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Abstract
Peripheral nerve injury has remained a substantial 
clinical complication with no satisfactory treatment 
options. Despite the great development in the field 
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of microsurgery, some severe types of neural injuries 
cannot be treated without causing tension to the injured 
nerve. Thus, current studies have focused on the new 
approaches for the treatment of peripheral nerve injuries. 
Stem cells with the ability to differentiate into a variety of 
cell types have brought a new perspective to this matter. 
In this review, we will discuss the use of three main 
sources of mesenchymal stem cells in the treatment of 
peripheral nerve injuries.

Key words: Cell-based therapies; Peripheral nerve injury; 
Stem cells; Mesenchymal stem cells; Bone marrow 
mesenchymal stem cells; Adipose-derived mesenchymal 
stem cells; Umbilical cord mesenchymal stem cells

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Mesenchymal stem cells (MSCs) can differentiate 
into many kinds of cell types including Schwann cells (SCs). 
Since there are limitations for the use of SCs in nerve 
injuries, it is necessary to know about substitute cell types. 
So far, different sources of MSCs such as embryonic stem 
cells, bone marrow MSCs, adipose-derived stem cells, etc . 
have been studied and the existence of beneficial effects 
on nerve regeneration after injury has been confirmed. 
Here in this paper, we have collected the latest updates 
on the use of MSCs from different sources in peripheral 
nerve regeneration.
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INTRODUCTION
Cell-based therapy in Peripheral nerve injuries (PNIs) 
has become an important intercession which amends 
clinical outcome. Contrary to the central nervous system, 
the peripheral nervous system has the potential for 
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regeneration to a certain extent[1]. Nevertheless, com
plete functional recovery is strongly dependent upon the 
severity of the injury, anatomical site of the injury, and 
the delay before any kind of applied intervention[2].

What is PNI?
Any harm to the peripheral nerves interrupting their 
function would be classified as a PNI. In the case of 
PNI, the connection between the involved nerve fiber 
and the distal organ would be negatively affected and 
sometimes even lost, so, the distal organ undergoes 
atrophy due to denervation. In 1%-3% of patients 
with a traumatic accident, a PNI will almost always be 
involved[3,4]. It has been recognized in children suffering 
falls[5,6], as a consequence of medical procedures 
such as surgeries, chemotherapy, radiation[7-9] and 
sometimes it has been brought about some chronic 
conditions like diabetes and cancers[10,11]. It can also 
occur as an iatrogenic injury[12]. There are three main 
types of a condition causing PNI: Transection, tension, 
and compression[13,14]. First of which is commonly 
caused by penetrating trauma, the second one occurs 
when a nerve is over-stretched and the third can be 
reversed if the condition caused the injury is stopped 
within 8 h. In this article we have mainly focused on 
transection injuries.

What happens in cellular and molecular level?
A series of cellular and molecular events take place in 
response to nerve injury. In severe transection injuries 
(grade V in Sunderland classification or neurotmesis 
in Seddon classification[15,16]) caused by penetrating 
trauma, proximal and distal stumps of the injured nerve 
undergo pathological changes. “Wallerian degeneration” 
will occur in distal stump in which injured axons will 
turn into granule-like debris that will be later cleaned 
by macrophages[17]. Proximal stump also firstly retracts 
back to node of Ranvier[18] and then tries to reach the 
distal stump by giving rise to outgrowing axons[19,20] 
while activated Schwann cells (SCs) transform into 
regenerating phenotype and proliferate in the distal 
stump to form longitudinal columns called “bands of 
Büngner” which are essential to guide the outgrowing 
axons[21]. However, mentioned events along with the 
secretion of neurotrophic factors by SCs make a great 
environment for axonal stumps to meet, but the slow 
rate of axon regeneration which is location-dependent 
but is usually stated as 1 mm/d[22], almost always fails 
these processes and leads to impotency of activated 
SCs[23], misguidance of outgrowing axons and target 
organ atrophy due to prolonged lack of innervation[24].

Therapeutic strategies
In the case of transection injury, the Gold-Standard 
therapeutic strategy is to join the proximal and distal 
stumps of the damaged nerve through surgical 
interventions. Yet, when the gap is too wide to be 
repaired without stretching the nerve fiber, a nerve 

graft or a conduit is needed to bridge the gap. Although 
nerve grafting is the gold standard technique[20,25], 
this often leads to consequences such as donor site 
unwholesomeness for autologous grafts and graft 
rejection for heterologous grafts. On the other hand, 
conduits provide a guiding channel for axonal outgrowth 
and they can also serve as a vehicle to deliver essential 
growth factors and supporting cells[20,26-29]. In recent 
years, cell transplantation has been proposed as a 
method of improving peripheral nerve regeneration. 
SCs activated in response to nerve injury, as previously 
described play a key role in Wallerian degeneration and 
formation of bands of Büngner. These features make 
SCs the most suitable supporting cell candidate to 
transplant, but regarding other important features of 
SCs such as the difficulty of harvest, the slow expansion 
in culture and a high immunogenicity[30,31], SCs could 
not make the ideal supporting cells. So attentions 
have moved towards the use of differentiated and 
undifferentiated types of stem cells which have the 
capacity to transform into a variety of different cell 
types in presence of particular factors.

Use of stem cells
Stem cells are undifferentiated cells of an organism being 
capable of giving rise to indefinitely more cells of the 
same type, and other types of cells by differentiation. 
Stem cells commonly come from two main sources: 
Embryos (embryonic stem cells), which can be harvested 
during embryonic period and adult tissues (adult stem 
cells) that are available in all the tissues in the body. 
Stem cells are classified by their capability to differentiate 
into other cell types. Unipotent stem cells (like muscle 
stem cells) can only give raise to cells of their own type. 
Oligopotent stem cells can differentiate into a few cell 
types, like myeloid stem cells. Multipotent stem cells 
have the ability to differentiate into a nearly related 
type of cells, like hematopoietic stem cells which not 
only can produce red blood cells but also can give rise 
to white blood cells and platelets. Pluripotent stem 
cells can differentiate into almost all cell types and the 
examples include embryonic stem cells and the cells 
from ectodermal, mesodermal and endodermal layers. 
Totipotent stem cells are the only ones which are able to 
give rise to all possible cell types, the example is the first 
few cells that result from the division of the zygote and 
the fertilized zygote itself. 

Mesenchymal stem cells
In this review we mainly focused on mesenchymal stem 
cells (MSCs), the multipotent stem cells which can be 
obtained from various sources such as bone marrow, 
umbilical cord and amniotic fluid, adipose tissue, and 
also teeth. These cells are characterized morphologically 
by a small cell body containing a round nucleus with a 
clear appearance and a prominent nucleolus. Cells have 
a few long cell processes and the cytoplasm contains 
Golgi apparatus, mitochondria, rough endoplasmic 
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reticulum and ribosomes. They are spread widely in the 
extracellular matrix containing a low amount of reticular 
fiber.

All-together, this paper will discuss the recent pro
gress in the use of cell-based therapies and of interest 
the use of MSCs for peripheral nerve regeneration. It will 
summarize the perspectives of employing main sources 
of MSCs to speed up the healing process in injured 
peripheral nerves and involved mechanisms.

SURGICAL TECHNIQUES
The most common donor nerve used for autograft is 
Sural nerve which is a sensory nerve, hence it cannot 
be the proper choice for the repair of nerves with 
mixed motor and sensory or motor constituent[20,32]. 
Regarding to the complications of nerve autografts, 
researchers have focused on using substitute options 
to bridge the wide gaps with no harm to nerve ends. 
Various absorbable biomaterials have been used 
to make conduits and authors worldwide reported 
different results[20,26-29]. Conduits can be autogenous or 
synthetic. Autogenous conduits such as vein conduits 
sometimes accompanied by muscle or platelet-rich 
plasma components regardless of good outcomes 
require a donor site for harvesting[33,34]. A wide range of 
synthetic conduits made of collagen, polycaprolactone, 
polyglycolic acid and polyester have also been studied. 
Taras et al[35] used collagen conduits and reported 
good sensory nerves recovery. Wangensteen et al[36] 
and Ashley et al[37] showed that collagen conduits can 
have beneficial effects in clinical experiments as well 
as preclinical experiments with using them in trauma 
patients and infants with brachial plexus injuries 
respectively. They run a follow-up survey and monitored 
5 infants with transplanted collagen conduits and 
reported significant motor recovery. Lohmeyer et al[38] 
also used collagen conduits for nerve reconstruction and 
reported a 55% of two-point discrimination and 77% of 
protective sensation recovery. Boeckstyns et al[39] used 
collagen tubules for recovery of the injured median 
and ulnar nerves and Sosa et al[40] used collagen 
tubules containing platelet-rich fibrin for a patient with 
ulnar neuroma and both of them reported significant 
motor and sensory recovery. Mackinnon et al[18] used 
polyglycolic acid tubes in 15 patients with 17 mm nerve 
gaps and found that despite 14% of them having poor 
recovery, 86% of them showed excellent (33%) and 
good (55%) signs of recovery. Battiston et al[27] used 
polyglycolic acid conduits and muscle-vein conduits to 
see their difference healing properties. Results showed 
no significant difference between two groups. Weber et 
al[41] evaluated the beneficial effects of polyglycolic acid 
tubes compared to neurorrhaphy and nerve autografts 
and reported that in gaps of less than 4 mm or more 
than 8 mm, polyglycolic acids provided better recovery. 
Despite great improvements in surgical techniques 
and instruments, this field will have to be more and 
more investigated to make an optimal combination of 

cells and neurotrophic factors accompany a conduit to 
amend clinical outcomes.

IMPORTANT ROLE OF NEUROTROPHIC 
FACTORS
Axonal outgrowths are very slow to form and in 
severe cases it takes a long time for them to reach 
the distal stump, and on the other hand it is critical for 
activated SCs to innervate quickly in order to remain 
in their active form. Thus, administration of exogenous 
neurotrophic and growth factor with the ability of 
speeding up the mentioned processes has gathered 
attention. Neurotrophic factors are proteins which are 
necessary for many vital neural activities particularly in 
the regeneration of neurons after injuries[42-45]. Some 
of the most important neurotrophic factors are listed in 
following sentences and their role in neural regeneration 
have been described in brief. Brain-derived neurotrophin 
factor (BDNF) plays a key role after neural injuries and 
showed to have advantageous effects on outgrowing 
axons[46,47]. Nerve growth factor (NGF) have also a 
beneficial effect on the elongation of outgrowing sensory 
axons additional to enhancing SCs motility[48-50]. Glial 
cell line-derived neurotrophic factor (GDNF) acts like a 
chemoattractant for SCs[48-50]. Sox11 is a very important 
transcription factor upregulating in response to PNI[51]. 
Its expression can affect myelination and axonal 
elongation and levels of BDNF[52-56]. It also can help with 
the survival of neurons through the expression of TNF 
receptor-associated factor-associated NF-kB activator 
(TANK)[51-55]. Vascular endothelial growth factor (VEGF) 
can improve outcomes of nerve regeneration through 
improving microcirculation[57]. Insulin-like growth factor 
(IGF) found to have stimulant effects on mitosis of SCs 
and axonal elongation[58] Mohammadi et al[59] used 
silicon tube with hepatocyte growth factor (HGF) filling 
and reported improved muscle atrophy. Li et al[60] also 
reported that same beneficial properties of HGF in 
combination with acellular nerve allograft. Mohammadi 
et al[61] reported improved recovery after using 
silicone tube filled with adrenocorticotropin hormone 
(ACTH). Emel et al[62] have reported that IGF-1 has a 
better effect on PNI compared to Platelet-rich plasma. 
Regardless of how much it could be helpful to use the 
combination of conduits and neurotrophins, it is still 
important to hold SCs at their active form, because 
over a short period of time they lose their capacity 
for remaining active.Researchers have had invented 
methods to transplant newly activated SCs to the site 
of injury or to use cell types which are able to transform 
into SCs or SC-like cells to support the healing process.

SCs IN NERVE REGENERATION
SCs actively produce cell adhesion molecules, neuro
trophins and growth factors and they can also serve as 
a scaffold allowing axonal sprouts to grow through their 
basal lamina[63-66]. They can also produce regulatory 
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factors to help axonal outgrowth[67,68]. Despite promising 
results in preclinical experiments, clinical studies did 
not gain good results because the difficulties with 
harvesting[68,69] and culture of SCs[70] and the fact that 
prolong denervated SCs lose their ability to stimulate 
regeneration[71].

STEM CELLS USED IN PNIs
Because of stem cells’ potentials they have become 
a source of cells which act s an alternative for SCs in 
peripheral nerve regeneration[70,72-74]. Stem cells as 
previously described, are biological progenitor cells 
which are undifferentiated and are able to produce more 
undifferentiated stem cells like themselves through 
mitosis. In addition, they can differentiate into almost all 
kinds of cell type depending on trophic and tropic factors 
they are exposed to. In the case of nervous system, 
stem cells have the ability to differentiate into supporting 
cells including oligodendrocytes, astrocytes, microglia, 
SC-like cells, and neurons themselves[75]. They can be 
differentiated in vitro before transplantation, and can also 
be transplanted in their undifferentiated form allowing 
to differentiate in vivo at the site of injury. An ideal 
choice of stem cell would be depended on the important 
features of the cells, like the ease of harvesting through 
noninvasive procedures, rapid expanding in culture and 
low immunogenicity[30,31]. Many kinds of stem cells with 
different sources have been studied, among them, MSCs 
having mentioned features, have been suggested as a 
potential cell type to enhance nerve regeneration. MSCs 
are multipotent stromal cells which can differentiate into 
a variety of cell types. Three main sources of MSCs will 
be discussed in following sections.

Bone marrow mesenchymal stem cells
Several studies have reported that bone marrow mesen
chymal stem cells (BMSCs) can be induced to differentiate 
into mesodermal, ectodermal and endodermal line
age[76-80]. Interestingly they can differentiate into SC-like 
cells and ameliorate neural regeneration by releasing 
neurotrophic and growth factors, BDNF, GDNF, myelin 
basic protein[81] and by regulating SCs behavior[82]. These 
good effects seem to be irrelevant to their differentiation 
state because both differentiated and undifferentiated 
BMSCs represent positive molecular, electrophysiological, 
histological and behavioral effects in preclinical experi
ments[83]. Regarding some problems in harvesting 
BMSCs like the need of performing invasive and painful 
procedures that might yield a low number of cells, BMSCs 
have some disadvantages in clinical studies. Wang 
et al[84] compared the combination of BMSC-SCs and 
Adipose-derived stem cell SCs (ADSC-SCs) with acellular 
grafts to bridge the sciatic gaps of 15 mm and reported 
the greater regeneration recovery at the presence 
of BMSC-SCs and ADSC-SCs. Hu et al[85] used BMSC 
seeded grafts for the recovery of 50 mm median nerve 
injury in monkeys and found that the healing process 

with good functional and morphological outcomes was 
close to autografts. Cuevas et al[86,87] found that using 
BMSCs have beneficial effects on rat models of PNI with 
injured sciatic nerves. They have also run a follow-up 
experiment to assess the healing process and reported 
a significant improvement in sciatic nerve-injured rats 
with transplanted BMSCs compared to control group. 
Chen et al[81] used silicon conduits filled with BMSCs 
and assessed the recovery process measuring the 
number of growing axons and muscle atrophy along 
with walking test and reported their beneficial effects on 
mentioned indices highlighting the role of neurotrophic 
factors and myelin basic protein upregulation and not the 
increase in the number of SCs. Haghighat et al[88] and 
Mohammadi et al[89] also showed that using vein conduits 
with undifferentiated BMSCs can cause a significant 
increase in the number and diameter of growing axons 
and functional improvement consequently. Studies 
showed that differentiated BMSCs can have a better 
impact when used in combination with acellular nerve 
allografts rather than undifferentiated BMSCs[90]. It has 
been demonstrated that using BMSCs in PNIs can have 
similar outcomes as in use of autografts. Studies showed 
that BMSCs can possibly improve the outcome of nerve 
regeneration by modulating the behavior of SCs along 
with expressing neurotrophins[82]. Caddick et al[79] found 
that BMSCs can be induced to differentiate into SC-like 
cells representing SCs markers such as S100, P75, and 
GFAP. It has been reported that with the use of cytokines, 
rat BMSCs can be transformed into SC-like cells which 
were capable of myelinating PCl2 cells in vitro after 2 wk 
as well as increasing the myelinated axons in a rat model 
of PNI after 3 wk[91]. It has been shown that BMSCs apply 
their beneficial effects in a dose-dependent manner[92]. 

Adipose-derived mesenchymal stem cells
Adipose-derived mesenchymal stem cells (ADSCs) are 
another source of multipotent stem cells with the ability 
of transforming into all three germinal layers[93,94] and 
additionally, has been showed to give much greater 
numbers of cells compared to other adult tissues[95], with 
minimally invasive surgical procedures and a very simple 
isolation protocol including washing; diffusing with the aid 
of enzymatic agents; centrifugation and remotion of red 
blood cells (RBCs). This protocol gives a cellular fraction 
containing various cell types. Among them, ADSCs of 
interest adhere to the plastic wall of the container and 
proliferate quickly, so it can be easily recognized and 
separated from other cells. Studies showed that ADSCs 
can be induced to express glial cell markers such as 
S100B, GFAP and P75 neurotrophin receptors in vitro[69]. 
Also in the case of ADSCs, it has been demonstrated 
that in vitro differentiation into SCs could not bring any 
further melioration probably because of ADSCs natural 
capacity of in vivo differentiation into SCs[65]. Di summa 
et al[65] demonstrated that ADSC-SCs, as well as BMSC-
SCs, can be used for the repair of rat sciatic nerve 
injury and since unlike the BMSCs, ADSCs can be easily 
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harvested and expanded, they would be a better choice 
in PNI injuries. Erba et al[96] transplanted undifferentiated 
ADSCs in poly-3-hydroxybutyrate conduit to assess the 
axonal outgrowth and the transplanted cells capacity 
to transform at the site of injury. They reported the 
increase in the number of SCs and regeneration however 
researchers could not detect any transformation 
into neither glial nor neural cells. A similar result has 
been reported by Santiago et al[97] and the possible 
mechanism suggested by the authors through which the 
regeneration has been enhanced, was the expression of 
neurotrophins. Other similar results have been reported 
by other researchers[98,99]. Wei et al[100] showed that 
ADSC filled conduits have the same regenerative effects 
in rat sciatic nerve injury as SC filled conduit. Researchers 
found that ADSCs cannot be differentiated into SCs 
in vivo despite in vitro differentiation[101]. It has been 
demonstrated that undifferentiated ADSCs can release 
neurotrophins but at a lower extent[102]. Oliveira et al[103] 
used polycaprolactone conduits seeded with MSCs and 
showed the improvement of myelination and function 
compared with empty conduits. Another research group 
used collagen conduits with collagen gel containing 
ADSCs filling and results showed that improvement was 
similar to nerve autografts[104]. 

Umbilical cord mesenchymal stem cells
Regardless of ethical concerns with the use of umbilical 
cord mesenchymal stem cells (UC-MSCs) and limitation 
of its availability, there is still proofs which show they 
are superior to other adult stem cell with different 
sources: First, they can be collected in great numbers 
without causing any harm to donor simply from dis
cardable tissues after childbirth; second, as they will 
be collected at the perinatal period, they are less likely 
to have genetic damages[105]; third, they are younger 
than other adult stem cells so they can undergo higher 
number of mitosis and can be much more expanded 
in culture[106]; fourth, while they lack HLA-II, they have 
much lower immunogenic properties compared to other 
adult stem cells[107]. Matsuse et al[108] used tubes filled 
with SC-like cells which have been previously formed 
as a result of UC-MSCs differentiation and showed that 
they can promote axonal regeneration. Same results 
have been demonstrated by Kuroda et al[109] and Pereira 
et al[110]. Peng et al[111] demonstrated that SC-like cells 
can secrete BDNF, Neurotrophin-3, and NGF in vitro 
and when combined with PCl2 cells, axonal growth was 
seen.

CONCLUSION
To improve peripheral nerve regeneration for better 
sensory and motor recovery, the use of stem cells and 
especially MSCs would be greatly helpful. These cells 
are not only able to differentiate into SCs , but 
they can also transform into SCs directly at the site of 
injury. Furthermore, administration of stem cells, can 

regulate the activity of native SCs, modify the inhibitory 
regenerative environment, improve myelination and 
cell survival and enhance neurotrophic activity. In 
summary, MSCs with such suitable properties as the 
ease of harvesting, especially in the case of ADSCs, and 
the low risk of immunogenic activities have got a great 
potential to improve the regeneration process. Thus, for 
sure by further investigations, significant improvements 
in neural regeneration by the help of MSCs will be 
obtained.
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