the

sum of the estimated background counts.

Traditionally, in most integration programs simple back-

ground models have been employed; a major reason for this is

the necessity of having a computationally efficient imple-

mentation since the background needs to be estimated for a

large number of reflections in each data set. Furthermore, the

best way to model the general reflection background is not

always obvious since the background varies considerably

between data sets. As such, the background under each

reflection peak is often assumed to be a constant value

(Kabsch, 2010) or a plane with a small gradient (Rossmann,

1979; Otwinowski & Minor, 1997; Leslie, 1999). In DIALS,

either a constant or planar background can be used (Parkhurst

et al., 2016). In a typical MX X-ray diffraction data set, indi-

vidual reflections extend over a small number of pixels;

therefore, this assumption often holds true – the local back-

ground is fairly flat – and these simple models have been

employed with great success for many years (Diamond, 1969;

Otwinowski & Minor, 1997; Leslie, 1999; Kabsch, 2010).

Whilst such a simple background model may be appropriate

in the majority of cases, particularly for well measured data, it

is not applicable where the background changes significantly

over the extent of a single reflection peak. In such cases a flat

or planar background model is likely to provide an inaccurate

estimate of the background in the reflection-peak region.

Large variation in the background counts can be the result of

various effects such as scattering from the cryostream nozzle

or, in serial crystallography, from the linear jet that transports

crystals into the beam, which creates a streak of diffraction

perpendicular to the jet direction. Large variation is also often

seen around the backstop; however, these reflections are

usually omitted from processing owing to their large Lorentz

factor. Perhaps the most common pathology seen in diffrac-

tion images resulting in a large variation in background counts

is the presence of water ice rings (Mitchell & Garman, 1994).

A detailed description of the theoretical manifestation of

cubic and hexagonal ice, the most common forms, in diffrac-

tion images can be found in Thorn et al. (2017). In practice,

when cubic ice diffraction is observed, hexagonal ice diffrac-

tion is also observed (Fuentes-Landete et al., 2015).

If the background is assumed to be locally flat, but ice rings

are present, the reflection intensities will be systematically

biased. The effect on the background estimation caused by the

presence of ice rings can be readily seen by plotting the scaled

reflection intensities as a function of resolution, as shown in

Fig. 1. This plot shows a large spike in

the reflection intensities at ice-ring

resolutions, with a drop in the reflection

intensities either side of the ice ring; i.e.

the presence of ice rings causes both

systematic overestimation and under-

estimation of the reflection intensities at

characteristic resolutions. Indeed, at

high resolution, where the true reflec-

tion intensities are very small, the

positive systematic bias in the back-

ground estimate causes the average

reflection intensity to be less than zero

at resolutions immediately either side of

the ice rings.

The cause of this effect can be

understood by considering the applica-

tion of a simple background model to a

reflection positioned close to an ice ring,

as illustrated in Fig. 2. As the ice ring
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Figure 1
Intensity versus resolution for a data set with strong ice rings. Such plots
can be readily generated by AUSPEX (Thorn et al., 2017). The points
show the intensities for individual reflections. The characteristic ice-ring
resolutions are shown here in grey, with automatically detected ice rings
flagged in red. Spikes in reflection intensity are observed at ice-ring
resolutions, indicating bias in the background determination.

Figure 2
Illustration of the effect of ice rings on the background determination when a simple plane model is
employed. The shaded rectangles indicate the background pixels used to estimate the background.
When the reflection is centred on the tail of the ice ring (a) the background is overestimated. When
the reflection is centred on the peak of the ice ring (b) the background is underestimated.



intrudes into the background region of the reflection shoebox,

the background level in the reflection-peak region is over-

estimated owing to the higher valued counts from the ice ring.

When the reflection foreground covers the peak of the ice

ring, then the background region of the reflection shoebox

contains pixels with fewer counts than should be modelled in

the reflection peak. Consequently, the background in the

reflection peak will be underestimated and the reflection

intensity will be overestimated. This leads to many reflections

being rejected as outliers during data reduction, resulting in a

loss of information. This effect is more pronounced for sharper

ice rings; however, on average, fewer reflections will be

affected than in the case of more diffuse ice rings which cover

a larger resolution range.

In most integration programs, the handling of ice rings and

other complex background features is problematic, and proper

modelling is rarely attempted. However, some programs, such

as MOSFLM and XDS, do provide parameters to exclude

reflections within a user-specified resolution range. Therefore,

in these programs reflections falling on ice rings can be easily

excluded from the processing if desired, which usually results

in a loss of otherwise potentially useful information. In

d*TREK and HKL-2000/DENZO (Otwinowski & Minor,

1997) parameters are provided to remove reflections whose

background counts vary excessively; however, again, this will

result in information loss. It is often the case that the reflec-

tions recorded on ice rings are handled during scaling rather

than integration. This is particularly the case at higher reso-

lution where ice rings may not be immediately visible on single

detector images. Scaling programs such as AIMLESS (Evans

& Murshudov, 2013) have outlier-handling routines that

exclude intensity measurements that are not consistent

between symmetry-equivalent reflections; additionally, a

resolution range can be set to exclude reflections from the

scaling. Programs such as CTRUNCATE (Winn et al., 2011),

phenix.xtriage (Zwart et al., 2005) and AUSPEX (Thorn et al.,

2017) can be used to automatically determine, from the scaled

reflection data, whether the data have been contaminated by

ice rings.

An attempt to handle ice rings external to the integration

program is described by Chapman & Somasundaram (2010).

They describe a method to subtract the ice-ring intensity from

the raw image data as a pre-processing step before integration.

However, this approach is not ideal since the statistics of the

data will be altered. Furthermore, the shape of the ice rings is

assumed to be radially Gaussian with resolution and perfectly

circular, which may not be the case in practice. The data as

recorded by a photon-counting detector are ‘count data’,

which are well modelled by a Poisson distribution. The Poisson

distribution is discrete and only valid for positive pixel counts.

Subtracting the background prior to the integration will result

in the data no longer being Poisson-distributed; some pixels

may contain negative counts and others may contain a non-

integer number of counts. This will render assumptions about

the statistical properties of the data in the integration program

invalid and will have an impact on the estimation of the errors

in the intensities. For this reason, the ice-ring background

should be modelled explicitly during the reflection-integration

step.

2. Algorithm

We describe a new algorithm for modelling the X-ray

diffraction background in the presence of ice rings. The

algorithm consists of two distinct steps: firstly a global model

of the background at each image pixel is generated, and the

model is then fitted locally and independently for each

predicted reflection in the data set. The implementation of

the algorithm and program usage in DIALS is given in

Appendix A.

2.1. Global background model

In the current implementation in DIALS (Waterman et al.,

2013), we restrict ourselves to considering a static model that

is applied to reflections over the entire rotation scan. For the

static background-model algorithm, we assume that the shape

of the background model remains fairly stable across all of the

images in the data set. We assert that in the case where the

background is contaminated with ice rings, an approximate

model should perform better than a flat background model;

this therefore represents an improvement in the handling of

data with a complex background.

The global background model is calculated as the mean

value at each pixel averaged over all images in the data set.

This method for generating the global background model is

computationally efficient and simple to compute; care needs to

be taken to ensure that the inclusion of outlier pixels does not

cause the background model to be distorted. In this context,

outlier pixels are considered to be pixels which contain

intensity from predicted reflections as well as unmodelled

intensity, which may come from reflections whose extent is

badly predicted, zingers (random spikes in intensity from, for

example, cosmic rays) or other sources.

Intensity from predicted reflections is handled by gener-

ating a mask for each image delineating the foreground and

background for each reflection, and then using only back-

ground pixels for the global background model. The mask

contains True where the pixels are predicted to only contain

background counts and False where they are predicted to

contain intensity from predicted reflections. Once the process

concludes and a mean value is computed at each pixel, the

number of images contributing to the mean for each pixel is

calculated. A second pixel mask is then generated containing

True where the number of contributed images is greater than

some user-specified value (by default ten) and False otherwise.

In this way, pixels where only a small number of images have

contributed are excluded. Where the number of images in the

data set is less than ten, the minimum number of required

images is reduced; however, the method is most effective

where a larger number of images is available.

In order to ensure that the model is not affected by outliers

caused by unmodelled intensity, a number of filters are applied
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to the mean image to produce the final background model as

follows.

(i) Firstly, the mean image and mask are transformed into

a polar image such that columns in the transformed image

correspond to lines of constant resolution. This requires that

each pixel in the raw untransformed image is mapped onto the

transformed grid. In the implementation described here, this is

performed by computing the overlap of each pixel in the raw

image with the transformed grid and then using a polygon-

clipping algorithm (Sutherland & Hodgman, 1974) to compute

the overlapping area between the pixel and the grid. The

fractional overlap is then used to determine the fraction of

counts in each pixel that is distributed to each grid point in the

transformed image. The number of counts in the raw and

transformed images is then conserved. The benefit of applying

filtering to this transformed image rather than the raw mean

image is that, in the case of ice rings in particular, the back-

ground is likely to vary less along lines of constant resolution.

Therefore, the variation along columns in the transformed

image is likely to be small and most variation will occur along

the rows, which correspond to increasing resolution. The polar

transform will tend to sample pixels at high resolution less

finely than at low resolution, resulting in smoothing along lines

of constant resolution.

(ii) Median filtering is then applied to the transformed

image such that for each pixel the median of the neighbouring

N (by default ten) pixels along each column (wrapped at

the column ends) is used; this has the effect of removing the

effect of unwanted outliers, in particular high-valued pixel

outliers.

(iii) The transformed image will contain

pixels that are masked out; these need to be

filled in order to provide full coverage of the

detector for the background model. Again,

since the image has been transformed and the

variation along columns is small, the missing

pixel values can be filled using a simple itera-

tive diffusion algorithm based on the applica-

tion of Laplace’s equation with Dirichlet

boundary conditions, whereby missing pixels

are iteratively filled with the values derived

from adjacent pixels until convergence is

achieved.

(iv) Finally, the polar image is transformed

back via the same polygon-clipping process,

with the counts in the transformed image being

redistributed to the image in the original

coordinate system. Application of this gridding

procedure will result in some additional

smoothing in the processed image. The final

result is a smoothly varying global background

model.

2.2. Maximum-likelihood fitting for each
reflection

The background is fitted to each reflection

locally and independently by simply scaling the background

model to fit the counts in the background region of the

reflection in question. The pixel counts are assumed to be

drawn from a Poisson distribution. For each pixel i in the

reflection background, consisting of N pixels, the probability

of observing ci counts, given the background model bi scaled

by the parameter B, is

PðcijB; biÞ ¼
ðBbiÞ

ci expðBbiÞ

ci!
: ð1Þ

The value of the parameter B is then estimated via maximum

likelihood by considering the joint probability distribution

over the N pixels,

L ¼
QN
i¼1

ðBbiÞ
ci expðBbiÞ

ci!
ð2Þ:

Using the log likelihood and taking derivatives with respect to

the scale parameter, @log(L)/@B = 0, results in a very simple

and computationally efficient equation for the scale factor B

for each reflection, which is simply

B ¼

PN
i¼1

ci

PN
i¼1

bi

: ð3Þ

However, this equation for the scale factor is not resistant to

pixel outliers in the reflection background, which must be

handled to ensure that the background estimates are reliable.

Since the data are Poisson-distributed, a principled approach
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Table 1
A list of JCSG data sets with ice-ring pathologies.

The improvement in Rfree reported by REFMAC5 for data integrated using the global
background-model algorithm over data integrated with the default background algorithm is given
for profile-fitted intensities (prf) and summation intensities (sum). For each data set, the same set
of integrated reflections were used for the different sets of processing. Here, � = Rdefault� Rglobal;
a positive value indicates an improvement using the global background-model algorithm. For
bevity, columns with data from the default background algorithm are labelled ‘D’ and columns
with data from the global background algorithm are labelled ‘G’. The completeness is shown for
the data processed (DIALS) and the completeness reported in the PDB. For 4puc, an Rfree of
19.98% is reported in the PDB. For this data set, reflections falling on ice rings were excluded
from processing, resulting in low completeness. Refining the subset of reflections present in the
deposited data processed using the new background algorithm against the deposited structure
resulted in an Rfree of 19.46%.

Completeness (%) Rfree (sum) (%) Rfree (prf) (%)

PDB
code

Space
group

Resolution
(Å) Multiplicity DIALS PDB D G � D G �

4dn6 P42212 2.80 12.6 100.0 99.0 35.1 34.0 1.1 34.2 33.1 1.1
4e6e P3221 2.12 12.5 99.9 99.6 29.7 26.8 2.8 26.7 25.6 1.1
4ef1 P1211 1.90 3.4 98.0 97.8 34.7 31.9 2.8 31.7 30.2 1.5
4epz C2221 1.68 4.2 98.5 98.0 25.1 22.6 2.5 22.2 21.4 0.8
4ezg P212121 1.50 5.3 98.8 99.0 23.5 22.2 1.3 20.2 19.8 0.4
4fmr P1211 2.25 6.9 97.2 97.9 26.4 25.0 1.4 25.5 24.6 1.0
4hf7 C2221 1.77 9.8 99.7 98.2 36.9 32.1 4.8 28.9 27.5 1.4
4iej P6122 1.45 8.3 100.0 99.8 30.9 29.5 1.3 27.2 26.6 0.6
4kw2 F432 2.32 110.4 100.0 99.8 23.9 23.8 0.1 23.0 22.9 0.1
4mjg P3221 2.65 8.2 99.9 88.7 29.7 28.3 1.4 28.3 27.6 0.7
4opm C121 1.70 7.0 99.6 97.1 23.4 22.7 0.7 20.9 20.7 0.2
4ps6 P1211 1.25 6.2 93.7 85.8 21.5 20.3 1.2 18.4 17.9 0.5
4puc P212121 2.00 9.2 99.3 78.1 29.8 25.4 4.4 28.1 23.2 4.9



to the modelling of the background in the presence of pixel

outliers would be to use a robust generalized linear model

(GLM) algorithm (Parkhurst et al., 2016); however, whereas

the robust GLM algorithm can be made computationally

efficient for the case of a flat background model, the algorithm

proved to be difficult to optimize in the case of more complex

models. Computational efficiency is a requirement of any

background-modelling algorithm in integration since the

background needs to be estimated for a large number of

reflections in each data set. Therefore, a simpler approach was

taken in this case. The approach used here was to use the

Anscombe variance-stabilizing transform for a Poisson

distribution (Anscombe, 1948) given by y = 2(x + 3/8)1/2. This

transforms the Poisson-distributed data such that they are

approximately normally distributed with a variance of 1. This

transformation is biased where the Poisson scale parameter is

very small (<4); however, in the case of data where the

background is contaminated with ice rings the background is

generally much larger and this approximation may be used.

The robust estimation is then performed using the Huber

weighting function (Huber, 1964) such that for a pixel i, with

transformed value yi, predicted value �i, variance vi and

residual ri = (yi � �i)/vi
1/2, the pixel weighting wi will be given

by

wi ¼
1 jrij � c

c=jrij jrij > c

�
: ð4Þ

This weighting function has the effect of damping values

outside a range defined by the tuning constant c, whose default

value is 3 (i.e. transformed pixel values greater than three

standard deviations from the mean are damped). The quasi-

likelihood equation implementing this robust algorithm is

then solved using iteratively reweighted least squares, as

described in Appendix B.

3. Analysis

3.1. Experimental data

In order to evaluate the effect on the quality of processed

data when there are prominent ice rings in the X-ray back-

ground, some data sets were selected from the Joint Centre for

Structural Genomics (JCSG; Gabanyi et al., 2011). Whilst the

method is also applicable to data collected using other

detectors, only data sets collected using a Dectris PILATUS

detector (Henrich et al., 2009) were considered for analysis.

Data sets were chosen manually by inspecting a plot of the

intensity versus resolution using AUSPEX (Thorn et al., 2017);

those data sets showing a noticeable systematic bias at ice-ring

resolutions were used (see Fig. 6). Two data sets (PDB entries

4mjg and 4puc) were identified in which reflections in entire

resolution ranges corresponding to ice rings had been

discarded in deposition; in the following analysis, the data

were processed without omission. 13 data sets that showed ice-

ring pathologies and which were successfully processed using

DIALS inside the xia2 (Winter, 2010) automatic processing

pipeline were used in the analysis. Table 1 shows the data sets

used in more detail, giving the known space group and reso-

lution. Details of the data processing, data reduction and

refinement are given in Appendix C.

3.2. Refinement results

The Rwork and Rfree statistics reported by REFMAC5

(Murshudov, 2011) for each data set as processed with both

the default background algorithm and the global background

algorithm are shown in Table 1; additionally, Rfree for each

data set is shown in Fig. 3. The improvement in Rwork and Rfree

is shown for both summation-integrated data and profile-fitted

data. It can be seen that in each case both Rwork and Rfree are

reduced by the use of the global background-model algorithm

over the default background algorithm. An improvement is

seen when the data are processed using both summation

integration and profile fitting. In some cases (for example PDB

entries 4kw2 and 4opm) the improve-

ment is minor; however, in others, such

as PDB entry 4puc, the improvement in

the refinement R factors is dramatic,

with Rfree being reduced by 4.9%. In the

case of PDB entry 4puc, as previously

reported, reflections from entire reso-

lution ranges around ice rings were

omitted in the deposited data (the

completeness of the deposited data was

78.1%; the completeness of the data

processed here is 99.3%). In general,

most data sets see a moderate

improvement in the Rfree; the mean

improvement in Rfree across all data sets

was 2.0% when using summation inte-

gration and 1.1% when using profile

fitting. Profile fitting also consistently

results in lower Rwork and Rfree values

than summation integration, and the
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Figure 3
The Rfree after refinement using REFMAC5 for both summation integration and profile-fitting
integration using both the default background algorithm assuming a flat background model and the
global background-model algorithm. In all cases, the global background model results in an
improvement in the Rfree factors from refinement. Using profile fitting (prf) instead of summation
(sum) also results in an improvement in Rfree in each case.



improvement in Rwork and Rfree when using the new global

background model algorithm is slightly lower than the

improvement observed with data processed using summation

integration.

3.3. Case studies

Of the 13 JCSG data sets processed above, three were

selected for more detailed analysis. The first image and the

average background versus resolution for each of the data sets

is shown in Fig. 4. The data sets were chosen as follows.

(i) PDB entry 4puc. This data

set shows an example of very

strong and prominent ice rings.

The ice rings in this data set are

narrow and the three inner rings

corresponding to hexagonal ice

rings can be clearly distin-

guished in the diffraction

images. Handling reflections

falling on these ice rings is likely

to be a challenge for current

background-modelling algo-

rithms. Each image in the data

set covers a rotation of 0.25�.

This is a MAD data set

consisting of three sweeps at

different wavelengths. In the

data processing, all three sweeps

were used and merged together.

(ii) PDB entry 4ef1. This data

set shows a moderate improve-

ment in the R factors. The data

set has ice rings from nanocrys-

talline cubic ice. Each image in

the data set covered a rotation

of 0.3�.

(iii) PDB entry 4kw2. This

data set shows the smallest

improvement in the R factors.

The data set has ice rings from

nanocrystalline cubic ice. Each

image in the data set covered a

rotation of 0.5�. This is a MAD

data set consisting of 18 sweeps

at different wavelengths. In the

data processing, all 18 sweeps

were used and merged together.

3.4. Pixel statistics

During the creation of the

global background model, the

mean, variance and index of

dispersion (variance/mean) are

calculated independently for each pixel across all images in

the rotation scan. Note that pixels predicted to contain

intensity from reflections are not used in the calculation of

these images. The mean and index of dispersion are shown for

each data set in Fig. 5. From a qualitative inspection, the mean

background image visually resembles a smoothed version of

the raw image data shown in Fig. 4. The dispersion images,

however, indicate that the variation in the background is not

uniform across the detector surface. In particular, background

pixels not containing ice rings appear to vary very little across

the rotation scan, as indicated by the index of dispersion being

close to 1.0. By contrast, pixels containing ice rings appear to
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Figure 4
The first image for each data set and the corresponding average background versus resolution for 4puc (top),
4ef1 (middle) and 4kw2 (bottom). Ice rings are visible as discrete or diffuse rings. Note the irregular ice rings
in the diffraction image of 4puc resulting from the dominating ice-crystal orientation. Also note that the
maximum resolution on each image differs; therefore, the ice rings are not always in the same place on the
detector.



show much greater variation across the scan, with an index of

dispersion of greater than 2.0 in some cases. This appears to

indicate that the intensity of the ice-ring background varies

much more than the general background counts.

3.5. Intensity versus resolution

Fig. 6 shows the intensity plotted against resolution for all

reflections in each data set with the default background

algorithm and the new global background-model algorithm. In

each case, for the default background algorithm it can be seen

that the reflection intensities at ice-ring resolutions suffer from

systematic bias. This is shown as spikes in the intensity at ice-

ring resolutions. These spikes are owing to the background of

reflections lying at ice-ring resolutions being underestimated.

Thus, the reflection intensity is overestimated. Small dips in

intensity can be seen either side of the ice rings, showing how

the background is overestimated as the ice ring intrudes into

the background region of the reflection shoeboxes, thereby

causing the reflection intensities to be underestimated. This is

particularly noticeable for data set 4puc,

where the shift is dramatic. Data set

4ef1 shows a moderate increase in

reflection intensities at the ice-ring

resolutions; data set 4kw2 only shows a

fairly minor shift visible in the ice ring at

3.7 Å.

For the new global background-

model algorithm, the intensity estimates

appear to be greatly improved. For the

4ef1 and 4kw2 data sets, the spikes at

ice-ring resolutions are completely

absent, indicating that the systematic

bias in the intensity estimates has been

reduced relative to the bias for the

default background algorithm. For the

4puc data set, which was the most

challenging data set, there is some

improvement; however, peaks are still

present at some ice-ring resolutions.

This is owing to the ice-ring background

being sharp and irregular with time-

dependent variation throughout the

data set. Taken together, these condi-

tions provide a difficult modelling chal-

lenge. The algorithm computes the

global background model over a

number of images; therefore, the algo-

rithm will tend to perform worse where

there are large time-dependent varia-

tions in the background shape. Never-

theless, 4puc showed the best

improvement in refinement R factors, as

shown in Table 1.

3.6. Moments of E and Rfree versus
resolution

The left panel in Fig. 7 shows the

fourth acentric moments of E, the

normalized structure factors, for each

data set processed with both the default

background algorithm and the new

global background-model algorithm as

produced by CTRUNCATE (Winn et

al., 2011). For error-free data, the fourth

moment takes on a value of 2 for
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Figure 5
The mean and dispersion images for 4puc (a, b), 4ef1 (c, d) and 4kw2 (e, f ). The mean image is the
mean value at each pixel through the image stack; the index of dispersion image shows the variation
across the data set at each pixel. In the mean image the ice rings are clearly visible. The dispersion
images also show the structure of the detector. The boundaries between the detector chips are
visible as lines of pixels that are under-dispersed relative to a Poisson distribution. This is owing to
the use of virtual pixels between chips that share counts and whose values are therefore correlated.



untwinned data and 1.5 for perfectly twinned data (Stein,

2007). When the variances on the intensities are taken into

account, the value of the moments is inflated by �(I)2/hIi2, as

described in Appendix D; this is shown by the theoretical

curve in Fig. 7, which was generated by the Phaser program

(McCoy et al., 2007). The right panel in Fig. 7 shows Rfree

versus resolution as reported by REFMAC5 (Murshudov et al.,

2011).

The moment plots seem to mirror those seen in the intensity

versus resolution plots. Data set 4puc shows large deviations

from the expected value of 2 at ice-ring resolutions with the

default background algorithm. After application of the new

global background-model algorithm the moments, whilst

better behaved, still show the effect of the ice rings. For 4ef1,

the moments differ at ice-ring resolutions for data processed

with the default background algorithm and data processed

with the new global background algorithm. However, the

variation is small relative to the noise. For 4kw2, which showed

little improvement after application of the global background-

model algorithm, the ice rings seem to have very little effect
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Figure 6
The intensity versus resolution of reflections processed using the default background algorithm (left) and the new global background-model algorithm
(right) for data sets 4puc (a, b), 4ef1 (c, d) and 4kw2 (e, f ). All plots were generated by AUSPEX (Thorn et al., 2017). The points represent the individual
intensities and the vertical bars show the resolutions at which ice rings may be found. The red bars refer to suspected ice rings found by AUSPEX.



on the moments. For data processed with both the default

background algorithm and the new global background-model

algorithm, the moments follow the expected theoretical curve.

It is clear that the moments are not always a clear indicator of

ice rings in the data. In particular, a mild pathology may not

alter the moments such that the effect is visible through the

noise; however, the effect may be visible for more prominant

ice-ring cases, such as for data set 4puc.

A plot of Rfree against resolution provides a better indica-

tion of the effect of ice rings on the data; however, it is only

available after refinement. For data sets 4puc and 4ef1 the

effect of applying the new global background-model algorithm
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Figure 7
The fourth acentric moments of E, the normalized structure factors, versus resolution for data sets (a) 4puc, (c) 4ef1 and (e) 4kw2. The red line indicates
the default background algorithm and the blue line indicates the new global background-model algorithm. The expected value for untwinned data is
shown by the theoretical curve in black. The Rfree versus resolution for data sets (b) 4puc, (d) 4ef1 and ( f ) 4kw2. The red line indicates the default
background algorithm and the blue line indicates the new global background-model algorithm.



is immediately clear: the Rfree at ice-ring resolutions is dras-

tically decreased relative to the Rfree using the default back-

ground algorithm. As also shown in the previous analysis, the

difference observed in the Rfree for data set 4kw2 is negligable.

Inspecting this plot may give some indication as to the effect of

ice rings on the data, particularly for data containing very

prominant ice rings, such as data set 4puc.

3.7. Application to data with no ice rings

As a control, a weak thaumatin data set collected on

beamline I04 at Diamond Light Source and known to contain

no visible ice-ring pathologies (Winter & Hall, 2014) was

processed to ensure that the new global background-model

algorithm gives good results in the case of well collected data.

The average background over all resolution ranges is less than

one count per pixel; there is also a low incidence of outliers in

the background pixels. The data set was processed to a reso-

lution of 1.2 Å using the same procedure as described in

Appendix C.

It was found that the use of the global background-model

algorithm for this data set resulted in no difference in the

refinement R factors. Refinement with REFMAC5 resulted

in the same Rfree for data processed with both the default

background algorithm and the new global background-model

algorithm. When summation integration was used the Rfree

was 18.1% in each case and when profile fitting was used the

Rfree was 17.4% in each case, thereby further illustrating the

trend seen previously, where a reduction is Rfree is observed

when using profile fitting over summation integration.

Furthermore, plots of the moments with resolution and the

Rfree with resolution showed no difference between data

processed using the default background algorithm and the

global background-model algorithm.

4. Conclusion

The use of a new global background-model algorithm for the

processing of X-ray diffraction data in the presence of ice rings

is presented. Traditional approaches to background modelling

as implemented in current integration programs do not

adequately cope with the task of modelling reflection back-

ground that is not well described by either a constant or a

plane with a small slope. Consequently, these methods intro-

duce systematic bias into the background estimation for

reflections whose integration shoeboxes overlap with ice rings.

This bias renders the majority of reflection intensities at

certain resolutions unreliable if the data set is contaminated

by ice diffraction. At the peak of an ice ring, reflection

intensities tend to be overestimated owing to an under-

estimation of the reflection background. To either side of the

ice ring, reflection intensities tend to be underestimated owing

to an overestimation of the reflection background. The use of

a simple global background-model algorithm has been shown

to correct for these issues. Modelling the background in the

presence of ice rings is challenging; however, correct model-

ling can have a noticeable effect on the downstream data

processing. Finally, it is important to note that whilst it is

possible to correct for the effect of ice rings in data-processing

software, better results can be obtained by ensuring that

samples are not contaminated with ice to begin with.

4.1. Future improvements

The current implementation uses a simple static back-

ground model which is applied to each image in the data set. A

future enhancement to the algorithm may be to employ a scan-

varying global background model, where the model is allowed

to vary over the course of the rotation scan. Additionally, the

algorithm may be enhanced by generating a number of models

(for example a flat and planar model as well as a curved model

based on the global background model) and fitting to each

reflection, with the model then being selected by a model-

selection algorithm; for example, the Akaike Information

Criteria (AIC; Akaike, 1973).

APPENDIX A
Algorithm usage in DIALS

The algorithm was implemented in C++ for use within DIALS.

The global background-model calculation is implemented as

a separate program, dials.model_background. This program

generates a file, background.pickle, which contains the

computed global background model. It also generates a series

of diagnostic images which can be used to inspect the prop-

erties of the data set and the quality of the background model

prior to integration. These include the minimum and

maximum value at each pixel in the data set and the mean,

variance and index of dispersion (variance/mean) images. The

mean image is used to generate the background model and the

index of dispersion image is useful for evaluating the variation

in the background at each pixel. Recalling that for a Poisson

distribution the index of dispersion D = variance/mean = 1,

then values significantly greater than 1.0 will indicate large

variation in the counts for that pixel over the course of the

data set. An image of the final background model is also

generated; viewing this allows a qualitative assessment of

whether the generated model is appropriate for the data. The

mean image or generated background model could also be

used to provide automatic ice-ring detection.

The background model is then applied in the dials.integrate

program by setting the background.algorithm=gmodel user

parameter to perform integration using the global background-

model algorithm. The robust or nonrobust fitting algorithm

can be selected via a user parameter depending on what is

most appropriate for the particular data set. Currently, the

input experiments file must contain the profile information

generated from a successful integration run; therefore, an

initial integration run is required before performing the global

background modelling. In future versions of DIALS these

steps may be applied together. Sample program usage is

shown below.
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APPENDIX B
Robust M-estimator for background scale factor

The terms used in the following equations are defined in

Table 2.

In robust estimation, M-estimators minimize a function of

residuals of the form

min
Pn
i¼1

�ðriÞ: ð5Þ

The value of each residual ri depends at each iteration on

the value of the parameter estimates, b. Taking derivatives

with respect to each parameter, �j, gives

Pn
i¼1

@�ðriÞ

@ri

@ri

@�j

¼ 0: ð6Þ

Weights are then defined as

wðriÞ ¼
1

ri

@�ðriÞ

@ri

: ð7Þ

The equation to be solved then becomes

Pn
i¼1

wðriÞri

@ri

@�j

¼ 0: ð8Þ

The parameter estimates can be found at each iteration as

bðtþ1Þ
¼ ðXTWXÞ�1XTWy: ð9Þ

In order to fit the global background model, a single scale

factor is used. The design matrix X then has a single column.

Therefore, each iteration can then be simplified to

�ðtþ1Þ ¼

Pn
i¼1

xiwðriÞyi

Pn
i¼1

xiwðriÞxi

: ð10Þ

In our implementation, the Huber function is used, which

gives the robust function of residuals as

�ðriÞ ¼
r2

i =2; jrij � c

cðjrij � c=2Þ jrij > c

�
: ð11Þ

This results in the following weighting function:

wðriÞ ¼
1; jrij � c

c=jrij jrij > c

�
: ð12Þ

APPENDIX C
Data processing, reduction and refinement

Aside from the choice of background-model algorithm, the

details of the processing were identical in each case. Each data

set was processed with xia2 (Winter, 2010) using DIALS

(Waterman et al., 2013) as the data-analysis engine. The

integrated experiments.json file produced by xia2 after

integration was then passed to a new program (dials.mo-

dials.model_background), which was used to compute the

global background model. The data were then integrated

again, first using the default background algorithm and then

using the global background-model algorithm. In each case

the data were integrated using summation integration and

profile fitting. Reflections falling on ice rings were not

excluded from the data processing. For data sets composed of

more than one sweep, each sweep was integrated separately.

The data were processed using the DIALS pipeline as

follows, where ${PATH_TO_IMAGES} is a placeholder for the

path to the directory containing the image data.

The procedure for re-integrating the data using the global

background-model algorithm and again with the default

background algorithm is shown as follows, where

${ORIGINAL_EXPERIMENTS} is a placeholder for the path to

the integrated experiments.json file from the xia2 proces-

sing.

The data reduction was performed using POINTLESS

(Evans, 2006), AIMLESS (Evans & Murshudov, 2013) and

CTRUNCATE (Winn et al., 2011), specifying the known space

group and the resolution as reported in the PDB entry for

each data set. For data sets composed of more than one sweep,

the data sets were scaled and merged together in AIMLESS to

produce a single merged MTZ file. A free set of reflections for
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cross-validation in refinement was then selected using the

FREERFLAG program. The UNIQUEIFY script in the

CCP4i GUI application (Winn et al., 2011) was used to ensure

that the same free set was used for the processing of all

instances of the same PDB entry. Prior to refinement, the

coordinates in the PDB file for the data set were randomized

using PDBSET (Winn et al., 2011) with a maximum noise level

of 0.4 Å to ensure that there was no bias in the refinement and

Rfree calculation. Finally, each data set was refined to conver-

gence against the randomized structure using REFMAC5

(Murshudov et al., 2011).

A complete script detailing the data-reduction and refine-

ment steps is shown below, where ${PDBID}, ${SPACEGROUP}

and ${RESOLUTION} are placeholders for the known PDB

identifier, space group and resolution, respectively.

APPENDIX D
The effect of noise on the intensity moments

The observed reflection intensity Io is the sum of the true

intensity It and a noise contribution n, such that Io = It + n.

Therefore, the first and second moment of Io can be written as

hIoi ¼ hIti þ hni;

hI2
oi ¼ hIoi

2
þ varðItÞ þ 2covðIt; nÞ þ varðnÞ:

The normalized moment can then be written as the

following ratio:

hI2
oi

hIoi
2 ¼ 1þ

varðItÞ þ 2covðIt; nÞ þ varðnÞ

ðhIti þ hniÞ
2 : ð13Þ

If we denote k = var(It)/hIti
2, then the above ratio can be

written as

hI2
oi

hIoi
2
¼ 1þ

kþ 2covðIt; nÞ
hni

hIti
þ

varðnÞ

hIti
2

1þ
hni

hIti

� �2
: ð14Þ

The value of k depends on the distribution of true inten-

sities. For single-crystal intensities without statistical peculia-

rities such as twinning and pseudo-translation, k = 1. For

merohedral twinning, k = 1/2. For n-fold twinning, k = 1/n.

Therefore, for single-crystal, untwinned data the ratio is given

by

hI2
oi

hIoi
2
¼ 1þ

1þ 2covðIt; nÞ
hni

hIti
þ

varðnÞ

hIti
2

1þ
hni

hIti

� �2
: ð15Þ

Assuming in each case that there is no correlation between

the signal and the noise [i.e. cov(It, n) = 0], the following hold.

(i) If the mean noise hni is 0 and the variance of the noise

var(n) is close to zero, then

hI2
oi

hIoi
2 ¼ 2: ð16Þ
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Table 2
Definitions of the mathematical quantities used.

Item Definition

y The vector of pixel values transformed using the Anscombe
transform. The value of the ith pixel is given by yi.

X The design matrix describing the linear model. A row in the
design matrix is given as xi; each row gives the explanatory
variables for pixel i.

b The vector of model parameters which are estimated from the
quasi-likelihood algorithm. The jth parameter is given by
�j.

li The estimated pixel values. These depend on the value of the
parameters as l = Xb. The pixel value estimate for the ith
pixel is given by �i.

ri The residual for the ith pixel given by ri = (yi � �i)/vi
1/2.

W The diagonal matrix of weights, where the ith diagonal
element is given by w(ri), the weight for the ith residual.

�(ri) The robust function of residuals.



Typically, at low resolution, where reflection intensities are

large relative to the noise, the moments tend to this value.

(ii) If the mean noise hni is nonzero and the variance of the

noise var(n) is close to zero, then

hI2
oi

hIoi
2 ¼ 1þ

1

1þ
hni

hIti

� �2 : ð17Þ

In this case, the ratio depends on the value of the mean noise

hni. If the reflection intensities are underestimated, then the

mean noise will be negative. When the average noise is close

to �hIti the ratio will become very large. If the reflection

intensities are overestimated, then the mean noise is positive.

As hni/hIti tends to infinity the ratio will tend towards a value

of 1, mimicking twinned data.

(iii) If the mean noise hni is zero and the variance of the

noise var(n) is nonzero, then

hI2
oi

hIoi
2 ¼ 2þ

varðnÞ

hIti
2 : ð18Þ

In this case, the ratio is always greater than 2 and as var(n)

increases relative to the true reflection intensity hIti the ratio

also increases. At high resolution, where reflection intensities

are small relative to the noise, this trend in the ratio towards

infinity is often seen.
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