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Abstract

For designing single-arm phase 1 trials with time-to-event endpoints, a sample size formula is
derived for the modified one-sample log-rank test under the proportional hazards model. The
derived formula enables new methods for designing trials that allow a flexible choice of the
underlying survival distribution. Simulation results showed that the proposed formula provides an
accurate estimation of sample size. The sample size calculation has been implemented in an R
function for the purpose of trial design.
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1 Introduction

A time-to-event endpoint, such as event-free survival or overall survival, is often the primary
endpoint for cancer clinical trials. In pediatric oncology, single-arm phase 1 trials with time-
to-event endpoints are often conducted with limited numbers of patients. Various statistical
methods have been proposed for designing randomized phase 11 trials with time-to-event
endpoints (e.g., by George and Desu, 1977; Lachin, 1981; Rubenstein et al., 1981;
Schoenfeld, 1983; Lakatos, 1988; Barthel et al. 2006; and many others). However, the
literature on designing single-arm phase Il trials with time-to-event endpoints is relatively
scarce. The current practice for designing such trials is limited to using a parametric
maximum likelihood test under the exponential model or a naive approach based on
dichotomizing the event time at a landmark time point (Owzar and Jung, 2008). Trial design
under the exponential model may not be reliable and the naive approach is inefficient.

Recently, Kwak and Jung (2014) proposed a two-stage phase Il survival trial design using
the one-sample log-rank test (OSLRT) (Breslow, 1975; Woolson, 1981; and Finkelstein et
al., 2003). However, simulation results showed that Kwak and Jung’s design is conservative
and underpowered. To correct the power and conservativeness of the OSLRT, Wu (2015)
proposed a modified one-sample log-rank test (MOSLRT) for single-arm phase Il survival
trial designs. The MOSLRT preserves the type I error well and provides adequate power for
trial design for a class of common parametric survival distributions. However, all the
parametric survival distributions make strong assumptions about the shape of the hazard
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functions and are difficult to validate for historical data. In this paper, formulae for the
number of events and sample size are derived under the proportional hazards model. The
derived formula for the number of events is an analog version of the Schoenfeld formula for
a two-arm randomized phase 111 trial using the two-sample log-rank test (Schoenfeld, 1983).
Trial design based on the proposed sample size formula offers great flexibility in choosing of
the underlying survival distribution, which could be a parametric survival distribution, a non-
parametric Kaplan-Meier curve, or a spline version of the survival distribution (Kooperberg
and Stone, 1992; Bantis et al., 2012; Anderson et al., 2013).

The rest of the paper is organized as follows. The MOSLRT is introduced in section 2. The
formulae for the number of events and sample size are derived in section 3. Parameter
setting for trial design is discussed in section 4. Simulations are conducted to study the
performance of the proposed methods in section 5. An example is given in section 6 to
illustrate the single-arm phase Il survival trial designs. Concluding remarks are made in
section 7.

2 Test Statistics

Let Sp(9) denote the survival function under the null hypothesis that is chosen for a single-
arm phase Il trial design. Let S(9) denote the survival function of the experimental treatment.
Consider the following proportional hazards model:

SH=[So®I’, ()

where &(> 0) is the hazard ratio. The hypothesis of improvement in survival with the
experimental treatment is

Ho:0 > 1 vs. Hp:0<1. (2)

Testing this hypothesis is equivalent to testing the difference between the survival
distributions with the experimental treatment and under the null hypothesis. Thus, the
OSLRT can be used. However, the OSLRT is conservative, as shown by Kwak and Jung
(2014); Sun et al. (2010); and Wu (2015). Recently, Wu (2015) proposed a MOSLRT that
preserves the type I error well and provides adequate power for study design. To introduce
the MOSLRT, assume that during the accrual phase of the trial, 77 subjects are enrolled in the
study. Let 7;and C;denote the event time and censoring time, respectively, of the /7 subject.
We assume that the event time 7;and censoring time Cjare independent and that {7, C;, /=
1, ..., i} are independent and identically distributed. Then, the observed event time and
event indicator are X;= 7;AC;and A;= [ T;< C)), respectively, for the 77 subject. On the

basis of the observed data { X, Aj, 7=1,..., ni}, we define O:ijlAi as the observed

number of events and E:Z;;Ao (X) as the expected number of events (asymptotically),
where Ag(d) = - log Sy(9 is the cumulative hazard function under the null hypothesis. Then,
the MOSLRT is defined by
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To study the asymptotic distribution, we formulate it using counting-process notation.
Specifically, let N{8) = A;/{X;< & and Y{§) = K.X;= £} be the failure and at-risk processes,
respectively, then

O=> [PPdN; (t), E=> [5°Y;(t)dAg(t).
=1

i=1

Thus, the counting-process formulation of the MOSLRT is given by 7,=11/5, where

Wn VY [ 4N (6) - Vi (1) dho ().

1=
and

&Q:nflifgc {dN; (t) +Y; (t) dAo ()} /2.
=1

Under the null hypothesis Hjy, by the strong law of large numbers, n o — Ey, (A)and

n Y S0 dAo (8) = [5G (1) So (8) dAo (1) =By, {Ao (X))}, where G(3 is the
survival distribution of the censoring time C. Then,

&% =[G () So (t) dAo (t) =Var, (W), and £, (W)=0(Wu, 2015). Therefore, by the
counting process central limit theorem (Fleming and Harrington, 1991), L is asymptotically
standard normal distributed. Hence, we reject the null hypothesis Hp with one-sided type |
error a if L=W/6< — z;_,, where 2, is the 100(1 — a) percentile of the standard normal
distribution.

3 Sample Size Formulae

Traditionally, sample size is often derived under the fixed alternative. However, when the
asymptotic distribution of the test statistics is difficult to derive under the fixed alternative,
contiguous alternatives (Lin et al., 1999) can also be considered by assuming that the
alternative value of the testing parameter decreases to the null value at the rate of 7712,
where ris the sample size. For example, under the proportional hazard model, the null
hypothesis of interest is Hy : y = 0 and the fixed alternative hypothesis of interestis H; : y =
¥1, Where ¥ = —log(¥) is the negative hazard ratio and 4 > 0. The contiguous alternatives

of interest are f1,,,:y=v1,,=b/ v/n, Which converges to the null hypothesis Hy : =0 as
sample size 1 goes to infinity. Here, we will first derive a formula for the number of events
under the contiguous alternatives. The proportional hazard model (1) is equivalent to A(#) =
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€ 7Ay(9, where Ag(5) and A (9 are the hazard functions under the null hypothesis and the
experimental treatment, and » = — log(8) > 0. To derive the formula, we consider a sequence
of contiguous alternatives rfy,,:y=-~1,,=b/ /n, Where b < co. Under the H, ,, as shown in
Appendix 1, L=1V/4 is approximately normal distributed with mean

pi=— bpy/*=n'?log (8) py*,

and unit variance, where po=FE,, (A) is the probability of failure under the null hypothesis,
which can be shown as

po=Jo G (t) So (t) dAg (t).

Therefore, the study power 1 — g under the contiguous alternatives H , satisfies the
following:

1-8=P (L< — zl,a|H1n) =P(L—p<—p-— zl,a‘Hln) ~ o <fn1/2lag (6)]3(1)/2 — 21,a> .

Thus, d= npy, the expected number of events under the null hypothesis, satisfies the
equation

z21_g=— d?1og (8) — z1—a.

Solving for @, we obtain

_ (21,a+21,g)2

[log (D> 7 (3)

which gives the expected number of events under the null hypothesis. To calculate the
sample size of the trial, let py be the probability of failure under the alternative, which is
given by

p1=[o G (t) Sy (t)dAy (1),

where S;() = [So(d]® and A1(d) = SAg(d. Then, the required sample size for the trial is
given by di/p, where @ is the number of events under the alternative. However, we don’t
know for the ¢4, and we have only derived number of events ¢'under the null hypothesis.
The d/ is the sample size under the null which underestimates the sample size required
under the alternative, where gy is the probability of failure under the null. As d/p > di/py,
thus, d/p, overestimates the required sample size. Let Pbe the average probabilities of
failure under the null and alternative, that is
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P= (p0+p1) /27

then, a reasonable estimate of the required sample size is 7= d/Pwhich can be calculated by

(21,a+21,5)2 ‘
Pliog (5)]* (4

For the purpose of comparison, the sample size formula for the MOSLRT under the fixed
alternative H; (Wu, 2015) is also given as follows:

(Ezl,a—i—azl;ﬁf
w? G

where w= 11 = W, 7= (v1+vp) /2, aNd 6% =v; — vi+2vg0 — V3 — 2001420001, With vy, 14,
10, and 11 being given by the following equations:

vo=/5 G (t) S1(t)dAo (1),

=[G (t) S1 (t) dA1 (1),

voo=Jo G (t) S1 (t) Ao (t) dAo (t) ,

U01:f8CG (t) 51 (f) AO (t) dA1 (f) .

4 Parameter Setting for Trial Design

For trial design using sample size formula (4), we first consider one of the following
common parametric survival distributions: Weibull, gamma, Gompertz, log-normal, or log-
logistic. The design parameters of the underlying survival distribution S(#) under the null
hypothesis can be set as follows. Let S(x) be the survival probability of S(#) at a landmark
time point x, Sy(x) be the level of S(x) at which investigators are no longer interested in the
experimental treatment, and S;(X)(> Sp(x)) be the level of S(x) at which investigators
consider the experimental treatment is promising. Then the hypothesis of (2) is equivalent to
the following hypothesis:

Ho:S (z) < So(x) vs. Hp:S (z)>So (x),
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and the trial is powered at the alternative S(x) = S;(x). Here, the shape parameter of the
underlying survival distribution is assumed to be known from historical data. Thus, the scale
parameter (Table 1) for each distribution can be determined by the value of Sy(x), which is
given as follows:

Lo Weibull 5 (£) =e 0", with Ag = — log SH(X)/x%,

2. logt — 1o

Log-normal S0 () =1 — ® (T) with £ = log(x) - o®1(1 - SH(X),

Gompertz g, () —o~ % (<"~1), with é =~y log SH(¥/(e7* - 1),
4. Gamma Sy() =1 - /[{Agd), with /\0:1,;1 (1 —So () /z,
5. Log-logistic Sy(8 = 1/(1 + Ag#), with Ag = (1/ S(x) — 1)/x°.

The hazard ratio can be calculated by

57509551 ()
~log; Sy (x)’

and the survival distribution under the alternative is given by S;(8 = [So(8]%. To calculate
the probabilities gy and py for formula (4), we assume that subjects are recruited with a
uniform distribution over the accrual period ¢, and followed for a period of #rand that no
subject is lost to follow-up. Thus, the censoring distribution is a uniform distribution over [#¢
I, + 4. That is, the censoring survival distribution G(§) = 1 if 1<t = (L, + tr— DI, if tr< £<
t, + tz = 0 otherwise. Hence, the probabilities of failure g and p; can be calculated by the
following integration:

1
pi=l = = [i S () dt, i=0,1
a

where S;(9 = [So(d]%. If Sy( is a spline version of the survival distribution, then p;can also
be calculated by numerical integration. If Sy(2) is a Kaplan-Meier curve, then p;can be
calculated numerically using Simpson’s rule as follows:

1
pi=1 = 2 {Si (t7) +48; (05tatty) +8; (tattp)}, i=0,1.

The proposed sample size formula can also incorporate lost to follow-up in the sample size
calculation. For example, let C; be the loss to follow-up time and C, be the administrative
censoring time, then the overall censoring time is C= C; A C,, where C; and G, are
independent. Thus, the overall censoring distribution is G() = AC>H) = AC, > HAC, > )
= G1(H Gy(. It is often assumed that the loss to follow-up distribution is an exponential
Gi() = e ™ and administrative censoring distribution G,(3) is uniform. Therefore the
sample size formula (4) can be calculated by numerical integrations. For non-uniform
accrual, once the accrual distribution is specified, the sample size can be calculated as well.

Stat Biopharm Res. Author manuscript; available in PMC 2017 September 28.
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5 Simulation studies

We first investigated whether formula (4) would give an accurate sample size estimation. We
calculated sample sizes under various hazard ratios 6 = 1.271-2.071, with powers of 80%,
85%, and 90% and a type | error of 5%. The accuracy was assessed by simulations
performed under the Weibull distribution. The Weibull shape parameter xwas set to 0.5, 1
and 2 to reflect a decreasing, constant and increasing hazard function, and the median
survival time under the null was set to /1y = 1. We assumed that subjects were recruited with
a uniform distribution over the accrual period £, = 3 (years) and followed for #= 1 (year)
and that no subject was lost to follow-up; that is, only administrative censoring was
considered in the trial. Under these assumptions, the number of events and sample sizes
were calculated, and empirical powers and type | errors were estimated based on 100,000
simulation runs (Table 2). All simulated empirical powers and type | errors were close to the
nominal levels. Additional sample size calculations were conducted under the Weibull model
for various combinations of accrual period ¢, follow-up time #rand landmark time point x
for survival probability Sp(x) under null which varies from 0.2 to 0.7 and a 10% increasing
survival probability S;(x) under alternative to mimic a variety of real trial design. Detail for
the set up of the design parameters were given in Table 2. Simulations were conducted to
estimate the empirical type | error and power for the corresponding sample size based on
100,000 runs. The empirical type | errors and powers were close to the nominal levels for all
scenarios. Thus, the formula (4) did provide an accurate estimation of the sample size for
trial design.

Next, we conducted simulations to compare the sample size formulae (4) and (5). In
simulations, the survival distributions were taken as Weibull, gamma, Gompertz, log-normal
and log-logistic (Table 1). The parameters of the survival distribution under the null were set
as follows: the shape parameter of each distribution was set to 0.5, 1, and 2; the survival
probabilities at a landmark time point x = 2 under the null were set to Sy(x) = 0.2 -0.7 and
under the alternative were set to S;(x) = 0.35 — 0.8, with same accrual and censoring
distributions as before. Given a nominal type | error of 5% and power of 80%, the required
sample sizes based on formulae (4) and (5) were calculated for each design scenario. For
each calculated sample size, 100,000 random samples were generated from the
corresponding distribution to estimate the empirical type | error and power (Tables 3 and 4).
The simulation results showed that the empirical powers were close to the nominal level of
80% for all scenarios. Thus, sample size formulae (4) and (5) both gave an accurate
estimation of sample size. The results also showed that the sample sizes calculated by
formula (4) under the contiguous alternatives (Table 3) were almost identical to that
calculated by formula (5) under the fixed alternative (Table 4). Furthermore, the MOSLRT
controlled the type I error well when the survival probability under the null was low (Sy(X) <
0.5) and was slightly more liberal when the survival probability under the null (Sp(x) = 0.5)
was high.

6 Example

Between January 1974 and May 1984, the Mayo Clinic conducted a double-blind
randomized trial on treating primary biliary cirrhosis of the liver (PBC), comparing the drug

Stat Biopharm Res. Author manuscript; available in PMC 2017 September 28.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Page 8

D-penicillamine (DPCA) with a placebo (Fleming and Harrington, 1991). PBC is a rare but
fatal chronic liver disease of unknown cause, with a prevalence of approximately 50 cases
per million in the population. The primary pathologic event appears to be the destruction of
the interlobular bile ducts, which may be mediated by immunologic mechanisms. Of 158
patients treated with DPCA, 65 died. The median survival time was 9 years. Suppose an
experimental treatment is now available and investigators wish to design a new trial using
the Mayo Clinic patients treated with DPCA as the historical data with which to formulate
the hypothesis. The survival distribution of the DPCA data is estimated by a Kaplan-Meier
curve, a spline version of the survival distribution, which is fitted by using the R function
oldlogspline, and the Weibull distribution, which is fitted by using the R function survreg
with the estimated shape parameter x = 1.22 (Figure 1). Both the spline and Weibull
distributions are fitted well and are close to the Kaplan-Meier curve. The 5-year survival
probability estimate from the Kaplan-Meier curve is 71%. Thus, for the trial design, S(5) =
71% is the 5-year survival probability at which investigators are no longer interested in the
experimental treatment, and S;(5) = 82% is the 5-year survival probability at which
investigators consider the experimental treatment to be promising. Then, the hazard ratio is &
=10g(0.82) / 1og(0.71) = 0.58. To calculate the sample size, we assume a uniform accrual
with an accrual period £, = 8 years and a follow-up period #= 3 years, with no patient being
lost to follow-up. Thus, given a type I error of a = 5% and power of 1-8 = 80%, the
required sample sizes calculated using the R function SIZE (Appendix 2) are 63, 63, and 63
under the Weibull, spline and Kaplan-Meier curve, respectively. With a power of 90%, the
required sample sizes are 88, 87 and 88 under the Weibull, spline and Kaplan-Meier curve,
respectively. Sample size calculations under the spline distribution and Kaplan-Meier curve
make no assumption regarding the underlying survival distribution. Thus, this approach
takes advantage of possible misspecification by using a parametric survival distribution for
the trial design.

7 Conclusion

In this paper, formulae for the number of events and sample size for a single-arm phase 11
survival trial are derived for the MOSLRT under the proportional hazards model. The new
sample size formula is simple and easy to compute. The simulation results show that the
proposed formula provides an accurate estimation of sample size for trial design. The sample
size calculation using the new formula is extended to a class of flexible survival
distributions, including a Kaplan-Meier curve or a spline version of the survival distribution,
and has been implemented in the R function SIZE for trial design.
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Appendix 1: Derivation of the asymptotic distribution for the MOSLRT

The methods used to derive the asymptotic distribution of the MOSLRT under the
contiguous alternative are similar to the derivation of the two-sample log-rank test (Fleming
and Harrington, 1991).

Consider a sequence of contiguous alternatives H,: A1,{5 = & 2"24(8, where y1,is a
sequence of positive constants satisfying /72y, ,= b< co. Then, the weighted one-sample
log-rank score Wis given by

W=n"Y/23" [, () {dN; () — Yi (t) dAo (1)},

i=1

where w,(9 is a weight function convergence to u(f) as n— oo. If we further define a
sequence of martingale by

M (#) =N; (t) — [1Y; (u) e " dAg (u)

and let

W, =n=2Y " [, (6) M (1),

=1

n
W,=n"Y2Y 7[5 (e = 1) wy (£) Y (1) dAg (1),
i=1
then we have
W=w,+W,.

It is easy to show that

n
W, =n"Y23" [5%w () dM™ (t) 4o, (1)
=1

and

n

W,=—n'y, [w (t) {nlei (t)}dAo (t) +op (1).
i=1

As
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n
n251,=b and n 1YY () = 7 (1),
=1
where 7(f) = AX= {), we have where

W, — =bV,

where

V=[Cw? (t) () dAo (t).

Therefore,

n
W=n"123" 5w (t) dM™ (t) — bV +0, (1).
1

By the martingale central limit theorem (Fleming and Harrington, 1991), Wis approximate
normal with mean —bVand variance V. When u(f) = 1, the variance V/reduces to

po=Jo 7 (t) dAo (t) =[3"G (t) So (t) dAo (t).

Hence,

W — N (7()})0,])0) .

By the dominated convergence theorem, 52 — po=Jo G (t) So (t) dAg (t). Finally, by
Slutsky’s theorem, it follows that

L=W/6 — N (fbpé/Q, 1) .

Appendix 2: R code for the sample size calculation under the Weibull
distribution, spline distribution, and Kaplan-Meier curve

library (survival)

library (polspline)

time=c (1.10, 12.33, 2.77, 5.27, 6.58, 9.82, 0.36, 11.59, 1.84,
6.29, 12.24, 3.70, 12.48, 6.18, 7.12, 6.54, 2.74, 3.93,
6.09, 11.96, 10.94, 11.48, 11.07, 3.21, 9.47, 5.01, 3.26,
6.96, 9.79, 11.10, 4.54, 0.54, 4.77, 7.37, 1.06, 10.72,
8.49, 8.45, 8.83, 7.08, 5.77, 6.44, 2.68, 9.14, 2.97,

Stat Biopharm Res. Author manuscript; available in PMC 2017 September 28.
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9.03, 2.66, 8.41, 2.26, 2.84, 8.87, 8.07,
8.36, 8.21, 2.09, 7.86, 3.16, 7.84, 0.38,
7.05, 7.28, 7.24, 4.09, 7.07, 7.00, 7.00,
6.71, 6.38, 6.47, 6.48, 4.36, 6.22, 5.70,
5.95, 3.38, 0.92, 5.33, 5.54, 2.74, 0.95,
5.02, 4.96, 4.63, 3.93, 2.01, 4.88, 3.99,
4.66, 4.42, 0.49, 3.26, 4.30, 4.18, 3.96,
3.86, 3.38, 2.19, 3.73, 2.47, 3.57, 2.40,
2.57, 2.30)
status=c (¢, O0, 1, 1, 1, 1, 1 o0, 1, 1, O, 1, 1, O
0, i, 0, 1, 1, 1, 1 0O, 1, 1, O, 1, 1, 1
1, i, 1, o0, O, 21, O0 1, 1, O, O, O, O, O
o, o, O, 1, O, 0, 0 O, 1, O, 0O, O, 0O, O
0, i, 1, o0, O, O, O 1, O, O, 1, O, O, O
0 o, 1, o, 0, 0, 2 0, O, O, O, O, O, O

dat=data.frame(time=time, status=status)
S1ZE=function(delta, ta, tf, alpha, beta, data)
{
tau=tf+ta
z0=gnorm(1-alpha)
z1=gnorm(1l-beta)
HiHHHH Fit KM curve ##HHHHHIHHE
surv=Surv(time, status)
FitkM<- survfit(surv ~ 1, data = dat)
pO<-c(1l, summary(FitkKM)$surv) # KM survival probability ###
t0<-c(0, summary(FitkKM)$time) # ordered failure times ###
outkM<-data. frame(t0=t0,p0O=p0)
KM<-function(t){
t0=outkKM$t0; pO=outKM$pO; k=length(t0)
if (>=t0[k] |] t<0) {ans<-0}
for (i in 1:(k-1)){
if (t>=tO[i1] & t<tO[i+1]) {SO=pO[il}}
return(S0)}
HpH Fit Weibull curve ####HH#HH#H
FitWB=survreg(formula=surv~1, dist="“weibull”)
scale=as.numeric(exp(fitWB$coeff))
shape=1/fitWB$scale
wB=Ffunction(t){
kappa=shape; lambdaO=1/scale”kappa
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SO0 = exp(-lambdaO*t"kappa); return(S0)}
#iHH#HHE Fit spline curve ##HHHH#AH
0)‘fitSP:oIdlogspline(time[status == 1], time[status == 0], lbound =
SP=function(t) {SO=1-poldlogspline(t, FitSP); return(SO)}
Hit#H## sample size calculation #####H
SO=function(t){WB(t)}
S1=function(t){WB(t) delta}
pO=1-integrate(SO, tf, tau)$value/ta
pl=1-integrate(S1l, tf, tau)$value/ta
PWB=(p0+pl)/2
SO=function(t){SP(t)}
S1=Ffunction(t){SP(t) "delta}
pO=1-integrate(S0, tf, tau)$value/ta
pl=1-integrate(S1, tf, tau)$value/ta
PSP=(p0+pl)/2
SO=function(t){KM(t)}
Sl=Ffunction(t){KM(t) delta}
p0=1-(SO(tF)+4*S0(0.5*ta+tf)+SO0(ta+tf))/6
pl=1-(S1(tF)+4*S1(0.5*ta+tfF)+S1(ta+tf))/6
PKM=(p0+pl)/2

d0=(z0+z1)"2/1og(delta)"2 # number of events formula(3)

nWB=cei ling(d0/PWB) # sample size formula (4) under
Weibull model

nSP=ceiling(d0/PSP) # sample size formula(4) under
spine curve

nKM=cei l ing(d0/PKM) # sample size formula (4)under KM
curve

d=ceiling(d0O)
ans=list(c(d=d, nWB=nWB, nSP=nSP, nKM=nKM))
return(ans)

}

#i## 80% power #HHHH

SIZE(delta=0.58, ta=8, tf=3, alpha=0.05, beta=0.2, data=dat)
d nWB nSP nKM

21 63 63 63

#H## 90% power #HHH#HE

S1ZE(delta=0.58, ta=8, tf=3, alpha=0.05, beta=0.1, data=dat)
d nWB nSP nKM

29 88 87 88
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Figure 1.

Step functions are the Kaplan-Meier survival curve and its 95% confidence boundaries.
Solid and dark solid curves are the fitted Weibull and spline survival distributions,
respectively.
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