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Abstract

Drug-related adverse events pose substantial risks to patients who consume post-market or Drug-

related adverse events pose substantial risks to patients who consume post-market or 

investigational drugs. Early detection of adverse events benefits not only the drug regulators, but 

also the manufacturers for pharmacovigilance. Existing methods rely on patients’ “spontaneous” 

self-reports that attest problems. The increasing popularity of social media platforms like the 

Twitter presents us a new information source for finding potential adverse events. Given the high 

frequency of user updates, mining Twitter messages can lead us to real-time pharmacovigilance. In 

this paper, we describe an approach to find drug users and potential adverse events by analyzing 

the content of twitter messages utilizing Natural Language Processing (NLP) and to build Support 

Vector Machine (SVM) classifiers. Due to the size nature of the dataset (i.e., 2 billion Tweets), the 

experiments were conducted on a High Performance Computing (HPC) platform using 

MapReduce, which exhibits the trend of big data analytics. The results suggest that daily-life 

social networking data could help early detection of important patient safety issues.
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1. INTRODUCTION

The United States Food and Drug Administration (FDA) defines an Adverse Event (AE) as 

“any undesirable experience associated with the use of a medical product”. In the arena of 

pharmacovigilance, identifying AEs in a timely manner plays a vital role as some of the AEs 

can be life-threatening.
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In order to capture AEs and Adverse Drug Reactions (ADRs), various surveillance systems–

spontaneous reporting systems (SRSs)—have been developed around the world. In U.S., the 

FDA’s Adverse Event Reporting System (AERS) [30] is a major SRS with more than four 

million reports. As of March 2012, the AERS data contains publicly available reports until 

September 2011. In European, the European Medicines Agency developed the 

EudraVigilince [12]; and the World Health Organization has an international 

pharmacovigilance system as well. Aforementioned SRSs (particularly AERS) contain many 

reported post-market drugs’ AEs. Although drug manufactures are required to report all 

known AEs, majority of the adverse events are detected by the physicians and patients, 

where reporting is voluntary [33]. Thus, the overall incidences of AEs are significantly 

underestimated. Moreover, before marketing a new drug, clinical trials have to be conducted 

to study the investigational new drugs (or unapproved use of a drug), which is a major 

avenue for discovering drug-related AEs. However, the current venues of capturing AEs in 

clinical trials are cumbersome.

The explosion of the social media websites like Twitter, Google+, and Facebook, poses a 

great potential for variety of research arenas from targeted marketing to contagious disease 

capture. Twitter, as a micro blogging plat-form, has enormous increasing number of users. 

On Twitter, users publish short messages using 140 or fewer characters to “tweet” about 

their opinion on various topics and to share information or to have conversations with the 

followers. Often, a Twitter user would share health-related information, such as “this warm 

weather + tamoxifen hot flushes is a nightmare!”, which indicates the drug use 

(“tamoxifen”) and associated side effects (“hot flushes”) of the user. Hence, we believe that 

Twitter can be a promising new data source for Internet-based real-time pharmacovigilance 

because of its message volume, updating frequency, and its public availability.

The goal of our research is to develop an analytic frame-work for extracting knowledge from 

Twitter messages that could indicate potential serious side effects caused by a drug of 

interest. The knowledge gained can be used to create a knowledge base for early detection of 

adverse events or identification of under-reported adverse events. Such framework is not 

only beneficial to government agencies such as the FDA for monitoring and regulating the 

drugs, but it also helps the pharmaceutical companies for pharmacovigilance and to provide 

decision support.

2. BACKGROUND

2.1 Clinical Studies, Investigational Drugs, and Adverse Events

Clinical studies are basic building blocks of developing a new drug and required to be 

completed before potential marketing of a drug. There are many regulations related to AEs 

for investigational drugs and can be categorized into three basic types. 1) Expected AEs, 

where some AEs are known to occur during the study design period and listed in the 

investigational brochure, the inform consent or as part of the general investigational plan. 

This type of AEs has to be recorded and reported but does not normally impose significant 

risks (i.e., excluded in reporting for AE Rate and Person Year Exposure etc.). 2) Serious AEs 

are the ones that may be fatal, medically significant, an anomaly, life-threatening, or may 

cause disability, hospitalization. This type of AEs have to be reported in 24 hours. 3) Other 
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AEs that are not expected by the design of a study, but also considered as important and 

need to be reported. As these AEs occur, the Data Safety and Monitoring Boards (DSMB) 

and/or the sponsor of the study may suggest a change of the intervention (i.e. change in drug 

dose).

However, it is not easy to estimate expected AEs or capture them as they occur during the 

study period. Usually AEs are captured during a clinic visit by the health care provider based 

on the participant’s responses or the result of a test (i.e. lab, radiology etc.). Participant 

responses can be in form of patient diaries they complete in between visits and/or verbal 

responses during the office visit. There are challenges in both cases. In the case of patient 

diaries: it is very time consuming; patients are often not compliant; patient’s self-diagnosis 

or interpretation is required; and diaries can have complicated instructions that are not easy 

to follow for the patients. In the matter of reporting AEs during office visits: patients often 

either have difficult time remembering the potential AEs, its start and end date (if resolved) 

or intentionally hold back the information from the investigator to avoid being removed from 

the study. A number of studies have raise concerns related to the reliability and effectiveness 

of the current AE collection and reporting methods [25] [17] [21].

Various new data-driven analytical approaches have been proposed in literatures. Chee et. al. 

tried to find AEs from personal health messages posted in online health forums [5]. Kuhn et. 

al. have focused on extracting side effect information from medical literatures [18]. 

Friedman uses natural language processing to analyze electronic health records (EHR) to 

identify novel adverse drug events [13].

2.2 Twitter Mining

Numerous studies have been published on the topic of mining Twitter messages for health-

related information. Cobb et. al. analyzed online social networks including Twitter to study 

how these platforms can facilitate smoking cessation [8]. Prier et. al. conducted an empirical 

study to explore tobacco-related tweets for identifying health-related topics [24]. Paul et. al. 

proposed an analysis model for mining public health topics from Twitter [23]. Both Culotta 

[1] and Aramaki et. al. [11] explored the avenue to detect influenza epidemics by analyzing 

Twitter messages. Moreover, various other analytic models have been proposed to mine 

Twitter messages for different information, range from predicting election voting results [28] 

to studying global mood patterns [14]. However, to our knowledge, there has been no study 

on mining Twitter messages for drug-related AEs.

3. METHODS

We start with a collection of over 2 billion Tweets collected (i.e., not specifically collected 

for this research) by Paul et. al. [23, 22] from May 2009 to October 2010, from which we try 

to identify potential adverse events caused by drugs of interest. The collected stream of 

Tweets was organized by a timeline. The raw Twitter messages were crawled using the 

Twitter’s user timeline API [29] that contains information about the specific Tweet and the 

user. We are only interested in and indexed the following four fields for each Tweet: 1) the 

Tweet id that uniquely identifies each Tweet; 2) the user identifier associated with each 

Tweet; 3) the timestamp of the Tweet; and 4) the Tweet text.
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To mine Twitter messages for AEs, the process can be separated into two parts: 1) 

identifying potential users of the drug; 2) finding possible side effects mentioned in the 

users’ Twitter timeline that might be caused by the use of the drug concerned. Both 

processes involve building and training classification models based on features extracted 

from the users’ Twitter messages. Two-sets of features (i.e., textual and semantic features) 

are extracted from Twitter users’ timeline for both classification models. Textual features 

such as the bag-of-words (BoWs) model are derived based our analysis of the actual Twitter 

messages. Semantic features are derived from the Unified Medical Language System 

(UMLS) Metathesaurus [26] concept codes extracted from the Tweets using Metamap [2] 

developed at the National Library of Medicine (NLM).

To test our hypothesis, we selected five cancer drugs (see Table 1) to evaluate our method. 

The five drugs are chosen according to information in the ClinicalTrails.gov [31] based on 

the following criteria: 1) the drug is an investigational drug that is used in a cancer treatment 

study (i.e., categorized as targeting the condition “Cancers and Other Neoplasms” in 

ClinicalTrials.gov); 2) the study was started during May 2009 and October 2010. Our 

assumption is that patients enrolled in those studies might be given the drugs of interest 

during that period of time; and they may Tweet about the experience of their drug use. Table 

1 lists the drugs of our interest, their synonyms, number of unique Tweets found for each 

drug, and number of unique users found that have tweeted about the drug.

The data processing pipeline for the overall system is shown in Figure 1; and each step is 

explained below in detail.

3.1 Step 1 – Paralleled Lucene indexeres in a HPC platform

Searching and performing analysis over raw text files in such a massive volume (i.e., 2 

billion Tweets in our study, and 1.5 terabytes storage space for both the text of the message 

and meta-data associated with the Tweet) is impractical. Rather, an efficient full text search 

capability is necessary to search over all 2B tweets containing a specific keyword (e.g., 

searching by a drug name, including its synonyms). Initially, we started with parsing the raw 

Twitter data and inserting the messages into a relational database (i.e., MySQL) that is 

capable of creating full text indexes. However, the performance of such attempt is 

undesirable (i.e., it took 38 hours to process 20 days’ Twitter messages). As another option, 

we used a specialized information retrieval library–Apache Lucene [27]. The use of Lucene 

resulted in significant performance improvements; particularly, it was possible to index 30 

days tweets within 10 hours. However, considering that we have 18 months of Twitter data, 

it is still a computational intensive and time-consuming process. Fortunately, it is possible to 

parallelize the Lucene indexing process in a High Performance Computing (HPC) 

environment. In our case, we utilized the Amazon Elastic Compute Cloud (EC2) to run the 

Twitter indexers on 15 separate EC2 instances (i.e., High-Memory Double Extra Large 

Instance (m2.2×large), 34.2 GB of memory, and 13 EC2 Compute Units) in parallel, which 

we were able to parse and index all 2 billion Tweets within two days. The size of the Lucene 

indexes is 896 GB.
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3.2 Step 2 – Pre-select potential drug users and extract users’ Twitter timeline

In this step, we searched over the 2B Twitter messages to find all Tweets that contained the 

drug name or one of its synonyms. We choose five cancer drugs (see Table 1) to evaluate our 

method. We also pre-processed the data to eliminate obvious outliners, such as re-Tweets 

(i.e., starts with ‘RT’), and Tweets that are not in English (i.e., we used the chromium-

compact-language-detector [19] for language detection). After pre-processing, 239 users 

remain as potential drug users (i.e., this number seems to be low, but it is expected, since the 

drugs of interest we picked are drugs used in clinical trials that may not be on the market 

during that time frame) and their drug-related Tweets are collected. Since one user may have 

multiple Tweets about a drug of interest, we aggregate all these Tweets as one document to 

be processed by the classifier in the next step. In short, each document contains one or more 

Tweets related to the drug of interest tweeted by one user.

3.2.1 Step 3 – Building a classifier to identify drug users—In this step, we built a 

Support Vector Machine (SVM) to label a collection of Tweets (i.e., a document) posted by a 

Twitter user as whether the user herself or someone she knows has taken the drug of interest. 

For example, a document that contains “No more tamoxifen for me - finished 5 yrs of post 
cancer drug therapy.” is labeled as 1 indicating that the user is taking “tamoxifen”–a drug of 

our interest; while the user who tweeted “Please visit us at www.genglob.com For generic 
anti cancer drugs medicines alkeran, iressa, gefitinib, erlotinib, temonat, revlimid, Velcade,” 
should be classified as NOT a drug user, although she mentioned a drug of our interest–

“alkeran”–in the Tweet. For cases where the Twitter user herself is not a drug user, but the 

Tweet indicate that a positive drug user she might know, we also labeled the document as 

positive. For example, “@whymommy so what does this mean for you?? What’s the game 
plan? I’m so sorry about Avastin”, where the context suggests that “@whymommy” is a user 

of “avastin”. To evaluate the performance of the classification model, the 239 collections of 

Twitter messages extracted from the previous step are labeled manually; where each 

document is reviewed by at least two domain experts to ensure the accuracy. 72 positive 

cases are found. This labeled dataset of the 239 documents is then used to train and test the 

classifier.

Figure 2 shows the detailed process of building and testing the classification model to 

identify drug users. It consists of three main parts, and the details are explained below.

3.2.2 Step 3.1. Feature extraction—Two groups of features (i.e., 171 individual 

features) are extracted: 1) textual features that construct a specific meaning in the text; and 

2) ontological/semantic features that express the existence of semantic properties. Seven 

textual features are considered based on our analysis of over 5, 000 drug-related Tweets (i.e., 

independent from our testing/training datasets for the SVM). Details about the choices of the 

textual features are discussed in the Discussion section. For semantic features, we use 

Metamap to discover UMLS Metathesaurs concepts expressed in the Twitter text. Feature 

values are then derived from the concept codes according to both the Semantic Type [32] 

and the more abstracted Semantic Group [20]. Before feeding the Twitter messages to 

Metamap, we pre-processed the text to eliminate elements that have no semantic meanings: 

1) URLs; 2) user mentions; and 3) a list of words that will map to undesired concepts (e.g., 
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the word ‘I’ will be mapped to “660 C0021966:I- (Iodides) [Inorganic Chemical]”, which is 

often incorrect within the context of Twitter messages). For each collection of twitter 

messages, Metamap generates a list of concept codes mapped from the free text, where each 

concept has: 1) a confidence score of the mapping; 2) a CUI code that uniquely identifies the 

concept; 3) the preferred name of the concept; and 4) the Semantic Type of the concept. 

Before deriving the feature values for each document, concepts with lower confidence score 

are dropped.

Further, semantic types in UMLS help to cluster the concepts into different categories. 

Therefore, the first set of semantic features we used is the count of concepts within each 

semantic type. The major semantic types are organisms, anatomical structures, manufactured 

object, substance, etc. However, for our purpose, we are mainly interested in semantic types 

that are related to drug (e.g., “Clinical Drug”, “Pharmacologic Substance”, etc.) and adverse 

effects (e.g., “Finding”, “Sign or Symptom”, “Disease or Syndrome”, etc.).

The current scope of the UMLS semantic types is quite broad (i.e., 135 semantic types and 

54 relationships), allowing for the semantic categorization of a wide range of terminology in 

multiple domains. Therefore, in [20], McCray et. al. aggregated the UMLS semantic types 

into semantic groups to reduce conceptual complexity. In practice, the 135 semantic types 

are further abstracted into 15 groups, such as “Chemicals & Drugs”, “Disorders”, etc. 

Therefore, the second set of semantic features we used in this study is the count of concepts 

that fall into each semantic group.

Here is a summary of all the features we considered in this study.

Textual features that construct a specific meaning in the text:

• Bag-of-words features that indicate an action or a state that the user has taken the 

drug

• Number of hash-tags occurred in the document

• Number of reply-tags occurred in the document

• Number of words that indicate negation

• Number of URLs

• Number of pronouns

• Number of occurrences of the drug name or its synonyms

Semantic features that express the existence of semantic properties (i.e., based on UMLS 

Concept Unique Identifiers (CUIs) extracted from the Tweets):

• Number of CUIs in each Semantic Type

• Number of CUIs in each Semantic Group

3.2.3 Step 3.2. Two-class Support Vector Machine (SVM)—Support Vector 

Machine (SVM) has been widely accepted as a effective technique for data classification. In 

a general classification problem, input data is split into training and testing sets. Each 
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instance (i.e., sample) of the training set contains one class label (i.e., the target value) that 

indicates the category of the sample; and a vector of features (i.e., attributes, observed 

variables), which describes some characteristics of the instance. The goal of a SVM is to 

generate a prediction model based on training data that can accurately predict the class 

labels of the testing data given only the feature vectors of the testing data. Mathematically, 

given a training dataset (xi, yi), i = 1, …, l, where xi ∈ Rn is the feature vector of sample i 
and yi ∈ {+1, −1} is the class label of the same sample, the SVM [3, 9, 4] is to solve the 

following optimization problem,

(1)

subject to

The feature vectors (xi) are mapped into a higher (maybe infinite) dimensional space by the 

function ϕ(). SVM finds a linear separating hyperplane with the maximal margin in the 

higher dimensional space; C is the penalty parameter of the error term. Furthermore, SVM 

uses a kernel function (i.e., K(xi, xj) ≡ ϕ(xi)T ϕ(xj) to map the data into the higher feature 

space where a hyperplane can be drawn to do the separation. Often, the Gaussian Radial 

Basis Function (RBF) (i.e., K(xi, xj) = exp(−γ‖xi − xj‖2), γ > 0) is a reasonable first choice. 

RBF is a nonlinear mapping that can handle situations where the relation between the class 

labels and the features is nonlinear.

Features in the feature vectors are not necessarily all relevant to the target values (i.e., class 

labels). Feature selection is the process where a optimal subset of pertinent features for 

building more accurate and robust learning models. In this study, we found that the one-way 

Analysis of Variance (ANOVA) F-test [10] is simple, yet effective [7, 6]. Various standard 

techniques such as scaling, grid-based kernel parameter search, etc. [15] for building an 

efficient SVM have also been taken into account in this study.

3.2.4 Step 3.3. Evaluation of the SVM—Various classification metrics have been 

calculated to evaluate the SVM which include the accuracy, the precision, the recall, the 

Area Under the Curve (AUC) value, and the Receiver operating characteristic (ROC) curve.

3.3 Step 4 – Building a classifier to identify side effects caused by the drugs of interest

The second part of this study is to build another classification model to identify side effects 

(i.e., adverse event indicators) caused by the use of the drugs. The overall process of this part 

as shown in Figure 3 is similar to Step 3 described above. We considered the same set of 

features (i.e., both textual and semantic features) as described in the previous section. 

However, there are three main differences.
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First, the dataset of this classification model is the result of the previous step, where we only 

consider the positive cases identified by the previous model (i.e., 72 out of 239 cases are 

labeled as drug users). Similar to the process in the previous step, two domain experts 

evaluated all 72 positive cases and label each one as whether it can be considered as a report 

for an adverse event (i.e., side effects caused by the drug of interest). 27 out of 72 cases are 

labeled as positive.

Second, we consider more Tweets for each user. In the previous step, it is sufficient to only 

consider Tweets that contains the specific drug name or its synonyms. However, when 

mining for side effects, it is possible that the Twitter user complains about the harmful and 

undesired effects of the drug in a separate Tweet; and the Tweet can happen either before or 

after the mention of the drug. Therefore, in this classification model, we consider m Tweets 

before the drug-related Tweet plus n Tweets after it. In current implementation, m = 5 and n 
= 15, which gives us at least 21 (i.e., including the drug-related Tweet) to consider for each 

instance (i.e., some user mentioned the drug in multiple Tweets, therefore, it is possible to 

extract more than 21 Tweets from each user’s Twitter timeline to consider).

Third, from this model, we also extract a list of concept codes of the adverse effects for 

further analysis. One possible use of this list is to compare it with the reactions reported to 

the FDA’s Adverse Event Reporting System (AERS) [30] to find unreported or rare side 

effects.

4. RESULTS

The results of both classification models are as the followings. For the drug user classifier, 

since there are only 72 positive cases out of 239 cases, the dataset is unbalanced. A naive 

SVM classifier cannot handle unbalanced dataset well. Therefore, we used down-sampling 

method to create a balanced dataset to improve SVM performance. To reduce bias, we 

bootstrap the down-sampling process 1000 times. In detail, at each iteration, we first 

randomly picked 72 negative cases to create a balanced dataset (i.e., 144 total cases, 72 

positive plus 72 negative), then the samples are split into training and testing datasets (i.e., 

2/3 is for training, 1/3 is left for testing). We trained a SVM classifier use the training test 

(i.e., including a f-score feature selection process), and measured the performance on the 

testing set. We drew the ROC curve using the mean values of the 1000 iterations. The 

prediction accuracy on average over the 1000 iterations is 0.74 and the mean AUC value is 

0.82. Figure 4 shows the ROC curve of the model. The best features selected are: 1) from the 

textual feature set: the number of replay tags, the number of urls, and two word counts from 

the BoW features, which are the the word ‘got’ and the word ‘go’ (i.e., including counts of 

their variants); 2) from the semantic feature set: “Injury or Poisoning”, “Anatomical 

Abnormality”, and “Organ or Tissue Function”.

For the AE classification model, the same process applied. The prediction accuracy on 

average over the 1000 iterations is 0.74 and the mean AUC value is 0.74. Figure 5 shows the 

ROC curve of the model. In terms of best features, there is no textual feature selected; and 

the following semantic features give the best prediction results: “Sign or Symptom”, 
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“Anatomical Abnormality”, “Intellectual Product”, “Human-caused Phenomenon or 

Process”, and “Behavior”.

5. DISCUSSION

The key factor of the classification performance are the features. In this study, we considered 

two groups of features extracted from the Twitter messages–textual and semantic features. 

Both classification models use the same feature extraction method, except in the drug user 

classification model we only considered the drug-related Tweets; while in the AE 

classification model we expanded the scope to consider Tweets around the drug-related 

Tweets (according to the timeline of the Tweets). Here, we first briefly discuss the reasons 

behind the choices of the textual features.

• Bag-of-words (BOWs) features that indicate an action or a state that the user has 

taken the drug: The BOWs model is commonly in document classification, where 

it assumes that a text can be represented as an unordered collection of key words 

disregarding grammar. In our case, we carefully evaluated all the positive cases 

(i.e., we are not limited to the positive cases in the test dataset, which will lead to 

bias. Rather, we randomly picked another drug-related dataset and identified 

positive cases manually), and created a bag of 15 key words that might indicate 

the using of the drug. For example, a user tweeted that “Second Avastin injection 
down, two to go. It’s worse the second time around.”, where “injection” is a key 

word leads us to believe that the user is taking “Avastin”. We also considered the 

variants of the key words including the different part of speech (POS) of the 

same word (e.g., inject is the verb form of the noun injection), the different 

tenses of a verb (e.g., injected, inject, injecting), the singular or plural forms of a 

word (e.g., injects and inject), etc. The variants of the same word are considered 

as in one bag. A word count is calculated for each of the 15 key words present in 

a Tweet document [16].

• Number of hashtags occurred in the document: Hash-tags are used in Twitter for 

marking keywords or topics in a Tweet, which often used by Twitter users as a 

way to categorize messages. The use of a hash-tag in a Tweet often indicates that 

the user wants to share a piece of information related to the drug, rather than the 

user has actually taken the drug. For example, there was a news break about the 

FDA revoking the approval of the breast cancer indication for “bevacizumab” 

(“Avastin®”, made by Genentech); and a user tweeted that “news: avastin may 

lose its FDA approval as breast cancer treatment. #avastin #breast-cancer”.

• Number of user mentions occurred in the document: Mentions (i.e., starts with an 

‘@’ sign followed by a Twitter user display name) are often used in Twitter by a 

user to reply other’s Twitter messages or indicate that the Tweet is intended for 

the users mentioned. Higher number of mentions occurred in a user’s Twitter 

timeline can indicate frequent discussions on a specific topic (e.g., 

“@HeyTammyBruce Where are the feminists on FDA story re: breakthrough 
breast cancer drug Avastin not being approved due to expense?”.
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• Number of words that indicate negation: A negation term is important feature to 

recognize, since it often indicates a negative intention. For example, “Still 
waiting for my first chemo. I will not be given the avastin as hoped, but that also 
means chemo will only take 5 months!”.

• Number of Uniform resource locators (URL)s: Higher number of hyperlinks 

occurred in a user’s Twitter time-line often suggests that the user is merely 

showing information with his/her followers. For example, in “Avastinc an cause 
kidney damage http://bit.ly/9KWksC Higher doses and kidney cancer increase 
the risks; check for proteinuria w/ every cycle”, the user shares results of a 

“avastin” study reported by a news source; and the URL is used to link back to 

the original news article.

• Number of pronouns: The existence of pronouns (e.g., I, she, he, etc.) in a Tweet 

is highly correlated to whether the user is a receiver of the drug. Further, 

pronouns can be an important factor to determine whether the drug user is the 

one who tweeted the message or it is merely someone the Twitter user knows. 

Although we do not use this information in this study, it is a valuable information 

for future research.

• Number of occurrences of the drug name or its synonyms: Like the case with 

URLs, the fact that a user has a high number of Tweets that mentions the drug 

name hints that the user is trying to act as an information source (e.g., a Twitter 

user who gives constant update on breaking news) or the user could be a drug 

retailer, where the Twitter is used as a marketing platform.

The textual features are more tailored toward solving the first classification model to identify 

drug users. For finding potential adverse effects, the semantic features extracted using the 

UMLS concept codes fit the AE classification model better, since it contains features like 

number of concept codes that are “Finding”, “Sign or Symptom”, “Disease or Syndrome”.

The performance of both classification models are rather low. We think there are various 

reasons. First, the Twitter data is very noisy. People often use fragmented sentences or 

otherwise ungrammatical sequences and are filled with mis-spellings, odd abbreviations, and 

other non-word terms in their Tweets. The standard conventions for capitalization and 

punctuations are not strictly followed. Moreover, potential patients do not use standard 

medical terms, which often caused the Metamap to extract the wrong concept codes. Further, 

Metamap’s POS tagger is trained on medical documents that is more structured than Twitter 

messages. We intend to develop and train a social media specific POS tagger for biomedical 

information, which could potentially increase the classification accuracy.

6. CONCLUSION

In this research, we developed an analytic framework that combines natural language 

processing and machine learning methods to extract drug-related adverse events from the 

Twitter messages. Although the performance of both classification models is limited due to 

the high-level of noises existed in Twitter messages, this paper demonstrates the potential to 
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meet our ultimate goal to automatically extract AE-related knowledges to support 

pharmacovigilance.
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Figure 1. 
The data processing pipeline for the overall system.
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Figure 2. 
The detailed process of building and testing the classification model to identify drug users.
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Figure 3. 
The process of building and testing the classification model to identify side effects caused by 

the drugs of interes.
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Figure 4. 
Drug use identification - The mean prediction accuracy, the mean AUC value, and the ROC 

curve of the classifiers.
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Figure 5. 
AE detection - The mean prediction accuracy, the mean AUC value, and the ROC curve of 

the classifiers.

Bian et al. Page 17

SHB12 (2012). Author manuscript; available in PMC 2017 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bian et al. Page 18

Table 1

Drugs of interest

Drug name Synonym(s) # of
tweets

# of
users

Avastin Bevacizumab 264 236

Melphalan ALKERAN 23 15

Rupatadin Rupafin, Urtimed 10 10

Tamoxifen Nolvadex 147 124

Taxotere Docetaxel 45 39
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