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The architecture of wheat (Triticum aestivum) inflorescence and its complexity is among the most important agronomic traits that
influence yield. For example, wheat spikes vary considerably in the number of spikelets, which are specialized reproductive
branches, and the number of florets, which are spikelet branches that produce seeds. The large and repetitive nature of the three
homologous and highly similar subgenomes of wheat has impeded attempts at using genetic approaches to uncover beneficial
alleles that can be utilized for yield improvement. Using a population-associative transcriptomic approach, we analyzed the
transcriptomes of developing spikes in 90 wheat lines comprising 74 landrace and 16 elite varieties and correlated expression
with variations in spike complexity traits. In combination with coexpression network analysis, we inferred the identities of genes
related to spike complexity. Importantly, further experimental studies identified regulatory genes whose expression is associated
with and influences spike complexity. The associative transcriptomic approach utilized in this study allows rapid identification
of the genetic basis of important agronomic traits in crops with complex genomes.

Grains of cereal crops provide a major source of hu-
man diet and nutrition. Improving grain yield is a pri-
mary objective during crop domestication and a major
goal of crop-breeding programs. Inflorescence (spike)
architecture dictates the capacity for seed production in
cereal crops, including wheat (Triticum aestivum), the
world’s most widely grown cereal. In the archetypal
bread wheat spike, the inflorescence meristem forms a

limited number of lateral spikelet meristems (SMs) per
rachis node, and a single terminal SM at the distal end.
Each SM is indeterminate and typically produces two
to four fertile florets that produce seeds (Fig. 1A;
Supplemental Fig. S1; Bonnett, 1936; Fisher, 1973). Like
maize (Zea mays) and rice (Oryza sativa), wheat yield per
plant largely depends on the number of florets per spike
and thus spike architecture. The numbers of SMs (and
rachises) and florets per spikelet are major target traits
for efforts aimed at improving wheat yield. In addition,
the number of SMs per rachis may be increased to in-
crease floret number, as in rare supernumerary spikelet
variations.

In rice, maize, and barley (Hordeum vulgare), multiple
genes regulating spike development have been iden-
tified (Sreenivasulu and Schnurbusch, 2012; Tanaka
et al., 2013). However, our understanding of wheat
spike development remains rudimentary at the molec-
ular level. In wheat, increased transcription levels of Q,
an AP2-like gene, was markedly associated with spike
compactness, suggesting that the Q gene may be im-
plicated in spike development (Simons et al., 2006), al-
though its role in spike complexity remains unclear.
Feng et al. (2017) reported that a durum wheat
ARGONAUTE1d gene mutant produced shorter spikes
and fewer grains per spike than wild-type controls. In
addition, recent studies have shown the mechanisms
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underlying the genetic regulation of rare supernumer-
ary spikelet variations. For example, wheat Photoperiod1
(Ppd1) was identified as a regulator of paired spikelet
formation (Boden et al., 2015). When Ppd1 is mutated, a
secondary spikelet initiates immediately below a typi-
cal single spikelet in the same rachis node, thus forming
a rare supernumerary spikelet variation. In another
type of variation, one or more spikelets are replaced by
long lateral branches, which form their own spikelets
and florets. Mutations of the WFZP-A/BHt-A1 gene,
encoding an AP2/ERF transcription factor, lead to such
noncanonical spike branching (Derbyshire and Byrne,
2013; Dobrovolskaya et al., 2015; Poursarebani et al.,
2015), which is similar to the branching produced by
mutating its orthologs in maize, rice, and Brachypodium
distachyon (Chuck et al., 2002; Komatsu et al., 2003).
Although these recent breakthroughs shed light on the
molecular mechanisms underlying rare supernumerary

spikelet variations, little is known about genetic factors
affecting the architecture of archetypal wheat spike, its
complexity, and grain yield.

The allohexaploid common bread wheat genome is
approximately 17 gigabases in size and consists of three
sets of subgenomes (A, B, and D) derived from closely
related species. An enormous amount of genomic se-
quencing has been performed to build a reference se-
quence for wheat (Brenchley et al., 2012; International
Wheat Genome Sequencing Consortium, 2014), which
enhanced our understanding of the wheat genome
significantly. Nevertheless, the genetic complexity as-
sociated with wheat hampers map-based cloning and
genome-wide association studies (GWAS). Although
GWAS has been applied to wheat (for example, Guo
et al., 2017; Maccaferri et al., 2015; Sun et al., 2017), it
remains highly challenging to pinpoint causal genes
within identified genetic loci by a GWAS approach.

Figure 1. Spike complexity of 90 selected varieties from the Chinese mini core collection. A, Schematic diagram of main spike
development in wheat. See Supplemental Figure S1 for scanning election micrographs. B, Geographical distribution of 90 se-
lected winter wheat varieties in China. C, Scatter plot of spikelet number per spike against floret number per spike. D, Scatter plot
of floret number per spike against seed number per spike. E to G, Scatter plot of average spikelet (B), floret (C), and seed (D)
number per main spike from 2014 against the corresponding values from 2015. Each color denotes one variety, and the shape
denotes the replicate. The gray line represents the regression trend calculated by the general linear model of each trait.
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With a long history of cultivation and artificial se-
lection in diverse ecological zones, common wheat in
China has a rich genetic diversity (He et al., 2001). A
mini core collection of 231 Chinese wheat varieties,
which is estimated to represent approximately 70% of
the genetic diversity of the 23,090 varieties (Hao et al.,
2008), widely used germplasm for wheat breeding in
China. Based on geographical regions and allelic di-
versity previously reported by Hao et al. (2011), we
selected 90 winter wheat varieties from 142 winter va-
rieties within the mini core collection, including
74 landraces and 16 elite varieties (Fig. 1B; Supplemental
Table S1), for transcriptome association analysis (Harper
et al., 2012). By quantitatively correlating trait variation
with variation in gene expression, we aimed to identify
the gene regulatory networks underlying the develop-
ment of spike architecture.

RESULTS

Variation in Spike Complexity among Mini Core
Collection Varieties

We planted 90 wheat varieties at the same experi-
mental site for 2 years with three replications. At least
60 seeds per variety per year were planted within each
replication. We found that the 90 varieties have flow-
ered at slightly different times (;3 d). For each year,
spikes were hand dissected from the main shoots of
each variety at the same double ridge stage, when
spikelet primordia occur between bract primordia at
the middle part of the spike, after which we extracted
mRNA for transcriptome sequencing. At the double-
ridge stage, SMs have emerged to produce spikelets
(Bonnett, 1936). In addition, florets are growing out
from spikelets in the middle section, whereas new SMs
are still being produced at the distal end at this stage
(Fig. 1A; Supplemental Fig. S1). We also counted the
number of spikelets, number of florets per spike, and
number of seeds per spike 20 d after flowering
(Supplemental Tables S2–S4). We observed positive
correlations among the number of spikelets, florets per
spike, and seeds per spike across the 90 selected wheat
varieties (Fig. 1, C andD). This finding indicates that the
number of spikelets, which is determined during early
spike development, mainly controls the numbers of
florets and grains per spike. Additionally, the number
of spikelets and florets across the two planting years
showed significantly high correlations (R = 0.864 and
0.963, P = 6.5e-82 and 5.0e-154, respectively), while a
moderate correlation (R = 0.566, P value = 3.1e-24) was
observed for the number of seeds, indicating that the latter
trait is more influenced by the environment (Fig. 1, E–G).

Spike Transcriptome Variation among Varieties

The RNA-seq reads for double-ridge stage spikes
were mapped to the IWGSC genome survey sequence
(International Wheat Genome Sequencing Consortium,

2014). On average, 17.5 million read pairs per variety
sample were uniquely mapped to the genome (Fig. 2A;
Supplemental Tables 5 and 6). Saturation analysis
showed that the relative transcript abundance quanti-
fication error dropped below 5% when the resampling
size was increased to 50%, indicating that the se-
quencing depth was adequate (Supplemental Fig. S2).
Using a criterion of kilobases per million reads (RPKM)
value $1 for gene expression, 58,494 of 100,344 anno-
tated wheat genes were expressed in at least one vari-
ety, whereas 30,638 annotated wheat genes were
expressed across all varieties (Fig. 2B; Supplemental
Table S7). In addition, the number of transcripts de-
rived from each subgenome was roughly equal (19,162
[32.8%] from subgenome A, 19,629 [33.7%] from sub-
genome B, and 19,703 [33.6%] from subgenome D;
Supplemental Tables 8 and 9).

Next, we identified subgenomic homeologs by con-
sidering both nucleotide homology (70% similarity)
and chromosomal linearity, after which we categorized
the 58,494 genes that were expressed in at least one
variety into 24,230 homeologous groups (HGs) by fol-
lowing the method described by Pfeifer et al. (2014).
Approximately 75% of the expressed genes were cate-
gorized into HGs containing at least two subgenomic
counterparts (Fig. 2C; Supplemental Table S10), with
18,180 (41.5%) genes categorized into HGs containing
three subgenomic homeologs (ABD type), 14,952
(31.1%) genes categorized into HGs containing two
homeologs (AD, AB, or BD types), and 10,694 (24.4%)
subgenome-unique genes (A, B, or D types). Among the
three types of HGs, the ABD group has the highest
proportion (approximately 80%) of expressed genes
across the selected varieties, while the expressed pro-
portions in the AB, BD, and AD groups range from 70%
to 73% and the subgenome-unique genes have the
lowest proportion of expressed genes (Fig. 2D). Based
on the alignment of RNA-seq reads against the refer-
ence genomes, we identified 1,764,048 single nucleotide
polymorphisms (SNPs) with minor allele frequency
$3% and 236,849 indels in wheat transcripts (see
“Materials and Methods”). A similarity was observed
between structures of phylogenetic trees based on exonic
SNPs and simple sequence repeat markers, respectively
(Fig. 2E; Hao et al., 2011).

Transcriptome Association with Spike Complexity

Further, we performed a transcriptome association
analysis to correlate gene expression signatures (GESs)
with trait variation. To summarize the observed spike
trait values from three replicates of each variety over
2 years, we used the best linear unbiased estimation
method, in which the variety setting was set as a fixed
effect, whereas both year and the interaction be-
tween year and variety were set as random effects
(Supplemental Tables 2–4). Next, we correlated gene
expression levels with spike complexity traits across
90 varieties using Spearman’s correlation coefficient.

748 Plant Physiol. Vol. 175, 2017

Wang et al.

http://www.plantphysiol.org/cgi/content/full/pp.17.00694/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00694/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00694/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00694/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00694/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00694/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00694/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00694/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00694/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00694/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00694/DC1


The expression levels of 1538 genes were significantly
correlated (false discovery rate [FDR] # 0.05) with the
number of spikelets per spike, whereas the expression
levels of 105 genes were significantly correlated (FDR#
0.05) with the number of florets per spike. No gene
showed expression correlation with the number of
seeds per spike (Supplemental Table S11). In addition,
correlation strength varied among the three studied
traits. Spikelet number showed the strongest correlations
with gene expression levels, followed by floret number
and seed number per spike, as illustrated by the distri-
bution of correlation significance for genes along each
chromosome (Fig. 3A; Supplemental Fig. S3). As we
sampled RNAs from spikes at the double-ridge stage,
our data mainly reflect gene expression during spikelet
formation, but not during seed development. Thus, the
observation that the number of spikelets per spike
showed the strongest correlation with expression levels
was consistent with our experimental design. The find-
ing that few GESs were correlated with the number of
florets per spike or number of seeds per spike indicates
that the transcriptomic context may have dramatically
changed during the progression from spikelet initiation
to floret initiation and seed formation.
To infer the functions of the 1,538 GESs found to be

correlated with the number of spikelets per spike, we
performed a Gene Ontology (GO) enrichment analysis
to identify GO categories significantly enriched with
GESs. The set of all expressed genes was used as the

background set. Interestingly, GESs that were positively
(754 GESs) and negatively (784 GESs) correlated with
the number of spikelets per spike showed enrichment
in distinct functional pathways. While the “fatty acid
beta-oxidation,” “DNA methylation,” and “phenol and
thiamin process” categories were enriched in positively
correlated GESs, the “transcription and epigenetic regu-
lation of development” and “energy storage processes”
(including “photosynthesis and glucose biosynthesis”
and “small molecule metabolic process”) categories were
enriched in negatively correlated GESs (Fig. 3B). This
pattern suggests a genome-wide transcriptional switch
involving up- and down-regulation of multiple molecu-
lar pathways during the process of spikelet initiation.

Correlations of Phenotypic, Genotypic, and
Transcriptomic Signatures

Based on the expression patterns of 1,538 GESs, we
calculated the Euclidean distance matrix and hierar-
chically clustered 90 wheat varieties into three distinct
sets by using the complete linkage method (Fig. 3C).
Interestingly, the three sets of varieties showed differ-
ent ranges of spikelet number per spike; wheat varieties
in sets 1 and 2 have the highest and lowest spikelet
numbers, respectively, while those in set 3 have a
spikelet number average to that of sets 1 and 2 (Fig. 3D).
This pattern strongly suggests that transcriptomic

Figure 2. Transcriptome analysis of 90 selected wheat varieties. A, Percentages of read pairs aligned to the reference genome
sequence. B, The three subgenomes contribute roughly equal proportions of transcripts to the whole transcriptome. C, Proportion
of genes classified to each type of HG. HGs were categorized based on the number of homeologous copies from the three
subgenomes. D, Box plot of the expression ratios of different types of HGs. E, Phylogenetic tree of 90 selectedwheat varieties. The
branches labeled byorange belongs to variety set 1, whichwas grouped by expression pattern of GESs, and the purple ones belong
to set 2. See Figure 3C for details.
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signatures are correlated with phenotypic quantity; this
relationship can be used to discover trait-related genes.

To assess the consistency between expression var-
iation and sequence variation, we combined tran-
scriptomic signature-based variety sets with the
transcript SNP-based phylogenetic tree (Fig. 2E). The
grouping pattern based on sequence variation was
partially correlated with that based on expression var-
iation. Varieties in sets 1 and 2 were grouped sepa-
rately, while the varieties in set 3 were spread between
sets 1 and 2. This clear association between transcrip-
tional patterns and spikelet number implies that a set of
major regulators of spike complexity can be identified
via transcriptome association analysis.

Correlation between GESs and Spikelet Number per Spike

Among the 1538 GESs described above, we per-
formed further analysis on a set of 230 wheat HGs

orthologous to rice genes related to panicle and grain
traits in spike development (Supplemental Table S12),
according to the rice OGRO database (Yamamoto et al.,
2012). Out of 230, 60 orthologous GESs showed statis-
tically significant negative correlation with the number
of spikelets, while 17 showed statistically significant
positive correlation with the number of spikelets (P ,
0.05; Fig. 4A; Supplemental Table S12). The greater
number of negatively correlated GESs in our results
suggests that a group of negative regulators may play
important roles in switching off pathways that may
positively influence spikelet number during spike
development.

To further screen for key regulatory genes, we per-
formed gene coexpression network (GCN) analysis
(Wisecaver et al., 2017). As homeologous genes among
the three subgenomes tend to show similar expression
patterns, this may introduce redundancy while calcu-
lating correlations. For this, we followed a previously

Figure 3. Transcriptome association anal-
ysis for spike complexity. A,Manhattanplot
of the association significance between
spike traits and gene expression abundance
alongchromosome3B. Thegray line shows
the genome-wide significance level (FDR
# 0.05). B, Function enrichment network
for GESs significantly associated with
spikelet quantity (FDR # 0.05). Enriched
GO terms for negatively correlated genes
are represented by nodeswith green edges,
and terms for positively correlated genes
are represented by nodes with blue edges.
C, The 1,538 GESs can be grouped into
three distinct sets based on expression
abundance. D, Box plot of the spikelet
numbers of the three sets ofwheat varieties.

750 Plant Physiol. Vol. 175, 2017

Wang et al.

http://www.plantphysiol.org/cgi/content/full/pp.17.00694/DC1
http://www.plantphysiol.org/cgi/content/full/pp.17.00694/DC1


published method in which the average expression
values of homeologs are used to perform GCN analysis
(Li et al., 2014; Pfeifer et al., 2014). First, we selected
7,945 genes with highly variable transcript abundance
across the 90 varieties selected for this study (squared
coefficient of variation [CV2]$ 0.25). A weighted GCN
was constructed using the WGCNA package for R
(Langfelder and Horvath, 2008), followed by decom-
position of the network into 16 subnetwork modules.
Eachmodule contains a set of genes showing significant
expression correlations with each other. An eigen value
was calculated to represent the overall expression trend
in each variety for each module. For each module, the
correlations between the eigen value and the number of
spikelets, florets, and seeds per spike were computed
across 90 varieties (Fig. 4B). Notably, module 9 exhibi-
ted a significantly negative correlation with all three
spike traits (P , 0.05), the strongest of which was with

the spikelet number per spike (Spearman’s rho test, R =
20.4, P = 5.0e-5; Fig. 4C). Therefore, module 9 may
harbor major regulators influencing the entire period of
spike development, and thus strongly influencing
wheat grain production.

Because transcription factors (TFs) are important di-
rect modulators of gene expression, we focused on TF-
encoding genes. Seven modules, which include 76.2%
(6,052 of 7,945) of highly variable HGs, were enriched in
TF-encoding genes (P # 0.5, hypergeometric test). This
observation suggests that TFs are involved in spike trait
variations. Among the 16 modules, module 9 has the
greatest degree of enrichment of TF-encoding genes
(12.9% TFs compared to 4.4% TFs genome-wide,
hypergeometric test, P = 6.4e-10; Supplemental Table
S13). The intriguing features of module 9 led us to focus
on this module for further analysis. Using a more
stringent cutoff of adjacency$ 0.02, we refined module
9 to obtain a core subnetwork of 125 HGs (Fig. 4C;
Supplemental Table S14). After manual curation, 32 of
125 (25.6%) core HGs were found to encode TFs, in-
cluding 13 MADS-box TFs, which have been reported
to be important regulators of floral development. In
addition, seven genes belonging to the cytochrome
P450 superfamily and three genes related to hormone
signaling or transport were contained in the refined
module.

Experimental Validation of Candidate Spike Regulators

The results of the transcriptome analysis, especially
the identified trait-correlated GESs, provide a rich re-
source of genes that could be important for efforts
aimed at improvingwheat grain production. As a proof
of concept, we selected 10 genes for experimental ver-
ification (Supplemental Figure S4A). Among which, six
genes have either expression significantly correlated
with spikelet number (P # 0.05), and/or present in
module 9 (Supplemental Table S14). In detail, TaPAP2,
WFZP, and TaLAX1 are found in both groups, TaRA3
and TaTFL1 are only correlated with spikelet number,
and TaVRS1 is only found in module 9. All these six
genes are annotated as development regulators by GO
and/or MapMan. We further selected four additional
genes (TaAPO1, TaLAX2, TaREV, and TaVT2) that are
annotated as development regulators but have no ex-
pression correlation with spike complexity for experi-
mental verification. As all candidates are HGs, we
selected the homeolog showing the strongest correla-
tion with spike traits for transgenic validation. We
overexpressed the selected wheat genes in KN199, an
elite hexaploid wheat variety with intermediate spike
complexity. For each gene, we obtained more than
45 independent transformants, which were subjected to
analysis of transgene expression levels and spike trait
phenotypes. Overexpression of three out of the 10 tested
genes significantly altered spike complexity. Over-
expression of TaTFL1-2D increased spike complexity,
while overexpression of TaPAP2-5A or TaVRS1-2B

Figure 4. Coexpression network analysis of GESs associated with
spikelet number. A, Distribution of Spearman’s correlations for wheat
genes homologous to rice genes previously reported as related to grain
traits. B, Correlation heat map between subnetwork modules and spike
traits. An eigen value of each module was computed by the WGCNA
package to assess correlations between overall expression trends and
spike traits. The color bar represents the scale of the Spearman’s cor-
relation. C, Network of the redmodule (module 9) showing a significant
negative correlation to all assessed spike traits.
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reduced spike complexity (Figs. 5A and 6, A and D).
Notably, all these genes have expression correlation
with spike complexity.

TaTFL1-2D, a member of positively correlated module
14, encodes a putative transcription cofactor sharing high
protein sequence homology with Arabidopsis TFL1, a
regulator of inflorescence meristem identity (Bradley
et al., 1997). We found that the TaTFL1-2D transgene
expression level was positively correlated with spikelet
number, floret number, and seed number per spike (Fig.
5, B and C; Supplemental Fig. S4B). Our analysis of spike
development in the transgenic lines indicated that the
double-ridge stage and the following floret stage were
significantly extended in TaTFL1-2D-overexpressing lines
(Fig. 5D). During the double-ridge stage, SMs emerge to
produce spikelets, while florets grow out from spikelets in
the middle section (Fig. 1A). During the floret stage, most
of theflorets initiate glumes and lemmas to completefloret
formation (Bonnett, 1936). The prolonged double ridge
and floret stages in the TaTFL1-2D-overexpressing lines
resulted in the formation of extra spikelets per spike and
thus more florets per spikelet (Fig. 5, E–L), which consid-
erably enhances spike complexity.

TaPAP2-5A and TaVRS1-2B, both contained in
module 9, encode a MADS family transcription factor

and a putative HD-ZIP family transcription factor, re-
spectively. TaPAP2-5A shares high protein sequence
homology with rice PAP2, an SM identity regulator
(Kobayashi et al., 2010). TaVRS1-2B shares high protein
sequence homology with barley Vrs1, a regulator of
spikelet development (Komatsuda et al., 2007). Over-
expressing either TaPAP2-5A or TaVRS1-2B reduced
the spikelet number, floret number, and seed number
per spike in a dosage-dependent manner (Fig. 6, A, B,
D, and E; Supplemental Fig. S5, D, E, G, and H). In
transgenic overexpressing lines, either TaPAP2-5A or
TaVRS1-2B reduces the lengths of the double ridge
stage, floret stage, stamen development stage, and anther
development stage (Fig. 6, C and F). As a result, these
transgenic plants develop spikes with fewer spikelets per
spike and florets per spike in comparison with control
lines transformed with empty vectors (Fig. 6, G–R).
Whereas overexpressing TaPAP2-5A inhibits SM forma-
tion, consistent with the function of its rice ortholog, the
effect of overexpressing TaVRS1-2B diverges from that of
overexpressing its barley ortholog Vrs1. Barley Vrs1 sup-
presses lateral spikelet development to form rudimentary
lateral spikelets (Komatsuda et al., 2007). In contrast,
wheat TaVRS1-2B inhibits SM formation, as we did not
detect rudimentary spikelets but found a reduced number

Figure 5. Functional validation of TaTFL1-2D
in the transgenic KN199 wheat line. A, Com-
parison of the spike complexity of KN199 and
T2 transgenic TaTFL1-2D wheat plants. Scale
bars, 1 cm. Positive correlation between
spikelet number (B) and floret number (C) per
main spike and TaTFL1 expression levels in T2
transgenic plants. D, Comparison of develop-
mental duration between KN199 and T4
transgenic TaTFL1-2D lines (OE1 and OE2) at
each stage. II, III, IV, and V indicate stage II,
stage III, stage IV, and stage V, respectively.
Data are the mean 6 SD of 30 plants for each
line. Student’s t test, *P, 0.05.Days, Days after
a single ridge appearance; WT, wild type. E to
H, Scanning electron micrographs of young
spikes from KN199 plants at 3, 10, 15, and 21 d
after a single ridge appearance. I to L, Scanning
electron micrographs of young spikes from
transgenic TaTFL1-2D plants at 3, 10, 15, and
21 d after a single ridge appearance. Scale bars,
200 mm (E and I), 300 mm (F and J), 500 mm (K),
and 1 mm (G, H, and L). GP, glume primor-
dium; LP, lemma primordium. The asterisks
indicate spikelets. The number at the bottom
represents the spikelet number per spike.
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of spikelets per spike in TaVRS1-2B-overexpressing lines.
In addition,wheatTaVRS1-2B also inhibitsfloretmeristem
(FM) formation.
Taken together, the results of our transcriptome analysis

reveal genes associatedwith andmaybe causally related to
spike complexity, providing a rich resource of genes that
could be used to improve wheat grain yield. Appropriate
expression of these genes can increase the number of
productive spikelets, as well as the number of productive
florets per spike, thus enhancing spikelet complexity and
increasing the grain yield per plant.

DISCUSSION

Identifying genes conferring traits of agronomic impor-
tance is of enormous significance to crop improvement.

Map-based cloning and GWAS in crops with relatively
simple genomes, such as rice andmaize, have been used to
reveal agronomically important genes, but such study re-
mains challenging in polyploid crops with complex ge-
nomes. In fact, our attempt to use genetic variations
identified in the RNA-seq data to performGWAS analysis
did not yield any significant locus. To circumvent this
difficulty, we used transcriptome association analysis and
GCN analysis to correlate gene expression with trait vari-
ation. By using the recently released wheat genome se-
quence (International Wheat Genome Sequencing
Consortium, 2014), we applied this analysis method to
allohexaploid common wheat to study spike complexity.

Spike complexity determines the number of seeds per
spike. Manipulation of spike complexity is a major
strategy for improving yield potential. Whereas a large

Figure 6. Functional validation of TaPAP2-5A and TaVRS1-2B in the KN199 transgenic wheat line. Comparison of the spike
complexity of KN199 plants with that of T2 transgenic TaPAP2-5A (A) and TaVRS1-2B (D) plants. Scale bars, 1 cm. Negative correlation
between spikelet number per main spike and TaPAP2 (B) and TaVRS1-2B (E) expression levels in T2 transgenic plants. Comparison of
developmental duration betweenKN199plants and T4 transgenicTaTFL1-2D (C) andTaVRS1-2B (F) lines (OE1 andOE2) at each stage. I,
II, III, IV, and V indicate stage I, stage II, stage III, stage IV, and stage V, respectively;WT, wild type. Data are themean6 SD of 30 plants for
each line.Days,Days after a single ridgeappearance.G to J, Scanning electronmicrographsof young spikes fromKN199plants at 2, 9, 15,
and22d after a single ridge appearance. K toN, Scanning electronmicrographs of young spikes from transgenicTaPAP2-5Aplants at 2, 9,
15, and 22 d after a single ridge appearance.O to R, Scanning electronmicrographs of young spikes from transgenic TaVRS1-2B plants at
2, 9, 15, and22d after a single ridge appearance. Scale bars, 200mm(G,K, andO), 300mm(H, L, andP), 500mm(MandQ), 1mm (I and
J), and 3 mm (N and R). GP, glume primordium; LP, lemma primordium; An, awn. Student’s t test, *P , 0.05. The asterisks indicate
spikelets. The number at the bottom represents the spikelet number per spike.
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number of inflorescence regulators have been identified
in other plant species, understanding of wheat spike
development is relatively poor. Our transcriptome
survey of a representative mini core collection identi-
fied a large number of potential regulators of wheat
spike development. We identified a large number of
candidate genes whose expression levels were posi-
tively or negatively associated with spike complexity.
Although we quantified three traits related to spike
complexity, namely the number of spikelets, florets per
spike, and seeds per spike, we found the number of
spikelets per spike had a by far larger number of posi-
tively and negatively correlated genes. This may reflect
less environmental contribution but more genetic con-
tribution to this trait. Thus, our coexpression analysis
focused mostly on the number of spikelets per spike to
obtain more reliable results.

Notably, the number of negative regulators of spike
complexity was substantially greater than the number
of positive regulators of spike complexity.We speculate
that this finding may reflect a general inhibition of
branching by the reproductive development program
(Hagemann, 1990). As branching is the primitive con-
dition for shoot growth, the onset of flowering signifi-
cantly alters this development pattern from indeterminate
to determinate, thus restricting branching ability and
resulting in reduced complexity. Spike complexity de-
pends on the remaining branching ability of the shoot
apical meristem before its full termination into a flower.
Most of the flowering genes are negative regulators of
branching and show dominant expression after the floral
transition; it is also conceivable that there are many neg-
ative regulators of spike complexity. Indeed,we identified
many genes related to flower development, including
those encoding MADS-box TFs in module 9, as putative
negative regulators of spike complexity.

Importantly, our results demonstrate that over-
expression of one of the three candidate genes, TaTFL1-
2D, TaPAP2-5A, and TaVRS1-2B, affects inflorescence
development in wheat and suggests that appropriate
selection of alleles of favored expression ormodifications
in these genes could be used to increase wheat spike
complexity and thus grain yield. Furthermore, our
analysis identified wheat-specific functions of known
spike regulators. For example, TaVRS1 overexpression
negatively regulates spike branching by inhibiting SM
initiation, whereas orthologous barley Vrs1 suppresses
lateral spikelet outgrowth, but not SM initiation
(Komatsuda et al., 2007). The neofunctionalization of
TaVRS1 suggests fast evolution of the gene regulatory
network underlying spike development in grasses.
Detailed analysis of the spike development program in
transgenic plants indicated that the duration of SM
and FM formation stages are correlated with and are
likely causal to spike complexity. This observation
shows that the duration of remaining branching
growth (before termination into flowers) is critical to
the regulation of spike complexity. Our analysis also
suggests that the processes of SM and FM formation
utilize conserved regulatory modules, as all three

genes that were experimentally validated in this study
regulate both number of spikelets and number of flo-
rets, which are results of the two major branching
events in wheat spike branching.

In addition to genetic factors, environmental adap-
tion also has profound effects on yield. In this study, we
used the same growth condition for all varieties to
minimize environmental effects and to focus on genetic
contributions to spike complexity. To this end, we se-
lected only winter wheat varieties that can normally
grow in Beijing. Future experiments in multiple sites
would resolve the interaction between genetics and
environment.

CONCLUSION

Early reproductive development in wheat is essential
for grain number per spike, and hence the wheat yield
potential. However, the allohexaploid wheat genome
makes genetic dissection highly challenging. Recent
breakthroughs in genome sequencing have enabled
transcriptome analysis possible for this important food
crop (Feng et al., 2017; Li et al., 2014). In this study, we
analyzed the transcriptomes of young spikes in
90 winter wheat lines and correlated expression with
variations in spike complexity traits (spikelet number
per spike,floret number per spike, and seed number per
spike). Together with weighted gene coexpression
network analysis, we inferred candidate genes that may
relate to spike complexity. Furthermore, experimental
studies identified genes whose expression is not only
associated with but also affects spike complexity. The
associative transcriptomic method employed in this
work may allow us to identify genetic basis of agro-
nomically important traits in common wheat or other
crops with complex genomes.

MATERIALS AND METHODS

Plant Materials and Growth Conditions

A total of 90 winter wheat (Triticum aestivum) varieties were grown at the
Experimental Station of Institute of Genetics and Developmental Biology,
Chinese Academy of Sciences, Beijing for 2 consecutive years (planted in Sep-
tember in 2013 and 2014) with three replications and were arranged using
Randomized Complete Block Design. For each replication, 60 wheat seeds per
variety per year were sown in two 1.5-m-long rows with 25 cm row-row dis-
tance. For each variety in each replication, reproductive tissues at the early
double ridge stage (see below and Fig. 1A) from 10 randomly selected spikes of
the main shoot were collected for transcriptome analysis. At the early double-
ridge stage, spikelet primordia occur between bract primordia at the middle
part of a spike. For sample collection, leaves surrounding the young spike were
removed by hand and the reproductive tissue (without stem) was cut with a
sharp blade under a stereomicroscope to confirm developmental stage. In total,
30 spikes per variety per year were collected and the reproductive tissues were
further sampled. The reproductive tissues were frozen in liquid nitrogen, after
which total RNA was extracted using the RNA Miniprep Kit (Axygen). Equal
amounts of total RNA from each year were pooled together for each variety. At
least 3 mg of total RNA from each variety was used to construct a sequencing li-
brary using the NEBNext Ultra RNA Library Prep Kit for Illumina (New England
Biolabs). Paired-end sequencing libraries with an insert size of ;250 bp were se-
quenced on an Illumina HiSeq 2500 sequencer. The number of spikelets per spike,
number of florets per spike, and the number of seeds per spike were also investi-
gated for 10 randomly selected plants in each replication 20 d after flowering.
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Evaluation of Wheat Spike Development Stages

The process of wheat spike development was considered as five separate
stages (Bonnett, 1936; Fisher, 1973). In brief, the spike elongation stage
(stage I) refers to the stage when the shoot apex growing point elongates,
but its outline remains smooth. During the following single ridge stage
(stage II), prematurely ceased foliar primordia appear as ridges surround-
ing the stem apex. The intervening tissue between two neighboring single
ridges then enlarges to form an additional ridge (an SM) in conjunction with
the subtending single ridge, marking the double-ridge stage (stage III). In
the following differentiation stage (stage IV), glumes, followed by lemmas,
initiate from SMs. Florets initiate as lateral swellings above the lemma
initials. In the stamen and pistil stage (stage V), three stamens and one pistil
emerge in the middle part of a spike, while upper spikelets develop floret
primordia.

Read Alignment and Gene Expression Quantification

We downloaded the reference wheat genome sequence (IWGSC CSS +
POPSEQ) and gene annotation from the Ensembl plant database (ftp://ftp.
ensemblgenomes.org/pub/plants/release-28/). We also downloaded a
recently released wheat genome assembly and the INSDC TGACv1 gene
annotation. We mapped RNA-seq reads to both of the assemblies and gene
annotation, as well as the prereleased IWGSCWGA v0.4 assembly that lacks
gene annotation. We detected more expressed genes by using IWGSC CSS +
POPSEQ (Supplemental Table S16), although INSDC TGACv1 and IWGSC
WGA v0.4 gave slightly higher mapping rates of reads (Supplemental Table
S17). We also found that aligning to IWGSC CSS + POPSEQ and INSDC
TGAC v1 showed highly similar gene-expression profiles (Supplemental
Fig. S6). Thus, we chose IWGSC CSS + POPSEQ as a reference genome
and annotation, which are expected to give results similar to those of other
assemblies.

For read alignment and expression quantification, we first removed low-
quality reads, after that,wemapped the remaining reads to the referencegenome
using STAR version 2.4.2a (Dobin et al., 2013), allowing mismatches of 6 nu-
cleotides at most on the paired-end reads. To eliminate false discovery of split
junction reads, the intron length was set to 60 to 6000 nucleotides. Using HTSeq
version 0.6.0, we counted uniquely mapped reads, normalized the read count
by the trimmed mean of M values and transformed the results to reads per
RPKMusing edgeR version 3.12.1 (Robinson et al., 2010). Low abundance genes
with an expression cutoff of RPKM $ 1 in at least one variety were removed
from the set.

Phylogenetic Tree Construction

Construction of the phylogenetic tree was based on the SNPs identified from
the RNA-seq data. First, we analyzed each variety using GATK version 3.3 (Van
der Auwera et al., 2013; Supplemental Fig. S8). As the GATKworkflow failed to
report homozygous SNP sites before imputation, we recalled missing geno-
types if they were covered by RNA-seq reads. After filtering out SNPs with
minor allele frequency # 3%, we imputed missing genotypes again using
beagle version 4.1 (Browning and Browning, 2016). To obtain a set of repre-
sentative SNPs for phylogenetic tree construction, we kept only SNPs an-
chored on chromosomes with LD # 0.2. We randomly selected 20,000 SNPs
for the construction of phylogenetic tree using maximum likelihood method
implemented in DNAML (Felsenstein, 1989).

Identification of Homeologous Groups HGs

To avoid misidentification of HGs because of paralogous genes within the
same subgenome, we considered both sequence homology and chromosomal
linearity when one subgenomic homeolog hadmultiple best-hit counterparts in
two other subgenomes. Specifically, we mapped the cDNA sequences of a
wheat gene model with RPKM value$1 to the other two reference subgenomes
using BLAT (Kent, 2002). As approximately 99% of annotated genes (exon +
intron) have a size of less than 15,000 bp, we set the maximum intron size to
15,000 bp. Hits with identity less than 70% or that did not overlap with any
annotated genes were filtered before identifying best-hit pairs. This procedure
was performed repeatedly for each subgenome against the other two sub-
genomes. The HGs showing consistent one-to-one correspondence were
retained and finally classified into seven categories, namely ABD, AB, AD, BD,
A, B, and D type.

Gene Function Annotation Refinement and
Enrichment Analysis

To gain a comprehensive gene annotation, we aligned wheat protein se-
quences to rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) using
BLASTP with an e-value cutoff of 1e-5. We further curated a set of develop-
ment regulators by referring the annotation of GO or MapMan. The GO an-
notation was downloaded from Ensembl Plant Biomart (https://plants.
ensembl.org/biomart/martview), and MapMan pathway mappings were
download form MapMan Store (http://mapman.gabipd.org/web/guest/
mapmanstore; Usadel et al., 2009). To functionally categorize the genes
positively or negatively correlated with spike complexity, we performed GO
enrichment analysis using BiNGO version 3.0.3 (Maere et al., 2005) with
hypergeometric test and considered terms with an FDR below 0.05 as sig-
nificant and visualized the results as a network by EnrichmentMap version
2.2.1 (Merico et al., 2010).

Gene Coexpression Network Analysis

Scale-free coexpression network analysis was performed on log2 trans-
formed RPKM values of expressed genes using the WGCNA package
(v 1.51) in R (Langfelder and Horvath, 2008). An unsigned coexpression
network was constructed for all pairwise Spearman correlations of gene
expression. To weight highly correlated genes, we set the soft threshold
power to 9, as determined by assessment of scale-free topology (Supplemental
Fig. S7A). For network construction, we used a dynamic tree cutoff 0.20 to
merge similar trees (Supplemental Fig. S7, B and C). To identify networks
associated with spike-trait variables, we calculated the eige value of each
module, after which Spearman’s rank correlation was calculated between
the eigen value (overall expression trend of the genes in each module) and
trait quantity.

Construction of Overexpressing Wheat Lines

Winter wheat variety Kenong 199 (KN199) was used to amplify gene se-
quencesandgenerate transgenicwheatplants.Toobtain transgenicwheatplants,
the entire coding region of 10geneswere inserted separately intopUbi-pAHC25, a
modified vector for wheat gene overexpression driven by the maize ubiquitin
promoter (Wang et al., 2013). The resulting constructs were transformed into
immature embryos of wheat variety KN199 by particle bombardment (Becker
et al., 1994). At least 45 independent transformants were obtained and analyzed
for transgene expression.

Spike Phenotype Analysis of Wheat Overexpression Lines

Seeds of transgenic lines (including lines transformedwith an empty vector)
were surface-sterilized in 2% NaClO for 15 min and rinsed overnight with
flowingwater, afterwhich theywere sown in soil and allowed togrow for 40d in
a 4°C environment. After 40 d, the seedlings were transferred to a greenhouse
with long day condition (16-h-light/8-h-dark photoperiod, light intensity of
350 mmol photons m22 s21, ambient temperature of 22°C–25°C, and relative
humidity of 60%–70%). Spike phenotypes were recorded for 30 to 45 randomly
selected transgenic plants 20 d after flowering.

RT-qPCR

Total RNA was extracted from young leaves of transgenic overexpressing
plants using the RNA Miniprep Kit (Axygen). First-strand cDNA was syn-
thesized from 2 mg of DNase I-treated total RNA using the TransScript First-
Strand cDNA Synthesis SuperMix Kit (TransGen) as recommended by the
manufacturer and was stored at 220°C. RT-qPCR analysis was performed
using the PrimeScript RT reagent Kit (TaKaRa) and a Bio-Rad CFX96 Real-
time PCR detection system. Relative gene expression levels were determined
using the method of Livak and Schmittgen (2001). As the nucleotide se-
quences of the homologous genes of TaTFL1, TaPAP2, and TaVRS1 were
highly similar, gene-specific primers for TaTFL1-2D, TaPAP2-5A, and
TaVRS1-2Bwere not designed. In this study, the relative expression levels of
TaTFL1, TaPAP2, and TaVRS1 reflected the transcript abundance of the
homologous genes of the three genes. We used b-TaTubulin mRNA as the
internal control for RT-qPCR analysis. The primers used for RT-qPCR are
listed in Supplemental Table S15.
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Scanning Electron Microscopy

For scanning electron microscopy SEM, young spikes from KN199 and T4
transgenic plants overexpressing TaTFL1-2D, TaPAP2-5A, and TaVRS1-2B at dif-
ferent stages were fixed overnight in 2.5% glutaraldehyde at 4°C. After dehydra-
tion in a series of ethanol solutions and substitutionwith 3-methylbutyl acetate, the
samples were subjected to critical point drying, coated with platinum, and ob-
served using a Hitachi S-3000N variable pressure scanning electron microscope.

Accession Numbers

The raw read data for this study have been submitted to the NCBI Sequence
Read Archive (SRA; http://www.ncbi.nlm.nih.gov/sra) under accession
number SRP091625.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Major early developmental stages of the wheat
spike.

Supplemental Figure S2. Saturation analysis of transcriptomic depth.

Supplemental Figure S3. Transcriptome association analysis of spike com-
plexity.

Supplemental Figure S4. Correlation of the expression levels of the three
subgenomic copies of TaTFL1, TaPAP2, and TaVRS1 with spikelet quan-
tity.

Supplemental Figure S5. Analyses of spike complexity for wild-type
KN199 and transgenic wheat plants.

Supplemental Figure S6. Scatter plot of transcript abundance as deter-
mined by using two genome assemblies and annotations.

Supplemental Figure S7. Cutoffs used for coexpression network construc-
tion.

Supplemental Figure S8. Analytical workflow for this study and detailed
pipeline used for variant calling.

Supplemental Table S1. Detailed information of 90 accessions used in the
study.

Supplemental Table S2. The number of spikelets per main spike in 90 ac-
cessions.

Supplemental Table S3. The number of seeds per main spike in 90 acces-
sions.

Supplemental Table S4. The number of florets per main spike in 90 acces-
sions.

Supplemental Table S5. Summary of reads mapping.

Supplemental Table S6. Statistics of reads mapped to each subgenome.

Supplemental Table S7. Expression abundance of expressed genes in 90 ac-
cessions.

Supplemental Table S8. Statistics of the number of genes expressed in
each variety.

Supplemental Table S9. Statistics of the number of expressed genes in
each chromosome.

Supplemental Table S10. Statistics of the number of each type of HGs.

Supplemental Table S11. List of genes significantly correlated witch spike-
let number.

Supplemental Table S12. Wheat genes homologous to rice spike development-
related genes.

Supplemental Table S13. Transcription factor enrichment within each
module classified by WGCNA.

Supplemental Table S14. Lists of genes in module 9 core subnetwork.

Supplemental Table S15. Primers used to generate transgenic wheat
plants.

Supplemental Table S16. Statistics of reads mapped to different version of
genome sequences.

Supplemental Table S17. Statistics of the number of expressed genes
assessed using different version of genome sequences.
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