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ABSTRACT: The detection and characterization of binding
pockets and allosteric communication in proteins is crucial for
studying biological regulation and performing drug design.
Nowadays, ever-longer molecular dynamics (MD) simulations
are routinely used to investigate the spatiotemporal evolution
of proteins. Yet, there is no computational tool that can
automatically detect all the pockets and potential allosteric
communication networks along these extended MD simu-
lations. Here, we use a novel and fully automated algorithm
that examines pocket formation, dynamics, and allosteric
communication embedded in microsecond-long MD simu-
lations of three pharmaceutically relevant proteins, namely,
PNP, A2A, and Abl kinase. This dynamic analysis uses pocket crosstalk, defined as the temporal exchange of atoms between
adjacent pockets, along the MD trajectories as a fingerprint of hidden allosteric communication networks. Importantly, this study
indicates that dynamic pocket crosstalk analysis provides new mechanistic understandings on allosteric communication networks,
enriching the available experimental data. Thus, our results suggest the prospective use of this unprecedented dynamic analysis to
characterize transient binding pockets for structure-based drug design.

■ INTRODUCTION

Binding pockets are often crucial for modulating the function of
biomolecules, such as those in protein enzymes and ion
channels. For example, small molecule drugs exert their
beneficial action by binding to a functional pocket of the
protein target(s).1 Detecting and characterizing these functional
binding pockets is therefore of paramount importance for
biochemistry and drug discovery.2 In this regard, molecular
dynamics (MD) is a useful tool for studying the appearance,
evolution, and structural modifications of binding pockets in
large biomolecules, along trajectories of hundreds of nano-
seconds to even a few milliseconds.3,4 MD can also describe the
plasticity of those superficial and shallow transient cavities,5

which are often involved in protein function because they
interact with a small substrate or another partner protein.6,7

As MD trajectories of large structural ensembles increase in
length, they create massive data files. These files can be
hundreds of gigabytes in size and are expected to reach tens of
terabytes in the near future.8 Therefore, there is a major need
for algorithms that can automatically extract the embedded
information from these massive data sets and produce
intelligible reports on the spatiotemporal evolution of the
targeted protein, including its potentially druggable binding
pockets.9

There are already a number of algorithms that can detect
protein binding pockets in static structures.10,11 Some of these
rely on the Voronoi diagrams12 (e.g., MolAxis,13 MOLE14),
grids15 (e.g., POCKET,16 PocketFinder,17 POVME18,19), and
molecular surfaces and probes (e.g., HOLE,20 SURFNET21).
Other algorithms analyze ensembles of structures, but usually
require a preliminary structural alignment (e.g., MDpocket,22

PocketAnalizerPCA,23 Epock, Trj_cavity,24 and TRAPP25). In
this case, the resulting information may depend on the specific
reference structure used for the alignment. Atom-based
algorithms (e.g., PROVAR26 and EPOSBP27) avoid the
alignment step. Nevertheless, most of these methods are
limited to analyzing a priori defined pocket(s) of interest only.
Another key aspect is that pockets can sometime take part in
protein allosteric signaling.2,28 Indeed, a number of theoretical
approaches already exist to investigate allosteric signaling, such
as bioinformatics methods that rely on the analysis of protein
sequences under the assumption that evolutionarily conserved
residues are likely to have a functional role.29 Vibrational
motions of proteins examined through normal-mode analysis
(NMA) can also offer insights into potential allosteric
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mechanisms. In this case, low frequency modes define
functionally relevant movements often triggered by the binding
of an allosteric effector.30,31 Alternatively, allosteric signaling is
often investigated through protein conformational ensembles
generated via molecular dynamics (MD). These conformational
ensembles are mapped into a graph-based representation,
which is composed of interconnected nodes. The degree of a
node’s interdependence, which reflects correlation of motions
of distant allosteric parts of the protein, can be calculated, for
example, via a mutual information analysis32,33 or using the
analysis of atomic positional fluctuations.34−39

Here, we present an original algorithm for efficiently
analyzing extended MD trajectories. Differently from all
previous methods, this algorithm detects the formation and
spatiotemporal evolution of all the protein pockets. In addition,
it monitors pocket crosstalk, defined as the temporal exchange
of atoms between adjacent pockets, which we propose as a
means to identify allosteric signaling (see Theory). In
particular, our algorithm automatically executes (a) an
alignment-independent identification of all the pockets on the
protein surface; (b) a quantification and visualization of the
volume and surface area of all the pockets found in the protein,
for each structural frame of the MD trajectory; (c) a report of
crosstalk between pockets, described as merging and splitting
events; and (d) a detection of allosteric signal transmission
networks across the protein surface, defined as interconnected
pocket motions (see Theory).
We have applied this new algorithm to long MD simulations

of a few selected pharmaceutically relevant targets: (i) the
purine nucleoside phosphorylase (PNP) enzyme, (ii) the
adenosinic receptor (A2A) in POPC membrane, and (iii) the
Abelson (Abl) kinase. The algorithm produced a detailed
analysis of the structure−dynamics−function relationships,
which it automatically extracted from these MD simulations.
Our results demonstrate the power of this dynamical analysis,
particularly as a prospective tool for characterizing binding
pockets in structure-based drug design.

■ THEORY
Outline of the Method. The algorithm identifies pockets

and tracks their evolution over time along an MD trajectory.
NanoShaper 0.7 (freely available at www.electrostaticszone.
eu),40 is used as a preliminary utility to detect the pockets on
the protein surface on individual frames, with particular
attention given to those that could be druggable sites. In a
single frame of a protein of ∼2000 atoms, the execution time
for detecting the binding pockets is in the range of 2−6 seconds
on a standard workstation. The main part of the method is then
dedicated to characterizing the pocket dynamics along the MD
trajectory through the assignment of a unique and dynamics-
consistent identifier for every pocket. The spatiotemporal
evolution of each pocket is thus monitored over the entire MD
trajectory. Both algorithms are described in the following
sections. This method is called Pocketron and is a module
implemented in the BiKi Life Sciences software suite (www.
bikitechnologies.com).
Static Pocket Detection. The static pocket detection

algorithm is based on the concept of the solvent excluded
surface (SES),41 or Connolly−Richards surface,42 which is
defined as the surface obtained by rolling a spherical probe over
the van der Waals surface of the molecular system. The
analytical computation of the SES is done via the Alpha Shapes
theory, as described by Decherchi and Rocchia.40 Then, pockets

are identified by calculating the volumetric difference between
the regions enclosed by the SESs, obtained with two different
probe radii (Supporting Figure 4). The smaller rolling spherical
probe has a radius of 1.4 Å, which corresponds to the spherical
approximation of a water molecule. Conversely, the larger
rolling spherical probe has a default radius of 3 Å. The size
values can be modified at will. However, we found that these
specific values, together with a subsequent filter selecting only
pockets with a volume of at least 34.5 Å3 (∼3 water molecules),
provide a reasonable identification of potential binding sites.
This information can be used to analyze the entire protein
surface, list the identified pockets, and store their calculated
volume and the list of contributing atoms.

Dynamical Pocket-Tracking Algorithm and Pocket
Crosstalk Detection. The algorithm tracks the atoms forming
each pocket along an MD trajectory. These data constitute the
fundamental basis for how the algorithm monitors the pocket
dynamics. The algorithm monitors all the atom-based events
occurring along an MD trajectory, without requiring any
structural alignment or prior knowledge of the region to be
searched. It thus tracks the exchange of atoms between adjacent
pockets, which is our indicator of “pocket crosstalk”. With
“exchange of atoms”, we refer to the fact that the same atom
may belong to different pockets at different times (i.e., frames)
during the simulation. This analysis considers “merging” and
“splitting” events to be significant. These events are calculated
via simple operations on the atom sets that form each pocket.
More specifically, a “merge” event occurs when atoms
belonging to the same pocket in the current frame have
belonged to separate pockets in a previous frame. Similarly, a
“split” event occurs when atoms of a single pocket divide into
two or more distinct pockets. To guarantee consistency in
pocket tracking, the algorithm initially stores the list of pockets
found in the first frame, as defined by their constituent atoms,
and assigns a unique pocket identifier (pID) to each stored
pocket. Then, for every additional frame, the new set of pockets
is computed and compared with the stored ones. When there is
a mismatch with respect to the stored pockets, the current
pocket is added as a new entry in the stored pocket’s list and
assigned a new pID. The matching algorithm relies on the
Jaccard index to measure the degree of similarity between two
pockets. For example, let A and B be the sets of atoms
belonging to two pockets. Then, the Jaccard index between
them is defined as

= | ∩ |
| ∪ |

J A B
A B
A B

( , )

where the modulus symbol indicates the cardinality of the atom
sets. If A and B are identical (i.e., have the same constituent
atoms), then the index reaches its maximum value of 1. If only a
fraction of the atoms are shared between A and B, then the
index provides the number of matching atoms (numerator)
divided by the cardinality of the union of the atom sets. If there
are no matching atoms, the index is null.
Pocket identification is therefore performed with the

similarity matrix M. Each entry M(i,k) is the Jaccard index
between the atoms of the ith stored pocket and those of the kth
pocket (detected in the current frame). For each frame, each
pocket is compared to all of the stored ones. If M(i,k) = 0 ∀i,
then the kth pocket is considered to be a new pocket and is
stored. Otherwise, the kth pocket is connected to the stored
entry that maximizes the Jaccard index. In mathematical terms,
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pi is the ith stored pocket and ̂pk(t) is the kth detected pocket
on the frame at time t; therefore, the M matrix is the following:

≜

⋯
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⋯
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⎛
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where K is the total number of detected pockets in the current
frame and N is the total number of stored pockets so far. As
already mentioned, the pocket ID assignment is executed by
finding the maximum entry for every column of M:

= ∀ =
=

w i k k KMarg max ( , ); 1 , ...,k
i N1,...,

where the index wk is corresponding to the stored pocket to
which k is assigned. If M(wk,k) = 0, a new entry is created and
stored in the pocket list with its own new pID.
Similarly, to detect merging and splitting events, the

algorithm builds the matrix F, so that F(k,j) is the Jaccard
index of the kth pocket at instant t and the jth pocket found in
the previous frame at instant t − Δt. Then, the F matrix is

≜
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where J is now the total number of pockets at the t − Δt instant
(i.e., the previous frame presented to the algorithm). Traversing
this matrix allows the easy detection of merge and split events.
Indeed, if we let “NZ” be the operator that returns all the
nonzero entries of a row/column vector, and let “(i,:) ” and
“(:,i)” be the operators that return all the elements of the ith
row/column, respectively, then we have

=

− Δ =̂

̂p t k

p t t j

Merge NZ F

Split NZ F

( ( )) arg ( ( , : ))

( ( )) arg ( (: , ))

k

j

where Merge( ̂pk(t)) is the set containing all the indexes of the
pockets detected at the time (t − Δt) that shared some atoms
with pocket k. If this set is empty, then no merge event involved
̂pk(t). Similarly, Split( ̂pj(t − Δt)) is the set containing all the

indexes of the pockets detected at the at time t that shared
some atoms with the pocket labeled as j at time (t − Δt). If this
set is empty, then no split event involved ̂pj(t − Δt). On a

technical note, the entries of the F matrix involve only those
pockets detected at the t and t − Δt instants. However, once
the merging and splitting events have been detected, the M
matrix is once again used to connect these pockets to the stored
ones and to make the tracking consistent, as described above.
Pocket Crosstalk Analysis and Allosteric Signaling.

With the above-mentioned ability to track pockets over time,
the volume and surface area of all pockets are stored for each
frame. Thus, the algorithm generates the full history of the
volume, area, splitting, and merging events of each pocket,
along the MD trajectory. It also generates the list of
contributing atoms and residues for all the unique pockets
detected during the MD run. This allows the estimation of the
probability (estimated as a relative frequency) that each residue
belongs to a given pocket. Moreover, for each pocket, all the
merging and splitting events with other pockets are stored.

Indeed, one of the final results of the tracking process is a
square matrix called NM, whose (i,j)th entry represents the
merging probability between two pockets, expressed as the
number of times they merge over the total number of frames.
Similarly, the square matrix NS expresses the corresponding
statistics for the splitting events. Empirically, we found that the
corresponding entries of NS and NM very often coincide in
magnitude, indicating that the splitting and merging events
often occur at the same time. For this reason, we define a
matrix of aggregate statistics N, which contains the maximum
value of the corresponding entries in NM and NS (Figure 1).

The nature of the information stored in N calls for effective
graphical methods to represent the pocket dynamics,
particularly since N is usually very sparse. The algorithm
translates the merging and splitting frequency matrix N into a
3D network graph, where the nodes represent pockets, and the
edges indicate communication between two pockets or, in
other words, how often two pockets exchange atoms. In detail,
the position of each node is the geometric center of the atoms
that form the corresponding pocket. The color of the node
indicates its persistency over the simulation time. The red color
indicates high persistency whereas blue indicates low
persistency. The thickness of the edge is directly proportional
to the frequency of the merging and splitting events between
the two connected pockets, according to the corresponding
entry in the N matrix. The dimension of the sphere represents
the pocket volume (Figure 1 and Figure 6). Together with the
merging and splitting of adjacent pockets, the N matrix returns

Figure 1. (A) Representation of the merging and splitting matrix F,
calculated using all the detected pockets. The matrix F allows
retrieving information on merging and splitting events. For each frame
along the MD trajectory, pockets at time t are compared with pockets
at time t − Δt, using the Jaccard index. In this example, at time t, the
pockets 1, 2, 3, and 4 (in rows) have been detected and stored. At this
point, the Jaccard index is computed with all pockets detected in the
previous frame at times t − Δt, i.e., with pockets 1, 2, and 3 (in
columns). Moving from t − Δt to t, this example shows that pocket 1
split into two pockets, forming the new pocket 4. Concomitantly,
pockets 2 and 3 merged, forming a larger pocket that is still identified
as pocket 3, according to its Jaccard index. (B) Schematic example of
the conversion of the aggregate merging/splitting statistics N into an
undirected network graph. In the matrix N, the off-diagonal red
numbers indicate the frequency of the merging and splitting events,
which is then reflected by the size of the edge connecting two pockets.
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indirectly also the long-range crosstalk network connecting
distant pockets. That is, a crosstalk network can connect distant
pockets through a sequence of neighboring pockets that
exchange their atoms during the MD run. In this way, a 3D
representation of the crosstalk network can be observed, which
can be used to identify putative allosteric signaling network.

■ RESULTS
Protein Binding Pocket Detection and Dynamics. First,

we tested the ability of our new algorithm to identify and
monitor protein pocket dynamics. We used ∼700 ns long MD
simulations of the purine nucleoside phosphorylase (PNP), a
homotrimeric enzyme that is involved in purine metabolism
and T-cell function.43 PNP inhibition is a strategy for treating
T-cell-mediated diseases, such as leukemia and lymphoma.44,45

The algorithm detected a total of 22 pockets that exist for
more than 30% of the overall simulations describing the
dynamic docking of DADMe-ImmH into PNP. Among the
most persistent ones, our algorithm identified three large
pockets, namely, pocket ID (pID) 4, pID 9, and pID 12. The
persistency is ∼79% for pID 4 and ∼96% for both pID 9 and
pID 12. These three pockets lie at the edge between the
adjacent PNP monomers (Figure 2 and Supporting Figure 1).
Each of them corresponds to the known orthosteric binding
site that is targeted by the endogenous substrate as well as by
known PNP inhibitors such as Immucillin-H46 and DADMe-
ImmH.47 These pockets have an average volume of 367, 894,
and 977 Å3, respectively. These volumes are larger than those
observed in the holo PNP crystal, where they are 332, 327, and
409 Å3, respectively. This suggests an elevated plasticity of the
orthosteric pockets. Notably, the reduced volume of pID 4 is
explained by the existence of a nearby stable pocket, pID 13,
which has a persistency of 94% and an average volume of 313
Å3 (Supporting Figure 1). These two pockets are merged for
∼26% of the simulation time, resulting in a single larger binding
pocket with an average volume of 677 Å3, which is comparable
with the other two orthosteric pockets pID 9 and pID 12.
Furthermore, our algorithm detected two smaller pockets, pID
3 and pID 14, located in proximity of the orthosteric binding
pockets pID 4 and pID 12 (Figure 2). These pockets are
present for 71% and 73% of the simulation time and have an

average volume of 133 Å3 and 144 Å3, respectively, in
agreement with their value in the PNP X-ray structure (203
Å3 and 232 Å3, respectively). Interestingly, these pockets have
been shown to constitute a prebinding site where the inhibitor
DADMe-ImmH transiently binds before accessing one of the
orthosteric sites.48 Notably, this prebinding site was not found
in proximity of the orthosteric pocket pID 9. Likely, this is
because pID 9 already embeds the prebinding site during our
simulations, as suggested by its larger volume compared to pID
4 and pID 12.
Another pocket, namely, pID 22, is detected at the center of

the trimerization interface, with an average volume of 398 Å3

(248 Å3 in the X-ray structure) and a time persistency of 88%.
Intriguingly, this pocket shows a marked crosstalk pattern with
the orthosteric binding site of each monomer during the MD
simulations (Supporting Figure 2). This suggests a possible
signaling transmission network between the different mono-
mers, mediated by this common interface pocket. This may
explain the negative cooperativity between PNP subunits
observed by Schramm and co-workers49,50 (see Discussion).

Identification of Interaction Patterns between Pock-
ets in Proteins. Our algorithm detects pocket interactions by
observing pocket splitting and merging during an MD
simulation (see Theory). Here, we demonstrate this feature
on two proteins with multiple binding pockets, which are well-
characterized with biochemical and structural data (see below).
These proteins are (1) the adenosinic receptor A2A and (2) the
Abelson (Abl) tyrosine kinase. The adenosinic receptor A2A is a
G-protein coupled receptor (GPCR) with a recognized key role
in several pathophysiological processes.51 It is a promising
target for pain, depression,52 and neurological diseases such as
Parkinson’s disease.53 The Abelson (Abl) tyrosine kinase is
involved in cell growth and survival.54 It is a validated target for
treating several types of cancer.55

Adenosinic Receptor A2A. The analysis performed on 100 ns
long A2A trajectories revealed 13 pockets that were present for
more than 30% of the simulations. Of these, pID 15 and pID 22
coincide with the structurally characterized orthosteric and
allosteric binding sites, respectively.56,57 In particular, pID 15 is
located on the extracellular side of the receptor and is targeted
by both agonist and antagonist drugs, such as adenosine58 and

Figure 2. (A) Localization of the main pockets computed for the PNP X-ray structure 3K8O. On the right, the orthosteric ligand DADMe-ImmH
located in the orthosteric pocket (in orange), as in the X-ray structure, and in the prebinding pocket (in yellow), as found in our MD simulations.
(B) Volume over time of the three orthosteric sites pID 4, pID 9, and pID 12. The volumes have been smoothed employing a Gaussian filter.
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ZM241385.59 In contrast, pID 22 is located in the core of the
transmembrane bundle and is normally occupied by a sodium
ion, which can be displaced by allosteric drugs, such as
amiloride and HMA (Figure 3).60,61 Our analysis revealed that,
although pID 15 and pID 22 were well-separated during most
of the MD simulations, they sometimes communicated via
merging and splitting events. This means that these pockets
share a set of residues at their interface. These residues are Val
84, Ala 88, Phe 242, and Trp 246 (Figure 3A). They are
involved in a crosstalk between these pockets. Interestingly,
both MD simulations and experimental studies have demon-
strated a ligand-dependent A2A signaling, which involves an
allosteric effect via these two pockets.60,62,63

For example, at frame 844 (out of 1000 frames analyzed), the
larger orthosteric pocket pID 15 joins the allosteric pID 22
(Figure 3B). Interestingly, when these two pockets are merged,
they allow a small channel to form (Figure 3 and Figure 4). As
suggested by thermal stability studies60 and MD simulations,64

this channel permits the passage of a sodium ion from the
extracellular side to the allosteric pocket. The residues at the
edge between the two pockets may therefore act as a gate,
mediating this channel’s opening and closing, and thus
modulating the entrance of the sodium ion. This would also
account for the conformation flexibility of Trp 246, known as
the “toggle switch” residue, which is associated with the
activation mechanism of GPCRs.56,59,65,66 Notably, the
conformational flexibility of residues that lie between two
pockets has been shown to be crucial also in other enzymes,
such as those processing lipids (e.g., fatty acid amide
hydrolase67,68 and monoacylglycerol lipase7).
We used adiabatic bias simulations to test the passage of the

sodium ion through the transiently formed channel detected via
pocket crosstalk analysis (Figure 4); although qualitative, our
results indicate that this channel can allow the sodium ion to

access the protein through a continuous and sterically
accessible pathway (Figure 4). While the calculation of the
associated thermodynamics would require more extended
simulations, it is interesting to note that this pathway well
resembles the one shown by Yuan et al., identified along 9.6 μs
of plain MD simulation.69

Abelson (Abl) Tyrosine Kinase. Here, we analyzed the MD
simulations of the kinase domain (KD) of Abl, both in the
catalytically active DFG-in (KDin) and in the catalytically
inactive DFG-out (KDout) conformations (see Methods for
details).70 Among the most persistent pockets in KDin, our

Figure 3. (A) Time persistency of residues that define the orthosteric pocket (blue stem, pID 15) and the allosteric pocket (red stem, pID 22). (B)
Volume plot of pID 15 and pID 22 in selected frames and representation of merging and splitting events.

Figure 4. Pocket crosstalk analysis reveals that when pID 15 merges
with the allosteric pID 22, a small channel is formed (Figure 3). We
used adiabatic biased simulations to characterize the passage of a
sodium ion through the transient channel detected by our algorithm
(see Supporting Information). (A) The green spheres indicate the
pathway followed by the sodium ion along the simulations, toward the
extracellular site. The two conserved residues Trp246 and Asp52 are
shown. In panel B we show the narrowest section of the channel, with
the gating Trp246 partially flipped so as to allow ion passage.
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algorithm successfully identified the large ATP site (pID 5, see
Supporting Figure 3).71 In addition to pID 5, we found another
nearby pocket located between the DFG motif and the αC helix
(pID 3, see Supporting Figure 3), which is known to be an
allosteric site located in the KD.72 Interestingly, pID 5 and pID
3 present a marked crosstalk in our MD simulations, sharing a
large set of residues, which are listed in Supporting Table 1. For
∼63% of the simulation, they remain separate, with volumes of
439 Å3 and 167 Å3, respectively. However, for ∼35% of the
simulations, the two pockets merge into a single larger pocket
with an average volume of 497 Å3 (Figure 5).

In KDout, our algorithm again identified the ATP pocket pID
5 and the nearby allosteric pocket pID 3 (Supporting Figure 3),
with an average volume of 339 Å3 and 222 Å3, respectively.
However, the algorithm identified also an additional pocket,
pID 28, which is located between the P-loop and the β3-αC-
helix loop (Supporting Figure 3), and which has a smaller
volume of 150 Å3. Notably, the region containing this new
pocket is targeted by a new class of diphenylamine-derived

allosteric inhibitors of MEK 1 and MEK 2 kinases.73 Here too,
the three pockets (pID 3, pID 5, and pID 28) share a set of
residues (listed in Supporting Table 1), suggesting a
communication network. Interestingly, in this case, these
three pockets exist as individual entities for only ∼11% of the
overall simulated time. This is because merging events are more
frequent than in the catalytically active KDin system (Figure 5).
According to our analysis, the DFG-in conformation limits

the crosstalk between the ATP pocket and the nearby pocket
pID 3 in the catalytically active KDin system. In contrast, in
KDout, the DFG-out conformation favors communication with
the surrounding pockets pID 3 and pID 28. Indeed, the DFG-
out conformation has been demonstrated to increase the
flexibility of the ATP binding site, which leads to a loss of KD
activity.74,75 Thus, our analysis suggests that the specific DFG
conformation (in or out) affects the formation of transient
pockets and their communication network. These, in turn,
modulate the ATP binding site’s overall shape and the resulting
KD activity.

Allosteric Signal Transmission Networks Inferred
from Pocket Crosstalk Analysis. Here, we tested the
capability of our algorithm to reveal allosteric signal
propagation pathways in proteins, starting from an MD-
generated equilibrium ensemble of structures. As a paradig-
matic example, we investigated the Abl kinase, which is one of
the most characterized systems in terms of molecular
determinants for protein allostery.74−77 We performed a
comparative analysis of four different Abl systems: (1) the
wild-type KDin form, (2) KD bound to myristate (Myr/KDin),
(3) the KD apo form of the T315I mutation (T315I-KDin), and
(4) system T315I-KDin bound to myristate (Myr/T315I-KDin).
In all systems, our analysis detected both the orthosteric ATP

pocket and the allosteric myristate pocket, which is located in
the C-lobe of the KD.78 The analysis also returned an intensive
crosstalk between pockets distributed on the protein surface.
This was detected by looking at the off-diagonal elements of the
square matrix N (see Theory). Notably, this crosstalk network
connects the distal orthosteric ATP and the allosteric myristate
binding sites (Figure 6), which is known to be central for the
allosteric signal propagation in Abl.79−82 In particular, in both
KDin and Myr/KDin, the ATP and the myristate pockets are
connected via a long-range crosstalk network composed of a
number (∼3 to 5) of small transient pockets (average volume
∼90 Å3, and persistency between 20% and 70%). These pockets
are mainly located in the C-lobe and mostly involve the αG and
αI helices (Figure 6). Notably, the location of the pockets
corresponds to that of the new allosteric pockets reported by
Shan et al. in their study on binding pathways in Src kinase.83

Moreover, in the MD simulations of Abl with the drug-resistant
T315I point mutation (T315I-KDin system), the ATP ↔
myristate long-range crosstalk network is actually disrupted
(Figure 6). The perturbation of this communication pathway in
the T315I-KDin system might explain the dysregulation of the
T315I kinase form.84,85 Remarkably, however, the ATP ↔
myristate pockets’ long-range communication network is
restored in our simulations when the myristate binds to the
T315I Abl mutated form (i.e., the Myr/T315I-KDin system).
This is also observed in the wild-type system and is in line with
other experimental and computational studies showing that
myristate mimesis elicits a structural rearrangement on the ATP
pocket and influences the binding affinity of orthosteric
inhibitors (see Supporting Information).77,79 This allosteric
communication network could also explain the results of HX

Figure 5. Representation of the dynamical behavior of the ATP
pockets during MD simulations of the KDin (a, b) and KDout systems
(c−f). In KDin, the ATP pocket pID 5 coexists with the nearby pID 3
for 63.0% of the simulations (a), while pID 5 is the only pocket for
35% of the simulations (b). In KDout, the ATP pocket coexists with
pID 3 and pID 28 for 11% of the MD simulations (c). It is the only
emerging pocket for 38% of the simulations (d), and it coexists with
pID 3 for 20% of the simulations (e) and with pID 28 for 23% of the
simulations (f).
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MS experiments, which further detailed the presence of an
allosteric-signal-propagation pathway from myristate to the
ATP pockets, passing through KD structural elements such as
the αI-helix.79

As a following step, we aimed at connecting such a
mechanism for allosteric signaling with useful information for
ligand design. Toward this end, we performed enhanced
sampling MD simulations to test whether this network for
allosteric signaling affects ligand binding at the orthosteric site.
Thus, we performed a set of scaled-MD simulations86 on the
T315I mutant of Abl, either in complex with dasatinib bound at
the orthosteric site (i.e., Das/T315I-KDin) or in complex with
both dasatinib and the myristate, at the distal myristate binding
pocket (i.e., Das-Myr/T315I-KDin). Scaled-MD simulations can
be used to accelerate the unbinding process by reducing the
atomic interactions in the potential energy of the system. While
facilitating the unbinding from the pocket during the MD run,
scaled-MD simulations allow also a qualitative and relative
estimation of the ligand residence time.86,87 Here, we used
scaled-MD simulations to estimate the residence time of
dasatinib in Das-Myr/T315I-KDin and Das/T315I-KDin

systems, which only differ in the presence of the myristate
(Figure 6). In these simulations, dasatinib showed an average
scaled residence time ∼2 times longer when unbinding from
Das-Myr/T315I-KDin compared to when it unbinds from Das/
T315I-KDin (see Supporting Table 2). Converted back to
nonscaled residence times, (see ref 86 for further details)
dasatinib in the two systems returns a ratio value of more than
4. Although only qualitative, this result further indicates that the
presence of the myristate, which coincides with the formation
of the crosstalk signaling network connecting the orthosteric
ATP and the allosteric myristate pockets (Figure 6), stabilizes
the complex with dasatinib. Notably, biochemical assays
confirm that dasatinib is active against the T315I Abl form
only in the presence of an allosteric binder.79 Moreover, the
residence time of a drug often correlates with its binding
affinity, due to the relationship between the rate of dissociation
(koff) and the thermodynamic dissociation constant (Kd).
Hence, a longer residence time suggests a greater affinity of the
drug for its target. Taken together, these results verify binding
cooperativity effects in the Abl system, in which the presence of
an allosteric binder at the myristate pocket is shown to impact
on ligand binding at the orthosteric site. This example suggests
that the information generated by dynamic pocket crosstalk
analysis can help identify suitable conformational states for
ligand binding thermodynamics obtained through subsequent
calculations.

■ DISCUSSION
In this work, we provide new mechanistic insights on pocket
dynamics and allosteric communication in three pharmaceuti-
cally relevant proteins, namely, the purine nucleoside
phosphorylase (PNP) enzyme, the adenosinic receptor (A2A),
and the Abelson (Abl) kinase. Importantly, these findings are
obtained through the use of a novel algorithm that analyzes
pocket crosstalk events along the dynamics of a given
biomolecular system. In this study, we demonstrate that this
method can effectively reveal allosteric communication net-
works embedded in the ever-longer available MD trajectories.
In addition, this new method characterizes all binding pockets
through site-centered descriptors, which can be used in
machine-learning-based virtual screening protocols with
enhanced predictivity.3

First, the algorithm identified all three experimentally known
orthosteric binding sites in the PNP homotrimeric enzyme
(pID 4, pID 9, and pID 12 in Figure 2).44 As expected, these
are the largest and most persistent pockets. The dynamical
analysis also identified smaller pockets in proximity of these
three sites. Notably, these auxiliary pockets were involved in a
prebinding state of DADMe-ImmH, a PNP inhibitor,47 which
was found to transiently interact with this small pocket before
entering the main orthosteric site.48 Analysis of the volume
variation over time pointed to an elevated plasticity of the
orthosteric binding sites. In fact, their average volume is higher
than the crystallographic corresponding value. This suggests
that the pockets undergo a structural rearrangement, which
likely facilitates the binding of inhibitors observed during the
simulations.48 Our analysis also revealed a marked pattern of
communication between each orthosteric pocket and its nearby
prebinding site, reflected by a high frequency of merge and split
events. Interestingly, this evidence is in line with structural
studies, which show that two of the binding site’s structural
motifs (the His 257 helix and His 64 loop) undergo a major
conformational alteration upon the binding of the inhibitor.

Figure 6. Networks of the most persistent pockets found in the KDin,
T315I-KDin, Myr/KDin, and Myr/T315I-KDin trajectories. Each
pocket (i.e., network node) is represented as a sphere, with the
different colors indicating the pocket’s persistency. The pockets are
connected via black lines (i.e., network edges). The width of each edge
is proportional to the communication frequency. The networks
connect the ATP and the myristate binding sites in all systems except
T315I-KDin. We performed our analysis considering only pockets
having a persistency of at least 20% and above, along the simulation
time.
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This alteration affects the binding pocket’s size and shape.49 In
addition, the high flexibility of this structural region in PNP was
recently used to demonstrate that MD can be effectively
deployed to improve virtual screening results.3

Our algorithm also identified a long-range communication
pathway connecting the orthosteric pockets and another pocket
at the center of the trimerization interface (pID 22). This
pathway suggests a possible allosteric connection between the
three orthosteric pockets that passes through pID 22, at the
trimerization interface. Intriguingly, this allosteric signal may
help explain the negative cooperation between PNP subunits,
as observed by Schramm and collaborators.49,50 In H/D
exchange experiments, dynamical coupling has also been
observed between the orthosteric sites and the pocket located
at the trimerization interface.88 This further corroborates our
hypothesis, according to which pID 22 could be the hub of the
allosteric signal transmission between PNP monomers.
We then analyzed the MD trajectory of A2A, simulated in

POPC membrane. This analysis captured the experimentally
known pockets, which are the orthosteric binding site, located
close to the extracellular side, and the underlying sodium
allosteric site (Figure 3).56,57,59 Our analysis also showed that,
during the simulation, the two pockets communicated through
a set of residues located at the interface of the two sites (i.e., Val
84, Ala 88, Phe 242, and Trp 246). This result is in line with
earlier experimental and computational studies, which
hypothesized the presence of an allosteric signal between the
two cavities, which is crucial for modulating A2A function.

60,64,89

In this regard, we found that the conformational flexibility of
Trp 246, also known as the “toggle switch”, appears to be
crucial for the formation of a small channel during a two-pocket
merging event. Via this channel, the Na+ ion may access the
inner part of the protein from the extracellular space, as
experimentally reported (Figure 3 and Figure 4).56,60,90

Merging and splitting events were also shown in our MD
simulations of the Abl kinase. Here, we focused on the
orthosteric ATP site, comparing the results obtained from
analyzing the catalytically active DFG-in kinase domain and the
catalytically inactive DFG-out kinase domain (KDin and KDout,
respectively). Together with the ATP site, our algorithm
correctly detected two additional smaller adjacent pockets. One
is an allosteric pocket often exploited by type II kinase
inhibitors, while the other is present only in KDout, lying
between the P-loop and the β3-αC-helix loop (Figure 5).
Notably, this region is targeted by a new class of MEK1 and 2
kinase inhibitors.73 This pocket also accommodates the
piperazine−phenyl−pyrimidine moiety of SCH772984 in
both ERK1 and ERK2 kinases.91 This confirms the ability of
our algorithm to identify small hidden cavities that can be
exploited in the design of new selective inhibitors. Notably, our
analysis captured even subtle protein conformational changes,
such as split and merge events between the large ATP site and
the two nearby subpockets. These events are more frequent in
the inactive KDout than in the active KDin form. This intensive
crosstalk reflects the high plasticity of the ATP binding site in
KDout, as suggested by previous computational studies,74,75

which results in a diminished catalytic activity.
Lastly, the method was able to reveal a long-range

connection between the orthosteric ATP binding site and the
allosteric myristate pocket. This has frequently been reported in
the literature as a crucial allosteric mechanism for kinase
function.79−82 Our analysis reveals a pocket crosstalk network,
which passes through a set of small pockets located close to the

αG and αI helices of the C-lobe, in a region that can be targeted
by allosteric kinase inhibitors, as suggested by a recent
computational study (Figure 5).83 Computational and exper-
imental studies76,77,79 suggest that the integrity of this
communication network coincides with a proper functioning
of Abl. Targeting this pocket communication network may thus
offer a new way for modulating the activity of the protein, as
exemplified here for the binding of dasatinib to Abl, and its
allosteric modulation.79 Indeed, both HX MS experiments and
MD simulations indicated that the αG and αI helices are
involved in the allosteric signal propagation in Abl.79 Our
analysis detected a perturbation of this pocket communication
network in the dysregulated T315I Abl form only, which occurs
at the level of the αG and αI helices of the C-lobe (Figure 6).
That is, we found that the T315I point mutation in the absence
of the myristate interrupts this pocket crosstalk network, which
might explain the dysregulation of the T315I Abl form.84

Ultimately, within the sampling limitations of the input
trajectories, this new algorithm’s dynamical analysis detects
interaction networks, which involve rearrangements that may
reveal new binding sites on the protein surface.92 It can also
point to possible mechanisms for allosteric signal propagation,
spotting protein configurations that may be used as target
structures for ligand binding thermodynamics through
computations for structure-based drug design.93

■ CONCLUSIONS

In this work, we provide new mechanistic understandings about
pocket formation and allosteric communication in three
relevant drug discovery targets, namely, PNP, A2A, and Abl
kinase. Importantly, these findings are obtained through the use
of an original and fully automated method for analyzing pocket
crosstalk along microsecond-long MD simulations, which are
performed to examine the spatiotemporal evolution of proteins.
We demonstrate that this unprecedented dynamical analysis
can reveal otherwise hidden connections between pockets,
which may also underlie allosteric communication networks in
proteins, as discussed for the biomolecular systems here
investigated. Ultimately, we propose dynamic pocket crosstalk
analysis for a more detailed understanding of the structural
dynamics of proteins and biological regulation through
allosteric communication, suggesting a prospective use of this
method in structure-based drug design.

■ METHODS

Structural Models. In the present work, we analyzed the
MD simulations of three different systems, namely, purine
nucleoside phosphorylase (PNP), the adenosinic receptor
(A2A), and the Abelson (Abl) kinase. The homotrimeric
construct of PNP was modeled using 3K8O X-ray structures
and was simulated in the presence of nine DADME-ImmH
ligands and phosphate ions, retrieved from 1RSZ and 1RR694

PDB structures, respectively. The A2A receptor was mostly built
using the 3UZC X-ray structure,95 while the 4EIY X-ray
structure56 was used as a template for the missing ECL2 in
3UZC. The apo protein was embedded in POPC membrane.
For Abl, we built five different model systems. Two included
the apo wild-type KD alone in both the DFG-in (KDin) and
DFG-out conformations (KDout). Two comprised the KD
mutated at the gatekeeper residue T315 (located at the ATP
binding site) with an isoleucine residue. These mutated forms
are either in the apo form (T315I-KDin) or in complex with
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myristate (Myr/T315I-KDin). The last system is the wild-type
KD in complex with myristate (Myr/KDin). The KDout system
was built starting from the 1OPL chain B X-ray structure96 after
removal of the SH2 domain. The remaining systems were
modeled starting from the 2F4J X-ray structure.97 For further
details, see the Supporting Information.
MD Simulations. PNP was parametrized using the Amber

ff99SB-ILDN force field,98 while the General Amber Force
Field (GAFF)99 was used to parametrize the ligands and the
ions. Ligand partial charges were fitted using the RESP
procedure via Antechamber.100 The system was immersed in
a TIP3P water box101 and comprised ∼100,000 atoms. After
350 ns of equilibration, which led the system to a temperature
of 300 K and to a pressure of 1 bar, we ran the production in
NVT ensemble. For the analysis, we collected ∼700 ns of
simulation stored in ∼1800 frames.
A2A was parametrized using the Amber ff99SB-ILDN force

field.98 The protein and the POPC membrane were immersed
in a TIP3P water box101 reaching a total of 65,802 atoms. Here
too, the system was first equilibrated to reach a temperature of
300 K and a pressure of 1 bar, while the production was run for
100 ns in NPT ensemble. We extracted ∼1000 frames from the
trajectory for analysis. For adiabatic bias simulations, we used
Plumed2.102 The reaction coordinate was the distance between
the sodium ion and the geometric center of the alpha carbons
of Leu267, Asp175, and Gln163 (pdb 3EML). The line
connecting this geometric center and the sodium ion is quasi
parallel to the principal axis of the GPCR and thus is a
reasonable steering coordinate. The spring constant was set to
500 kJ/mol/ Å2.
The five Abl kinase systems were parametrized using the

Amber ff99SB force field.103 For Myr/T315I-KDin and Myr/
KDin models, the myristate was parametrized using the General
Amber Force Field (GAFF)99 after computing the point
charges at the HF/6-31G* level of theory. The systems were
solvated in TIP3P water and comprised ∼45000 atoms. After 5
ns of equilibration, the systems reached a temperature of 300 K
and a pressure of 1 bar, and we then ran the production in NPT
ensemble for a simulation time that ranged from ∼0.8 μs to
∼2.5 μs. Here, our algorithm was used to analyze ∼16,000 to
∼50,000 frames. See the Supporting Information for more
details.
Algorithm Parameters. For each analysis, we set the small

and large probe radii to 1.4 and 3 Å, respectively. To avoid
unnecessary noise due to the detection of very small pockets,
we set the minimum volume of a detectable pocket to the
equivalent of 5 water molecules for PNP and A2A, and 4 water
molecules for Abl kinase. Finally, for tracking purposes, we
removed all the ligands, ions, membrane, and water molecules
from each trajectory, taking into account the sole protein.
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