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Abstract

For designing single-arm phase II trials with time-to-event endpoints, a sample size formula is 

derived for the modified one-sample log-rank test under the proportional hazards model. The 

derived formula enables new methods for designing trials that allow a flexible choice of the 

underlying survival distribution. Simulation results showed that the proposed formula provides an 

accurate estimation of sample size. The sample size calculation has been implemented in an R 

function for the purpose of trial design.
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1 Introduction

A time-to-event endpoint, such as event-free survival or overall survival, is often the primary 

endpoint for cancer clinical trials. In pediatric oncology, single-arm phase II trials with time-

to-event endpoints are often conducted with limited numbers of patients. Various statistical 

methods have been proposed for designing randomized phase III trials with time-to-event 

endpoints (e.g., by George and Desu, 1977; Lachin, 1981; Rubenstein et al., 1981; 

Schoenfeld, 1983; Lakatos, 1988; Barthel et al. 2006; and many others). However, the 

literature on designing single-arm phase II trials with time-to-event endpoints is relatively 

scarce. The current practice for designing such trials is limited to using a parametric 

maximum likelihood test under the exponential model or a naive approach based on 

dichotomizing the event time at a landmark time point (Owzar and Jung, 2008). Trial design 

under the exponential model may not be reliable and the naive approach is inefficient.

Recently, Kwak and Jung (2014) proposed a two-stage phase II survival trial design using 

the one-sample log-rank test (OSLRT) (Breslow, 1975; Woolson, 1981; and Finkelstein et 

al., 2003). However, simulation results showed that Kwak and Jung’s design is conservative 

and underpowered. To correct the power and conservativeness of the OSLRT, Wu (2015) 

proposed a modified one-sample log-rank test (MOSLRT) for single-arm phase II survival 

trial designs. The MOSLRT preserves the type I error well and provides adequate power for 

trial design for a class of common parametric survival distributions. However, all the 

parametric survival distributions make strong assumptions about the shape of the hazard 
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functions and are difficult to validate for historical data. In this paper, formulae for the 

number of events and sample size are derived under the proportional hazards model. The 

derived formula for the number of events is an analog version of the Schoenfeld formula for 

a two-arm randomized phase III trial using the two-sample log-rank test (Schoenfeld, 1983). 

Trial design based on the proposed sample size formula offers great flexibility in choosing of 

the underlying survival distribution, which could be a parametric survival distribution, a non-

parametric Kaplan-Meier curve, or a spline version of the survival distribution (Kooperberg 

and Stone, 1992; Bantis et al., 2012; Anderson et al., 2013).

The rest of the paper is organized as follows. The MOSLRT is introduced in section 2. The 

formulae for the number of events and sample size are derived in section 3. Parameter 

setting for trial design is discussed in section 4. Simulations are conducted to study the 

performance of the proposed methods in section 5. An example is given in section 6 to 

illustrate the single-arm phase II survival trial designs. Concluding remarks are made in 

section 7.

2 Test Statistics

Let S0(t) denote the survival function under the null hypothesis that is chosen for a single-

arm phase II trial design. Let S(t) denote the survival function of the experimental treatment. 

Consider the following proportional hazards model:

(1)

where δ(> 0) is the hazard ratio. The hypothesis of improvement in survival with the 

experimental treatment is

(2)

Testing this hypothesis is equivalent to testing the difference between the survival 

distributions with the experimental treatment and under the null hypothesis. Thus, the 

OSLRT can be used. However, the OSLRT is conservative, as shown by Kwak and Jung 

(2014); Sun et al. (2010); and Wu (2015). Recently, Wu (2015) proposed a MOSLRT that 

preserves the type I error well and provides adequate power for study design. To introduce 

the MOSLRT, assume that during the accrual phase of the trial, n subjects are enrolled in the 

study. Let Ti and Ci denote the event time and censoring time, respectively, of the ith subject. 

We assume that the event time Ti and censoring time Ci are independent and that {Ti, Ci, i = 

1, …, n} are independent and identically distributed. Then, the observed event time and 

event indicator are Xi = Ti ∧Ci and Δi = I(Ti ≤ Ci), respectively, for the ith subject. On the 

basis of the observed data {Xi, Δi, i = 1,…, n}, we define  as the observed 

number of events and  as the expected number of events (asymptotically), 

where Λ0(t) = − log S0(t) is the cumulative hazard function under the null hypothesis. Then, 

the MOSLRT is defined by
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To study the asymptotic distribution, we formulate it using counting-process notation. 

Specifically, let Ni(t) = ΔiI{Xi ≤ t} and Yi(t) = I{Xi ≥ t} be the failure and at-risk processes, 

respectively, then

Thus, the counting-process formulation of the MOSLRT is given by , where

and

Under the null hypothesis H0, by the strong law of large numbers,  and 

, where G(t) is the 

survival distribution of the censoring time C. Then, 

, and  (Wu, 2015). Therefore, by the 

counting process central limit theorem (Fleming and Harrington, 1991), L is asymptotically 

standard normal distributed. Hence, we reject the null hypothesis H0 with one-sided type I 

error α if , where z1−α is the 100(1 − α) percentile of the standard normal 

distribution.

3 Sample Size Formulae

Traditionally, sample size is often derived under the fixed alternative. However, when the 

asymptotic distribution of the test statistics is difficult to derive under the fixed alternative, 

contiguous alternatives (Lin et al., 1999) can also be considered by assuming that the 

alternative value of the testing parameter decreases to the null value at the rate of n−1/2, 

where n is the sample size. For example, under the proportional hazard model, the null 

hypothesis of interest is H0 : γ = 0 and the fixed alternative hypothesis of interest is H1 : γ = 

γ1, where γ = − log(δ) is the negative hazard ratio and γ1 > 0. The contiguous alternatives 

of interest are , which converges to the null hypothesis H0 : γ = 0 as 

sample size n goes to infinity. Here, we will first derive a formula for the number of events 

under the contiguous alternatives. The proportional hazard model (1) is equivalent to λ(t) = 
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e−γλ0(t), where λ0(t) and λ(t) are the hazard functions under the null hypothesis and the 

experimental treatment, and γ = − log(δ) > 0. To derive the formula, we consider a sequence 

of contiguous alternatives , where b < ∞. Under the H1n, as shown in 

Appendix 1,  is approximately normal distributed with mean

and unit variance, where  is the probability of failure under the null hypothesis, 

which can be shown as

Therefore, the study power 1 − β under the contiguous alternatives H1n satisfies the 

following:

Thus, d = np0, the expected number of events under the null hypothesis, satisfies the 

equation

Solving for d, we obtain

(3)

which gives the expected number of events under the null hypothesis. To calculate the 

sample size of the trial, let p1 be the probability of failure under the alternative, which is 

given by

where S1(t) = [S0(t)]δ and Λ1(t) = δΛ0(t). Then, the required sample size for the trial is 

given by d1/p1, where d1 is the number of events under the alternative. However, we don’t 

know for the d1, and we have only derived number of events d under the null hypothesis. 

The d/p0 is the sample size under the null which underestimates the sample size required 

under the alternative, where p0 is the probability of failure under the null. As d/p1 > d1/p1, 

thus, d/p1 overestimates the required sample size. Let P be the average probabilities of 

failure under the null and alternative, that is
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then, a reasonable estimate of the required sample size is n = d/P which can be calculated by

(4)

For the purpose of comparison, the sample size formula for the MOSLRT under the fixed 

alternative H1 (Wu, 2015) is also given as follows:

(5)

where ω = v1 − v0, , and , with v0, v1, 

v00, and v01 being given by the following equations:

4 Parameter Setting for Trial Design

For trial design using sample size formula (4), we first consider one of the following 

common parametric survival distributions: Weibull, gamma, Gompertz, log-normal, or log-

logistic. The design parameters of the underlying survival distribution S(t) under the null 

hypothesis can be set as follows. Let S(x) be the survival probability of S(t) at a landmark 

time point x, S0(x) be the level of S(x) at which investigators are no longer interested in the 

experimental treatment, and S1(x)(> S0(x)) be the level of S(x) at which investigators 

consider the experimental treatment is promising. Then the hypothesis of (2) is equivalent to 

the following hypothesis:
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and the trial is powered at the alternative S(x) = S1(x). Here, the shape parameter of the 

underlying survival distribution is assumed to be known from historical data. Thus, the scale 

parameter (Table 1) for each distribution can be determined by the value of S0(x), which is 

given as follows:

1. Weibull , with λ0 = − log S0(x)/xκ,

2.
Log-normal , with μ0 = log(x) − σΦ−1(1 − S0(x)),

3.
Gompertz , with θ0 = −γ log S0(x)/(eγx − 1),

4. Gamma S0(t) = 1 − Ik(λ0t), with ,

5. Log-logistic S0(t) = 1/(1 + λ0tp), with λ0 = (1/S0(x) − 1)/xp.

The hazard ratio can be calculated by

and the survival distribution under the alternative is given by S1(t) = [S0(t)]δ. To calculate 

the probabilities p0 and p1 for formula (4), we assume that subjects are recruited with a 

uniform distribution over the accrual period ta and followed for a period of tf and that no 

subject is lost to follow-up. Thus, the censoring distribution is a uniform distribution over [tf, 
ta + tf]. That is, the censoring survival distribution G(t) = 1 if t ≤ tf; = (ta + tf − t)/ta if tf ≤ t ≤ 

ta + tf; = 0 otherwise. Hence, the probabilities of failure p0 and p1 can be calculated by the 

following integration:

where S1(t) = [S0(t)]δ. If S0(t) is a spline version of the survival distribution, then pi can also 

be calculated by numerical integration. If S0(t) is a Kaplan-Meier curve, then pi can be 

calculated numerically using Simpson’s rule as follows:

The proposed sample size formula can also incorporate lost to follow-up in the sample size 

calculation. For example, let C1 be the loss to follow-up time and C2 be the administrative 

censoring time, then the overall censoring time is C = C1 ∧ C2, where C1 and C2 are 

independent. Thus, the overall censoring distribution is G(t) = P(C > t) = P(C1 > t)P(C2 > t) 
= G1(t)G2(t). It is often assumed that the loss to follow-up distribution is an exponential 

G1(t) = e−ηt, and administrative censoring distribution G2(t) is uniform. Therefore the 

sample size formula (4) can be calculated by numerical integrations. For non-uniform 

accrual, once the accrual distribution is specified, the sample size can be calculated as well.
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5 Simulation studies

We first investigated whether formula (4) would give an accurate sample size estimation. We 

calculated sample sizes under various hazard ratios δ = 1.2−1–2.0−1, with powers of 80%, 

85%, and 90% and a type I error of 5%. The accuracy was assessed by simulations 

performed under the Weibull distribution. The Weibull shape parameter κ was set to 0.5, 1 

and 2 to reflect a decreasing, constant and increasing hazard function, and the median 

survival time under the null was set to m0 = 1. We assumed that subjects were recruited with 

a uniform distribution over the accrual period ta = 3 (years) and followed for tf = 1 (year) 

and that no subject was lost to follow-up; that is, only administrative censoring was 

considered in the trial. Under these assumptions, the number of events and sample sizes 

were calculated, and empirical powers and type I errors were estimated based on 100,000 

simulation runs (Table 2). All simulated empirical powers and type I errors were close to the 

nominal levels. Additional sample size calculations were conducted under the Weibull model 

for various combinations of accrual period ta, follow-up time tf and landmark time point x 
for survival probability S0(x) under null which varies from 0.2 to 0.7 and a 10% increasing 

survival probability S1(x) under alternative to mimic a variety of real trial design. Detail for 

the set up of the design parameters were given in Table 2. Simulations were conducted to 

estimate the empirical type I error and power for the corresponding sample size based on 

100,000 runs. The empirical type I errors and powers were close to the nominal levels for all 

scenarios. Thus, the formula (4) did provide an accurate estimation of the sample size for 

trial design.

Next, we conducted simulations to compare the sample size formulae (4) and (5). In 

simulations, the survival distributions were taken as Weibull, gamma, Gompertz, log-normal 

and log-logistic (Table 1). The parameters of the survival distribution under the null were set 

as follows: the shape parameter of each distribution was set to 0.5, 1, and 2; the survival 

probabilities at a landmark time point x = 2 under the null were set to S0(x) = 0.2 – 0.7 and 

under the alternative were set to S1(x) = 0.35 – 0.8, with same accrual and censoring 

distributions as before. Given a nominal type I error of 5% and power of 80%, the required 

sample sizes based on formulae (4) and (5) were calculated for each design scenario. For 

each calculated sample size, 100,000 random samples were generated from the 

corresponding distribution to estimate the empirical type I error and power (Tables 3 and 4). 

The simulation results showed that the empirical powers were close to the nominal level of 

80% for all scenarios. Thus, sample size formulae (4) and (5) both gave an accurate 

estimation of sample size. The results also showed that the sample sizes calculated by 

formula (4) under the contiguous alternatives (Table 3) were almost identical to that 

calculated by formula (5) under the fixed alternative (Table 4). Furthermore, the MOSLRT 

controlled the type I error well when the survival probability under the null was low (S0(x) < 

0.5) and was slightly more liberal when the survival probability under the null (S0(x) ≥ 0.5) 

was high.

6 Example

Between January 1974 and May 1984, the Mayo Clinic conducted a double-blind 

randomized trial on treating primary biliary cirrhosis of the liver (PBC), comparing the drug 
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D-penicillamine (DPCA) with a placebo (Fleming and Harrington, 1991). PBC is a rare but 

fatal chronic liver disease of unknown cause, with a prevalence of approximately 50 cases 

per million in the population. The primary pathologic event appears to be the destruction of 

the interlobular bile ducts, which may be mediated by immunologic mechanisms. Of 158 

patients treated with DPCA, 65 died. The median survival time was 9 years. Suppose an 

experimental treatment is now available and investigators wish to design a new trial using 

the Mayo Clinic patients treated with DPCA as the historical data with which to formulate 

the hypothesis. The survival distribution of the DPCA data is estimated by a Kaplan-Meier 

curve, a spline version of the survival distribution, which is fitted by using the R function 

oldlogspline, and the Weibull distribution, which is fitted by using the R function survreg 
with the estimated shape parameter κ = 1.22 (Figure 1). Both the spline and Weibull 

distributions are fitted well and are close to the Kaplan-Meier curve. The 5-year survival 

probability estimate from the Kaplan-Meier curve is 71%. Thus, for the trial design, S0(5) = 

71% is the 5-year survival probability at which investigators are no longer interested in the 

experimental treatment, and S1(5) = 82% is the 5-year survival probability at which 

investigators consider the experimental treatment to be promising. Then, the hazard ratio is δ 
= log(0.82) / log(0.71) = 0.58. To calculate the sample size, we assume a uniform accrual 

with an accrual period ta = 8 years and a follow-up period tf = 3 years, with no patient being 

lost to follow-up. Thus, given a type I error of α = 5% and power of 1−β = 80%, the 

required sample sizes calculated using the R function SIZE (Appendix 2) are 63, 63, and 63 

under the Weibull, spline and Kaplan-Meier curve, respectively. With a power of 90%, the 

required sample sizes are 88, 87 and 88 under the Weibull, spline and Kaplan-Meier curve, 

respectively. Sample size calculations under the spline distribution and Kaplan-Meier curve 

make no assumption regarding the underlying survival distribution. Thus, this approach 

takes advantage of possible misspecification by using a parametric survival distribution for 

the trial design.

7 Conclusion

In this paper, formulae for the number of events and sample size for a single-arm phase II 

survival trial are derived for the MOSLRT under the proportional hazards model. The new 

sample size formula is simple and easy to compute. The simulation results show that the 

proposed formula provides an accurate estimation of sample size for trial design. The sample 

size calculation using the new formula is extended to a class of flexible survival 

distributions, including a Kaplan-Meier curve or a spline version of the survival distribution, 

and has been implemented in the R function SIZE for trial design.
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Appendix 1: Derivation of the asymptotic distribution for the MOSLRT

The methods used to derive the asymptotic distribution of the MOSLRT under the 

contiguous alternative are similar to the derivation of the two-sample log-rank test (Fleming 

and Harrington, 1991).

Consider a sequence of contiguous alternatives H1n : λ1n(t) = e−γ1nλ0(t), where γ1n is a 

sequence of positive constants satisfying n1/2γ1n = b < ∞. Then, the weighted one-sample 

log-rank score W is given by

where wn(t) is a weight function convergence to w(t) as n → ∞. If we further define a 

sequence of martingale by

and let

then we have

It is easy to show that

and

As
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where π(t) = P(X ≥ t), we have where

where

Therefore,

By the martingale central limit theorem (Fleming and Harrington, 1991), W is approximate 

normal with mean −bV and variance V. When w(t) = 1, the variance V reduces to

Hence,

By the dominated convergence theorem, . Finally, by 

Slutsky’s theorem, it follows that

Appendix 2: R code for the sample size calculation under the Weibull 

distribution, spline distribution, and Kaplan-Meier curve

library (survival)

library (polspline)

time=c (1.10, 12.33, 2.77, 5.27, 6.58, 9.82, 0.36, 11.59, 1.84, 11.18, 10.78, 0.61,

6.29, 12.24, 3.70, 12.48, 6.18, 7.12, 6.54, 2.74, 3.93, 3.73, 8.99, 12.22,

6.09, 11.96, 10.94, 11.48, 11.07, 3.21, 9.47, 5.01, 3.26, 0.19, 4.63, 10.16,

6.96, 9.79, 11.10, 4.54, 0.54, 4.77, 7.37, 1.06, 10.72, 2.05, 10.55, 10.47,

8.49, 8.45, 8.83, 7.08, 5.77, 6.44, 2.68, 9.14, 2.97, 6.27, 1.41, 5.57,
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9.03, 2.66, 8.41, 2.26, 2.84, 8.87, 8.07, 8.63, 8.49, 8.19, 3.55, 8.38,

8.36, 8.21, 2.09, 7.86, 3.16, 7.84, 0.38, 6.78, 5.63, 2.95, 4.61, 7.38,

7.05, 7.28, 7.24, 4.09, 7.07, 7.00, 7.00, 6.92, 4.32, 6.39, 6.86, 6.69,

6.71, 6.38, 6.47, 6.48, 4.36, 6.22, 5.70, 6.18, 5.95, 2.48, 5.97, 5.94,

5.95, 3.38, 0.92, 5.33, 5.54, 2.74, 0.95, 5.35, 5.29, 5.23, 5.16, 1.90,

5.02, 4.96, 4.63, 3.93, 2.01, 4.88, 3.99, 4.85, 4.84, 2.02, 4.66, 4.42,

4.66, 4.42, 0.49, 3.26, 4.30, 4.18, 3.96, 3.70, 4.06, 3.87, 0.11, 3.84,

3.86, 3.38, 2.19, 3.73, 2.47, 3.57, 2.40, 1.46, 3.54, 3.48, 3.37, 3.16,

2.57, 2.30)

status=c (1, 0, 1, 1, 1, 1, 1 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1,

0, 1, 0, 1, 1, 1, 1 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0,

1, 1, 1, 0, 0, 1, 0 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0,

0, 0, 0, 1, 0, 0, 0 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0,

0, 1, 1, 0, 0, 0, 0 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,

0, 0, 1, 0, 0, 0, 1 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

dat=data.frame(time=time, status=status)

SIZE=function(delta, ta, tf, alpha, beta, data)

{

 tau=tf+ta

 z0=qnorm(1-alpha)

 z1=qnorm(1-beta)

 ######### fit KM curve #############

 surv=Surv(time, status)

 fitKM<- survfit(surv ~ 1, data = dat)

 p0<-c(1, summary(fitKM)$surv) # KM survival probability ###

 t0<-c(0, summary(fitKM)$time) # ordered failure times ###

 outKM<-data.frame(t0=t0,p0=p0)

 KM<-function(t){

  t0=outKM$t0; p0=outKM$p0; k=length(t0)

  if (t>=t0[k] || t<0) {ans<-0}

  for (i in 1:(k-1)){

   if (t>=t0[i] & t<t0[i+1]) {S0=p0[i]}}

 return(S0)}

 ######### fit Weibull curve ###########

 fitWB=survreg(formula=surv~1, dist=“weibull”)

 scale=as.numeric(exp(fitWB$coeff))

 shape=1/fitWB$scale

 WB=function(t){

  kappa=shape; lambda0=1/scaleˆkappa

Wu Page 11

Stat Biopharm Res. Author manuscript; available in PMC 2017 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



  S0 = exp(-lambda0*tˆkappa); return(S0)}

 ######## fit spline curve ##########

 fitSP=oldlogspline(time[status == 1], time[status == 0], lbound = 
0)

 SP=function(t) {S0=1-poldlogspline(t, fitSP); return(S0)}

 ####### sample size calculation #####

 S0=function(t){WB(t)}

 S1=function(t){WB(t)ˆdelta}

 p0=1-integrate(S0, tf, tau)$value/ta

 p1=1-integrate(S1, tf, tau)$value/ta

 PWB=(p0+p1)/2

 S0=function(t){SP(t)}

 S1=function(t){SP(t)ˆdelta}

 p0=1-integrate(S0, tf, tau)$value/ta

 p1=1-integrate(S1, tf, tau)$value/ta

 PSP=(p0+p1)/2

 S0=function(t){KM(t)}

 S1=function(t){KM(t)ˆdelta}

 p0=1-(S0(tf)+4*S0(0.5*ta+tf)+S0(ta+tf))/6

 p1=1-(S1(tf)+4*S1(0.5*ta+tf)+S1(ta+tf))/6

 PKM=(p0+p1)/2

 d0=(z0+z1)ˆ2/log(delta)ˆ2 # number of events formula (3)

 nWB=ceiling(d0/PWB) # sample size formula (4) under 
Weibull model

 nSP=ceiling(d0/PSP) # sample size formula (4) under 
spine curve

 nKM=ceiling(d0/PKM) # sample size formula (4) under KM 
curve

 d=ceiling(d0)

 ans=list(c(d=d, nWB=nWB, nSP=nSP, nKM=nKM))

 return(ans)

}

#### 80% power ####

SIZE(delta=0.58, ta=8, tf=3, alpha=0.05, beta=0.2, data=dat)

 d nWB nSP nKM

21 63 63 63

#### 90% power ####

SIZE(delta=0.58, ta=8, tf=3, alpha=0.05, beta=0.1, data=dat)

 d nWB nSP nKM

29 88 87 88
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Figure 1. 
Step functions are the Kaplan-Meier survival curve and its 95% confidence boundaries. 

Solid and dark solid curves are the fitted Weibull and spline survival distributions, 

respectively.
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