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Abstract: Smartphones are context-aware devices that provide a compelling platform for ubiquitous
computing and assist users in accomplishing many of their routine tasks anytime and anywhere, such
as sending and receiving emails. The nature of tasks conducted with these devices has evolved with
the exponential increase in the sensing and computing capabilities of a smartphone. Due to the ease
of use and convenience, many users tend to store their private data, such as personal identifiers and
bank account details, on their smartphone. However, this sensitive data can be vulnerable if the device
gets stolen or lost. A traditional approach for protecting this type of data on mobile devices is to
authenticate users with mechanisms such as PINs, passwords, and fingerprint recognition. However,
these techniques are vulnerable to user compliance and a plethora of attacks, such as smudge attacks.
The work in this paper addresses these challenges by proposing a novel authentication framework,
which is based on recognizing the behavioral traits of smartphone users using the embedded sensors
of smartphone, such as Accelerometer, Gyroscope and Magnetometer. The proposed framework also
provides a platform for carrying out multi-class smart user authentication, which provides different
levels of access to a wide range of smartphone users. This work has been validated with a series of
experiments, which demonstrate the effectiveness of the proposed framework.

Keywords: activity recognition; behavioral biometrics; continuous sensing; micro-environment
sensing; mobile sensing; smartphone authentication; ubiquitous computing

1. Introduction

Smartphones are ubiquitous, becoming more and more sophisticated with the advancement
in their computing, sensing, and networking powers. Currently, 68% of the world’s population
own a mobile phone, and by 2019 this figure is expected to be in the region of 72% [1]. Market
research on the sale of smartphone has shown that the number of smartphones sold has surpassed
the number of laptops sold worldwide [2]. The pervasive nature of smartphones, together with
integrated sensing capabilities, has changed the landscape of people’s everyday life. Smartphones
have become the guardians for most of our personal information, such as medical information (e.g.,
heart rate), bank account details, and personal credentials for different services and applications.
With the increasing use of smartphones, users have begun to worry about the confidentiality of their
data and information. As smartphones are intended for quick and recurrent access, it can lead to
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compromised privacy of smartphone data and information [3]. It has now become critical to maintain
the privacy of sensitive data and information available through these devices using non-intrusive yet
viable authentication mechanisms.

Unfortunately, most widely used authentication methods for smartphones including passwords,
PINs, pattern locks, and fingerprint scans offer limited safekeeping [3], as they are vulnerable to many
attacks including guessing [4], spoofing [5] in case of fingerprint scans, and the side channel attacks
such as video capture attacks [6], or smudge attacks [7]. Secure passwords are often not considered
to be appropriate for use on smartphones due to the length of time required for their input. Many
smartphones provide PINs as alternatives to passwords. PINs have the benefit of being able to be
entered quickly, but they provide far less safekeeping than passwords, as they may be guessed more
quickly [3]. Pattern locks provide protection by allowing users to choose a sequence of points during
enrollment and then repeating it during authentication. However, these pattern locks are exposed
to side channel attacks, and the user’s fingertips often leave a distinguishing trace on the screen,
which can indicate the pattern that was used to access the device [3]. Moreover, these authentication
methods require a user to deal with the smartphone actively and spend a few precious seconds for
inputting some valid pieces of information, or drawing sophisticated patterns on touchscreen, which
has become a frustration for the millions of smartphone users worldwide. As a result, many people
like to use fewer privacy barriers each time they decide to access their device [8], which is reducing
the effectiveness of such authentication schemes, ultimately making them vulnerable to data theft. In
addition, these commonly used methods for authentication fail to detect and recognize an adversary
once he/she has passed the point of entry [9], which makes these approaches futile for continuous and
non-intrusive passive authentication.

Continuous and passive authentication aims to address these challenges by offering a way to use
behavioral biometrics for authenticating a smartphone user continuously [9]. Behavioral biometrics
based authentication scheme targets to learn the characteristics of the user behavior that does not
change over a period of time, such as gait patterns [10], hand movements and waving patterns [11],
voice [12], signature [13], and touchscreen interactions [14,15]. These characteristics are then used to
implicitly authenticate a smartphone user to prevent unauthorized access to the device. This type of
authentication works passively in the background and monitors the interactions between a user and
the device to make a decision about the authenticity of the user who is trying to use the device [9].
The user authentication decision is taken on the basis of distinctive features identified from the user’s
behavior. Recent research has been exploiting smartphone inertial sensors for developing fast and
secure authentication schemes based on behavioral biometrics [16–18]. A vector representation of the
axes of smartphone inertial sensors is shown in Figure 1.
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accelerometer measures acceleration, the gyroscope measures rotation, and the magnetometer measures
the magnetic field strength along the x, y, and z axes.



Sensors 2017, 17, 2043 3 of 31

The research on behavioral biometrics is challenging because of the difficulty of collecting data
from a practical and legal point of view [18]. Existing research has found issues with data collection
procedures due to inadequate amount and diversity of data, poor representation and description of
real world events, and crucial self-consciousness of the members participating for performing different
activities. In addition, other challenges associated with the development of a continuous authentication
system for smartphones are as follows:

• Orientation sensitivity of smartphone inertial sensors, i.e., the readings of these sensors change by
changing the orientation of the smartphone, as shown in Figure 1.

• Effectively learning activity and motion patterns from noisy sensors data.
• Incorporating real-time sensors data into a biometric authentication setup on a smartphone, which

is limited in terms of memory and processing power.
• Lack of “negative” samples for efficient testing of an authentication model.

Keeping all these issues and challenges in view, the problem of continuous and passive
authentication of a smartphone user is addressed in this study. A novel Intelligent Authentication
(IntelliAuth) scheme is proposed for smartphone user authentication, which is based on physical
activity recognition and micro-environment sensing. The activity recognition component is based
on recognizing behavioral patterns from a series of activities performed by the user, while
micro-environment sensing is based on recognizing elements within proximity of the surrounding
area of the mobile phone [19] For the purpose of user authentication, six Activities of Daily Living
(ADLs) are considered in this study: walking, sitting, standing, running, walking upstairs, and walking
downstairs. Three smartphone sensors, i.e., accelerometer, gyroscope, and magnetometer, are used for
capturing data of different smartphone users while performing these activities. As the position of a
smartphone on the user’s body may vary while performing any activity in real time, therefore, five
different positions are chosen for placing the smartphone on the user’s body while performing one of
the six defined activities. These body positions include right wrist, right upper arm, left thigh, right
thigh, and waist position towards right leg. A smartphone is supposed to be placed by the user in one
of these body positions while performing an activity in real time.

For validation, an existing dataset for physical activity recognition [20,21] is utilized. The
data are pre-processed, and several features are extracted from time and frequency domains. The
extracted features are then classified into six different activities performed by three different classes of
smartphone users. Three different user classes selected in this study are authenticated, supplementary,
and impostor. Each user class symbolizes a smartphone user having a different level of access to
smartphone data. Four different classification algorithms, i.e., Support Vector Machine (SVM), Bayesian
Network/Bayes Net (BN), Decision tress (DT), and K-Nearest Neighbors (K-NN), are employed for
activity classification. A probabilistic scoring model, based on activity recognition, is used to classify a
smartphone user for the purpose of authentication.

The primary contributions of this research work are:

1. A novel and multi-class smartphone user authentication scheme, based on activity recognition, is
presented for different types of users that may access a smartphone.

2. Micro-environment sensing is combined with physical activity recognition to eliminate false
positives arising due to the position sensitivity of smartphone inertial sensors, resulting in better
user authentication.

3. A novel probabilistic scoring model, based on activity recognition, is presented for smartphone
user classification.
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The rest of the paper is structured as follows: Section 2 presents a brief description of the related
work. Section 3 provides a detailed description of the IntelliAuth framework for user authentication.
Section 4 explains the methodology used in this research work for activity recognition and smartphone
user authentication. In Section 5, a detailed analysis of the results is presented and discussed. Section 6
concludes the research findings, and provides recommendations for future work.

2. Related Work

As computing and sensing capabilities have advanced in smartphones, researchers have started to
utilize more types of sensory data from these devices for a wide range of purposes. Mobile sensing data
have been exploited for crowdsourcing [22], context awareness [23,24], and activity recognition [25].
Existing work shows that utilization of multiple on-body sensors placed at different positions (i.e.,
waist, knees, arms, and ankles) can determine the physical activities performed by a user [26–28]. In [29]
and [30], data pre-processing and feature extraction algorithms were applied for activity recognition
using an accelerometer. In [31], the authors detected complex human activities such as smoking, eating,
drinking, etc. by utilizing smartphone sensors along with wrist-mounted motion sensors. Activity
recognition has been utilized for different purposes, such as human behavior modeling [32,33] and
health monitoring [34]. The authors of [35] applied activity recognition techniques for detecting bad
habits in a person by combining smartphone sensors with wrist-worn smartwatch sensors.

In a few recent years, the research on smartphone user authentication has seen determined work,
and many solutions have been proposed for the authentication of smartphone users. A comprehensive
review of the state of the art for smartphone user authentication is provided in [9], which lays
emphasis on seven different behavioral biometric approaches for user authentication. These approaches
include gait, touchscreen interaction, hand waving, keystroke pattern, voice, signature, and behavioral
profiling. Zheng et al. [15] utilized accelerometer, gyroscope, and touchscreen sensor for non-intrusive
authentication of a smartphone user by analyzing how a user touches the phone. Different features such
as acceleration, pressure, size of touch area, and passage of time were collected using experimental
data on both four-digit and eight-digit PINs by employing tap behaviors to verify passcodes of
different participants. The authors used one-class classifier [36] based on the notion of nearest neighbor
distance for user recognition. Trojahn and Ortmeier [37] proposed a scheme that combined keystroke
and handwriting analysis on smartphones for the purpose of user authentication. During data
recording, the authors asked different subjects to type a sentence or a password for a specific number
of times. For evaluating their approach, the authors chose different machine learning algorithms
including Decision Tree [38], Bayes Net [39], and MLP [40]. The authors in [18] proposed a scheme
for on-device authentication of smartphone users by learning their motion patterns based on two
essential components: time-based feature extraction using deep neural networks, and classification
via a probabilistic reproductive model. Table 1 provides further existing work related to behavioral
authentication of smartphone users by providing a comparison among different studies on the basis of
the approach used for behavioral biometrics, classification algorithms, and the set of features employed
for user authentication. The problems and limitations of different behavioral biometric approaches
that have been used in the existing studies for smartphone user authentication are described in Table 2.
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Table 1. A comparison of different studies of behavioral authentication of smartphone users.

Study Behavioral Biometrics Approach Classifier Feature Set

Yang et al. [11], 2013 Hand waving using linear accelerometer - Sampling interval, acceleration along x, y
and z axes

Shrestha et al. [41], 2015 Hand wavingusing ambient light sensor SVM [42] Timestamps, light intensity, hand wave
gesture duration

Draffin et al. [8], 2014 Keystroke biometrics Neural Network Classifier [43] Location pressed on key, length of press,
size of touched area, drift

Feng et al. [44], 2013 Keystroke biometrics Decision Tree [38], Bayes Net [39]
Random Forest [45], -

Frank et al. [14], 2013 Touchscreen interactions SVM [42], K-NN [46], -

Shahzad et al. [47], 2012 Touchscreen interactions - -

Derawi et al. [48], 2010 Gait biometrics using
smartphone sensors DTW [49] Time interpolation, Average cycle length

Mantyjarvi et al. [50], 2005 Gait biometrics using accelerometer - Acceleration along x, y and z axes, 10 bin
FFT histograms

Clarke and Mekala et al. [51], 2007 Dynamic signatures by typing words - -

Sae-Bae [52], 2014 Line signature drawn with fingertip DTW [49], -

Kunz et al. [53], 2011 Speaker verification during ongoing
phone call HMMs [54] -

Das et al. [55], 2008 Speaker’s identification based on
speech dynamics DTW [49] -

Kambourakis et al. [56], 2014 Behavioral profiling MLP [40], Random Forest [45],
K-NN [46] Hold time, inter-time, speed, distance
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Table 2. Limitations of behavioral biometric approaches for smartphone user authentication.

Behavioral Biometric Approach Limitations

Hand waving Patterns and Gestures

• Requires a user to interact with the device actively and make a specific hand waving gesture for authentication
• User may generate some random hand waving gestures un-intentionally
• Validates a user only when a hand waving gesture is made
• Failure in identifying an impostor who accesses the phone while it is unlocked
• Multiple users may have the same hand waving patterns

Keystroke Dynamics

• Requires active interaction of the user with the device keyboard for authentication
• Validates a user only when something is typed using the device keyboard
• Learning the keystroke patterns for a new user takes a lot of time
• Person’s typing behavior changes considerably throughout a day with different states of mind such as excited, tired, etc.
• Switching keyboards may change the typing patterns
• Disruptions during typing may significantly influence the typing patterns

Touchscreen Interactions

• Requires active interaction of the user with the touchscreen for authentication
• Holding a smartphone in hands with different orientations vary the way of the user’s interactions with the touchscreen
• User’s activity while interacting with touchscreen, such as walking, sitting, standing etc., effects the way of touching the

device screen

Handwriting and Signatures
• Requires a user to interact with the device actively to input signatures
• Only feasible for entry point authentication
• People may not sign in a steady way all the times

Voice • Unwanted noises in the user’s surroundings, such as traffic noise, noise of a crowd of people talking etc., greatly affect the
recognition and identification of the user’s voice

Gait Patterns • Wearing an outfit, such as a trench coat or a footwear, may change a person’s walking style
• Dependency of gait patterns on the position of motion sensors on the human body

Behavioral Profiling • User’s behavioral patterns change with the user’s mood and state of mind while interacting with different services and
applications using touchscreen and keystroke
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A few researchers [11,14,57] have concentrated on learning some specific activities for smartphone
authentication—for example, picking up a smartphone from the table, unlocking the home screen
using a slide pattern, dialing a specific number from the keypad, making a hand waving gesture, or
making a call. However, these activities are specifically related to a smartphone and not proficient to
use for continuous authentication. The reason is that these activities authenticate a user only when
he/she performs one of these activities in a specific pattern. Once a user has been authenticated, there
will be no other way to monitor the user unless s/he performs one of these specific activities again.
It is possible that a smartphone may get stolen by an impostor while it is unlocked. In that case, the
authentication model will not be able to know that the smartphone is possessed by an impostor until
and unless a mismatching pattern is detected related to a specific activity. Also, there can be instances
where a smartphone may get snatched while a person is talking on the phone. In such cases, this type
of authentication model will fail to correctly identify a smartphone user continuously.

In this study, the problems and limitations of the existing approaches for smartphone user
authentication have been analyzed, and an effective solution has been provided for passive and
continuous authentication of smartphone users. The proposed scheme combines micro-environment
sensing with physical activity recognition for authenticating smartphone users, incorporating
context awareness.

3. IntelliAuth Framework

The basic purpose of a smartphone authentication scheme is to differentiate between an authorized
smartphone owner and unauthorized individuals. This type of authentication relates to a binary-class
user classification problem where a person who is the legitimate user of a smartphone is classified as
authenticated, whereas all other persons are classified as non-authenticated. This limits the access of a
smartphone to only a single authenticated user. However, in practice, it is seen that a smartphone is not
only limited for use of a single person only. A smartphone owner may share his/her smartphone with a
spouse, close friends, relatives, or colleagues for a variety of tasks, such as making a phone call, sending
a text message, playing a game, watching a video clip, or even doing something auxiliary. However,
the authorized user does not want any private information in the smartphone to be compromised,
leaked, or stolen. A smartphone owner may want to allow a certain group of people to access only a
few portions of his private data on the smartphone by retaining a different level of access to his/her
smartphone data for different persons. Given this, any smartphone authentication framework, based
on behavioral biometrics, will give rise to a lot of issues as the authentication framework will not be
able to authenticate any person other than the original owner (authenticated user), and may not permit
him/her to use that device at all.

In order to address the major challenges associated with the authentication of multiple
smartphone users, the IntelliAuth framework classifies the smartphone users into three different
classes: authenticated, supplementary, and impostor. This user classification is performed on the basis
of activity recognition using a probabilistic scoring model. Being classified as authenticated user means
that the user is the owner of the device and permitted to access all the data and information on the
device. However, being classified as impostor means that the user is a fraud and should not be allowed
to use that device at all. If the user authentication model finds a user as supplementary, it means that
the user will gain only a restricted access to the smartphone as set by the owner of the device, i.e., the
authenticated user. In short, the proposed framework assigns three different levels of access privileges,
i.e., full-level access, restricted access, and zero-level access, to authenticated, supplementary, and
impostor users of a smartphone, respectively.

The proposed framework utilizes a combination of three smartphone motion sensors, i.e., an
accelerometer, a gyroscope, and a magnetometer, as a source of input data for activity recognition
and user authentication. The use of a combination of the data from all three sensors is expected to
improve the performance and accuracy of the user authentication process. Previously, in [20,21], it has
been shown that the recognition accuracies of different activities can be significantly improved when
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multiple motion sensor data are combined, which is even more effective in the case of smartphones that
are carried in different body positions. However, when there is less certainty surrounding smartphone
positioning, a magnetometer used in a combination with an accelerometer and a gyroscope provides
better accuracy for activity recognition. The study concluded that a magnetometer can be used
in a combination with an accelerometer and a gyroscope to provide a supporting role for activity
recognition. As the proposed framework for smartphone user authentication identifies a smartphone
user by recognizing his/her activity pattern, a combination of these three sensors has been utilized in
this study for the purpose of user authentication.

3.1. Recognition of ADLs for Smartphone User Authentication

Activity recognition is the building block in this research work, which is employed for user
authentication. The proposed scheme primarily focuses on authenticating smartphone users by
learning and recognizing their behavioral traits while using smartphone. For this purpose, six Activities
of Daily Living (ADLs) are selected in this study. These activities include: walking, sitting, standing,
running, walking upstairs, and walking downstairs. The motion patterns of these activities are learned
for different classes of users. Generally, people perform these activities for multiple times on a daily
basis, whether intentionally or not. Hence, a smartphone user whether authenticated, supplementary,
or impostor, is likely to perform these activities in his/her routine life frequently. The proposed scheme
authenticates a smartphone user on the basis of these activity patterns by continuously collecting and
processing small chunks of sensors data in real time. The system recognizes the activity performed
by the user from the collected chunk of data, and classifies the user as authenticated, supplementary,
or impostor. If it finds the user to be authenticated, it permits the user to unlock the phone using a
default option and access all the data and information on the smartphone. In the case of an impostor
user, the system will not permit the user to unlock the phone at all. The system keeps on validating the
user repetitively after a small interval of time, for example, five seconds, and takes no further action
until a different class of user is identified. If an impostor user gets the smartphone while it is unlocked,
the framework will identify the user within the five-second interval based on the selected activities,
and the phone will be locked again. Hence, the ADLs mentioned above assist in providing better
continuous and non-intrusive user authentication as these activities are based on tasks that are not
only specific to the purpose of authentication but are performed by all smartphone users in general.

The proposed scheme validates and identifies a smartphone user based on the activity patterns for
which the user authentication model is trained. For this purpose, the authentication model is trained
to learn and recognize the motion patterns of the selected activities when performed by the users in a
normal pattern as they tend to do usually. In real time, if an activity is performed by a user in a hefty
random sequence or an abnormal pattern, whether intentionally or unintentionally, the authentication
model is unlikely to be able to identify that smartphone user correctly. The key reason for failing to
recognize the smartphone user is that the model is not trained to account for abnormal activity patterns
of a user. Moreover, a random activity pattern of an authenticated user might be similar to the activity
pattern of an impostor user. In that case, if the system is trained to adapt itself to the random activity
patterns of an authenticated user, then the system may falsely accept an impostor as an authenticated
user, thus erring towards the safety. However, besides offline training of the authentication model,
the proposed framework allows the collection of sufficient amount of new training data for a user in
real time. Thus, the model can be trained corresponding to the different motion patterns of the same
activity performed by the same user. Training data can be collected for a new user as well, and a class
label can be assigned to that user. The authentication model can then quickly learn the activity patterns
for the new user from the collected data and adapt itself to the new user. In this way, the proposed
framework also provides adaptive behavioral authentication.
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3.2. Micro-Environment Sensing for Activity Recognition

A smartphone is not typically placed or kept at a single position only. A smartphone user may
keep his/her phone at different body positions with different orientations while performing the
same or different activity. The data collected from the smartphone inertial sensors is sensitive to the
placement and orientation of the smartphone on the human body. The axes of the smartphone inertial
sensors change their directions according to the orientation of the smartphone as shown in Figure 1.
Hence, the readings of these inertial sensors also vary. In our daily life, we come across several people
who keep the smartphone in their jeans while performing many activities, whether in the left jeans
pocket or the right jeans pocket. A few people hang the smartphone by a clip attached at their belt at
waist height, while others may keep the smartphone in a chest pocket or side pocket. Some people
keep the smartphone in their hands most of the time while doing anything. A few people keep the
smartphone at the upper arm position while doing activities like walking and running. Some females
tend to keep their smartphone inside a purse or a small pouch hanging from their arm, normally
at waist height. If a user changes the position or orientation of the smartphone on his/her body
while performing an activity in real time, the readings of the smartphone inertial sensors will be
different. Hence, the activity pattern will change. Thus, the authentication scheme will not be able
to correctly identify the smartphone user on the basis of his/her activity pattern. This is one of the
main challenges in creating an efficient scheme for smartphone user authentication based on activity
recognition. The proposed scheme for smartphone user authentication addresses the issue of position
sensitivity of the smartphone by incorporating micro-environment sensing [19], i.e., being aware of
the close surroundings of the smartphone, with activity recognition for improved user authentication.
For this purpose, five different body positions are selected in this study for placing a smartphone
on the human body while performing an activity. These body positions are considered as the close
surroundings of the smartphone, and include the left thigh, right thigh, waist, upper arm, and wrist
position. The motion patterns of all selected activities are learned, corresponding to all user classes for
these five positions of the smartphone on the human body. The user authentication model is trained to
sense the position of the smartphone on the human body along with the activity being performed and
the user who is performing that activity.

The positions of left and right thigh conform to the left and right jeans pockets on the front side,
respectively, where a smartphone can be placed. The waist position relates to a belt clip above the
right leg that can be used to hang a smartphone, or it may relate to the side pocket on the right side
of a uniform. The wrist position is used to point out the presence of a smartphone in the hands,
specifically in the right hand for this study. The upper arm position corresponds to an external phone
holder attached to the right bicep, or may relate to a right side chest pocket. In [20,21], the authors
also focused on these five body positions for placing a smartphone on the human body to recognize
different activities.

4. Methodology of Research

The proposed methodology for smartphone user authentication consists of five steps: data
acquisition, data pre-processing, feature extraction, activity recognition, and user authentication.
Figure 2 shows the proposed methodology with different steps. The detailed explanation related to
each step is explained in the following sections.
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4.1. Data Acquisition

The implementation of the proposed scheme for smartphone user authentication is based
on a supervised machine learning approach. For carrying out experiments according to the
proposed scheme, an existing dataset for physical activity recognition [20,21] was used. The data of
10 participants were collected for six different physical activities: walking, sitting, standing, running,
walking upstairs, and walking downstairs. During data collection experiments, all participants
performed every activity for three minutes. All participants were male, aged between 25 and 30. The
experiments for data collection were conducted in one of the university buildings. For the purpose
of walking and running activities, the corridor of a department was used, whereas for sitting and
standing activities, university offices were used. A five-floor building was used for walking upstairs
and downstairs activities. Every participant was equipped with five Samsung Galaxy S-II (i9100)
smartphones at five different positions, including left and right jeans pockets, right upper arm, right
wrist, and the waist position near the right leg. The smartphones were kept in portrait orientation for
all body positions except the waist position, where the smartphone was held in a landscape orientation
using a belt clip. The data were collected at a rate of 50 Hz from the smartphone inertial sensors.
This sampling rate was selected to efficiently distinguish human physical activities in the later part
of the experiment. Three sensors’ data were extracted from the dataset for this study, including an
accelerometer, a gyroscope, and a magnetometer. The data collected from these sensors was in the
form

{
ax, ay, az, gx, gy, gz, bx, by, bz

}
∈ R9, where ‘a’ represents the acceleration in meters per second

square (m/s2), ‘g’ represent the angular rotation measured by the gyroscope in radians per second
(rad/s), and ‘b’ represents the magnet field strength measured by the magnetometer in micro tesla
(µT), along the x-axis, y-axis, and z-axis.

4.2. Data Pre-Processing

The data recorded from the smartphone inertial sensors include unwanted noise generated from
the participants and the sensors themselves. It was essential to eliminate the unwanted noise from
the data before any further processing. Data pre-processing was employed to mitigate the unwanted
noise from the sensors data and divide the data into small segments for better feature extraction. Data
pre-processing was done in two steps.
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4.2.1. Noise Removal

For the purpose of noise removal, an average smoothing filter discussed in [25] was applied
on each data sample value along every axis. The filter replaced each raw data sample value by the
average value of its two adjacent data samples to reduce noise such as an abrupt spike that might have
been generated because of phone suddenly falling to the ground. The average smoothing filter also
eliminated the noise generated because of the vibrant motion of the participants during data recording.

4.2.2. Data Segmentation

The orientation sensitivity of the smartphone inertial sensors influences the performance of
activity recognition algorithms because the readings of these sensors are influenced by changing the
orientation of the smartphone [58]. Most related studies assumed a fixed orientation of the smartphone
while assessing different classification algorithms [59]. To address the issue of orientation sensitivity, a
fourth dimension, i.e., magnitude of the sensor, was added to the existing three dimensions of each
sensor. This was done because of the fact that the magnitude is not sensitive to the orientation. The
magnitude of the sensor was calculated as given in Equation (1):

mag =
√

x2 + y2 + z2, (1)

where x, y, and z represent the x-axis, y-axis, and z-axis, respectively.
After adding magnitude, each sensor’s data was comprised of four dimensions: (x, y, z, mag).

For better feature extraction and classifier training, it was necessary to divide the sensor data along
each axis into small segments. A fixed-size window segmentation scheme was employed for this
purpose because of its low computational complexity and most common use in activity recognition
algorithms [25]. The size of the segmentation window was an important issue to analyze during data
segmentation as the final accuracy of recognition was reliant on the window size. For this purpose,
existing studies on physical activity recognition were analyzed, which showed that a time interval of
nearly 5 s is sufficient to identify and recognize a physical activity [20,59]. Therefore, a fixed-width
slicing window of 5 s in time (250 samples with 50 Hz sampling rate), with no overlap between the
samples, was selected for dividing the raw data obtained from every sensor (along each axis) into
small chunks of 5 s.

4.3. Feature Extraction

In any data mining scheme, it is critical to extract correct features for efficient recognition
performance. This research places an emphasis on the recognition of six different physical activities
performed by a user while keeping the smartphone at five different body positions. For this purpose,
12 different features were extracted from both time and frequency domains. Table 3 shows the set
of features extracted for the recognition of activities of daily living selected in this study. These
features have been selected because of their efficient performance in the state of the art for activity
recognition using smartphone sensors. The existing studies [20,21,25,58–60] have discussed the
excellent performance of these features in activity recognition experiments. A key reason of using
more time domain features is their effective computational cost as compare to the frequency domain
features. The frequency domain features are computationally complex and costly due to the expensive
Fourier transformation [20,59] making them less feasible for our target smartphone platform.
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Table 3. A set of features extracted for activity recognition and user authentication.

Feature Symbol Formula Domain

Max. Amplitude smax smax = max{s(t)} Time

Min. Amplitude smin smin = min{s(t)} Time

Mean µ µ = 1
N ∑ s(t) Time

Variance σ2 σ2 = 1
N ∑(s(t)− µ)2 Time

Kurtosis K K = m4/m2
2 Time

Skewness S S = (m3)/(m
3/2
3 ) Time

Peak-to-Peak Signal Value spp spp = smax − smin Time

Peak-to-Peak Time tpp

tpp = tsmax + tsmin

tsmax = {t|s(t) = smax }
tsmin = {t|s(t) = smin }

Time

Peak-to-Peak Slope spps spps = spp/tpp Time

Absolute Latency to Amplitude Ratio ALAR ALAR = |tsmax /smax| Time

Energy Ef Ef = ∑|S(f)|2 Freq.

Entropy H(S(f)) H(S(f)) = −
N
∑

i=1
pi(S(f)) log2 pi(S(f)) Freq.

4.4. Activity Recognition

From the perspective of data mining, activity recognition is considered a multi-class classification
problem. Classifiers are machine learning algorithms that learn essential information from the features
extracted from the signal, and then make classification decisions on the basis of these features [61].
In this work, prevalent classifiers that have been used in the state of the art for activity recognition
were explored, and four different classifiers were used for this purpose so that an efficient comparison
can be made of these classifiers’ performance in activity recognition. These classifiers include
Decision Tree [38], K-Nearest Neighbors Classifier [46], Support Vector Machine [42], and Bayesian
Network/Bayes Net Classifier [39]. For SVM classifier, a Sequential Minimal Optimization (SMO) [62]
algorithm was used in this study.

4.5. User Authentication

The final step of the proposed methodology is user authentication, i.e., identifying and classifying
a smartphone user as authenticated, supplementary, or impostor, and assigning a selected level of
smartphone access privileges to that user. The user classification was performed on the basis of activity
recognition, using a probabilistic scoring model. After user classification, zero-level access privileges
were assigned to an impostor, i.e., no data access rights were given to an impostor user at all. A
restricted-level of smartphone access was provided to a supplementary user, whereas full-level access
rights to smartphone data and information were given to the authenticated smartphone user. The
following section provides a detailed explanation of the probabilistic scoring model employed for
user classification.

4.5.1. Probabilistic Scoring Model for User Classification

Activity Weighting

The probabilistic scoring model classified a smartphone user on the basis of the activity recognized
after activity classification. All activities were detected and recognized with different individual
accuracies. This might have influenced the performance of user classification because an activity
with lower recognition accuracy could have classified a user incorrectly. To avoid this issue, a weight
Wactivity was assigned to each of six selected activities according to their individual classification
accuracies, e.g., Wwalking was the weight assigned to the walking activity. An activity detected with
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higher classification accuracy was assigned a higher weight as compare to an activity that was detected
with lower classification accuracy. The weight assigned to an activity was calculated by dividing its
recognition accuracy with the overall average accuracy value of all activities, as given in Equation (2):

WAr =
AccuracyAr

1
M ∑M

r=1 AccuracyAr

, (2)

where Ar represents an activity label such as walking, running, sitting etc., and M is the total number
of activities.

This weight value was used afterwards for calculating the classification score, as given in
Equation (14), to classify a smartphone user as authenticated, supplementary, or impostor.

Computation of Trained Feature Vectors for Different User Classes

For the purpose of activity recognition and user classification, the feature vectors were computed
by concatenating twelve different features extracted along all four dimensions, i.e., (x, y, z, mag), of
accelerometer, gyroscope, and magnetometer. Each feature vector was of length 12 × 4 × 3 = 144, and
computed over a data segment of 5 s (250 samples at a rate of 50 Hz) in time. Each activity’s data were
collected for 3 min (180 s) duration for all body positions separately; therefore, 180/5 = 36 feature
vectors were computed corresponding to each activity for a single body position. Overall, 36 × 5 = 180
feature vectors were computed related to each activity for an individual user.

For each user class, six activities were performed by a random number of participants belonging
to that specific user class. The user authentication model was trained separately corresponding to
all these activities for different user classes by using 70% data (selected at random) for training. For
each activity, the model was trained for five different body positions. For this purpose, K-means
clustering [63] was applied separately on the features vectors corresponding to five different body
positions for each selected activity. As a result, the feature vectors were split into a different number
of clusters by varying the value of K, and the cluster analysis [64] was performed on the basis of the
average silhouette values to get an idea of how well-separated the resulting clusters are. The silhouette
value for each point in the data is actually a measure of how similar that point is to the points in its
own cluster as compared to the points in other clusters. It ranges from +1 to −1 in such a way that a
value close to +1 indicates the points in the data that are distant from the neighboring clusters, whereas
a value near −1 indicates the points that are possibly assigned to the wrong cluster. A silhouette
value of 0 represents the points that are not distinctive in one cluster or another. The highest average
silhouette value indicates that the clusters are well-separated. For cluster analysis, the silhouette value
Si for the ith point in the data was calculated as given in Equation (3):

Si =
(bi − ai)

max(ai, bi)
, (3)

where ai is the average distance from the ith point to all other points in the same cluster, and bi
is the minimum average distance from the ith point to the points in a different cluster, minimized
over clusters.

The silhouette analysis was performed separately on the data corresponding to all selected
activities for five different body positions. The data of all three user classes was considered in the
analysis. Table 4 shows a comparison of the average silhouette values obtained for different values of
K by clustering the activity patterns corresponding to five different body positions for all three user
classes. Only the average silhouette values computed over all three user classes are provided for each
activity. The highest average silhouette value obtained corresponding to each activity at a specific
body position is represented in bold. It can be observed from the table that K = 3 provides the highest
average silhouette value for all selected activities at all body positions, except the walking downstairs
activity (at the left thigh position) for which the highest average silhouette value is obtained for K = 2.
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It means that K = 3 provides the best results in clustering the activity patterns of different class users.
Therefore, using K-means clustering, the feature vectors for all selected activities corresponding to
each body position were divided into three clusters by selecting K = 3. The centroid of each cluster
was taken as a trained feature vector. In this way, 5 × 3 = 15 trained feature vectors were generated for
a single activity. Thus, for all six activities, a total of 15 × 6 = 90 feature vectors were computed per
user class.

Table 4. Cluster analysis based on the average silhouette values for different values of K.

Activity K = 2 K = 3 K = 4 K = 5 K = 6 Body Position

Walking

0.74 0.75 0.63 0.51 0.50 Waist
0.81 0.84 0.76 0.57 0.56 Left Thigh
0.71 0.72 0.67 0.58 0.49 Right Thigh
0.79 0.80 0.73 0.63 0.60 Upper Arm
0.80 0.87 0.65 0.51 0.40 Wrist

Sitting

0.64 0.73 0.58 0.46 0.43 Waist
0.68 0.70 0.63 0.50 0.45 Left Thigh
0.80 0.84 0.76 0.51 0.50 Right Thigh
0.71 0.79 0.60 0.51 0.49 Upper Arm
0.64 0.71 0.56 0.40 0.20 Wrist

Standing

0.61 0.70 0.53 0.41 0.43 Waist
0.71 0.80 0.72 0.61 0.60 Left Thigh
0.54 0.75 0.51 0.33 0.31 Right Thigh
0.61 0.61 0.44 0.32 0.30 Upper Arm
0.74 0.80 0.65 0.50 0.48 Wrist

Running

0.54 0.60 0.43 0.36 0.35 Waist
0.79 0.86 0.76 0.57 0.50 Left Thigh
0.51 0.65 0.41 0.21 0.21 Right Thigh
0.46 0.75 0.62 0.41 0.41 Upper Arm
0.84 0.87 0.70 0.50 0.49 Wrist

Sitting

0.64 0.73 0.58 0.46 0.43 Waist
0.68 0.70 0.63 0.50 0.45 Left Thigh
0.80 0.84 0.76 0.51 0.50 Right Thigh
0.71 0.79 0.60 0.51 0.49 Upper Arm
0.64 0.71 0.56 0.40 0.20 Wrist

Walking Upstairs

0.71 0.79 0.63 0.56 0.49 Waist
0.82 0.82 0.73 0.54 0.50 Left Thigh
0.77 0.81 0.70 0.61 0.60 Right Thigh
0.70 0.75 0.51 0.44 0.40 Upper Arm
0.51 0.61 0.46 0.25 0.24 Wrist

Walking Downstairs

0.81 0.88 0.73 0.58 0.40 Waist
0.79 0.77 0.67 0.57 0.53 Left Thigh
0.72 0.76 0.61 0.40 0.31 Right Thigh
0.51 0.55 0.62 0.31 0.26 Upper Arm
0.67 0.71 0.56 0.47 0.45 Wrist

The robustness of the method was tested by analyzing how the change in training data may affect
the number of resulting clusters and the cluster centroids. For this purpose, 20 random training sets
were obtained by selecting 70% data randomly from each user class corresponding to all selected
activities. While selecting data for new training sets, all five body positions were considered for an
activity. For each training set, the cluster analysis was performed on all activity patterns for different
values of K and it was observed that K = 3 provided the best average silhouette value for all activities.
It means that updating the training set did not influence the number of resulting clusters. Hence,
the activity patterns were split into three different clusters using K-means clustering, and the new
centroids were computed from the resulting clusters to find out how these centroids differ from the
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previously learned centroids. For this purpose, the newly computed centroids were compared with
the corresponding learned centroids on the basis of Euclidean distance, and the minimum distance
from the best-matching learned centroid was calculated as given in Equation (4):

dm = arg min
1≤m≤K

‖Cn − Cm‖, (4)

where Cn and Cm denote the nth new centroid and the mth learned centroid, respectively, and
1 ≤ n ≤ K.

Finally, the average distance was calculated between the new centroids and the previously learned
centroids by taking the mean value of all minimum distances computed for a training set. The mean
distance values were calculated separately for all 20 training sets, which are plotted in Figure 3.
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Figure 3. Average distance between the learned centroids and the new centroids for different
training sets.

It can be seen from Figure 3 that the newly computed centroids differ from the learned centroids
in accordance with the change in training data. As the training sets were generated based on the
random data taken from each user class, hence these training sets were comprised of different data as
compare to each other. This difference in the data was because different users had their own style of
performing an activity, which gave rise to dissimilar activity patterns for different users.

On the basis of the results discussed above, it can be said that if new training data are added to
the training set, it will not affect the number of clusters obtained by splitting different activity patterns
using K-means clustering. So, the value of K will remain equal to 3. However, the cluster centroids will
change according to the change in training data. Therefore, when new data are added to the training
set in real time, the system updates the learned centroids according to the new training data. The
updated centroids are then used as the trained feature vectors.
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Calculation of Euclidean Distance between Feature Vectors

For testing of the user authentication model, the feature vectors were computed by extracting
selected features from the rest of 30% data that was not used in training. Each testing feature vector
was passed as an input to the activity recognition module for recognizing the activity performed by the
user. Machine learning algorithms were used for the purpose of activity classification. After activity
classification, the label of the activity recognized and its feature vector extracted from testing data were
passed as inputs to the user authentication model for identifying the user type. For this purpose, the
feature vector of the recognized activity was compared with the trained feature vectors, and Euclidean
distance was computed between the feature vectors. As the label of recognized activity was known by
the user authentication model, the extracted feature vector was compared only with the trained feature
vectors corresponding to the recognized activity for all user classes. Hence, it saved computational
time required for the comparison of the extracted feature vector with the trained feature vectors of all
other activities.

Let Ar represents the label of the activity recognized by the user authentication model, e.g.,
walking, standing, sitting, running, walking upstairs, or walking downstairs. The symbols Uauth, Usupp,
and Uimp represent smartphone users belonging to the authenticated, supplementary and impostor
classes, respectively. Let fAr represent the feature vector of the activity recognized from testing data,
whereas fAr,Uauth , fAr,Usupp , and fAr,Uimp represent the trained feature vectors for the recognized activity
corresponding to the authenticated, supplementary, and impostor classes, respectively. Euclidean
distance [65] was calculated between these feature vectors using Equation (5):

d(p, q) =

√
m

∑
i=1

(pi − qi)
2, (5)

where p and q represent two different feature vectors and m is the length of each feature vector.
Euclidean distance was computed between three different pairs of feature vectors as follows:

• d
(
fAr , fAr,Uauth

)
represents Euclidean distance computed between the feature vector of the activity

recognized and its trained feature vector for the authenticated user class.

• d
(

fAr , fAr,Usupp

)
denotes Euclidean distance computed between the feature vector of the activity

recognized and its trained feature vector for the supplementary user class.

• d
(

fAr , fAr,Uimp

)
indicates Euclidean distance computed between the feature vector of the activity

recognized and its trained feature vector for the impostor user class.

These distances were added together to find out the total distance dtotal as given in Equation (6):

dtotal = d
(
fAr , fAr,Uauth

)
+ d
(

fAr , fAr,Usupp

)
+ d
(

fAr , fAr,Uimp

)
. (6)

Calculation of Conditional Probabilities for Detecting Different Class Users

Euclidean distance computed between the feature vectors was used to find out the conditional
probabilities of detecting a user as authenticated, supplementary, or impostor. These probabilities were
calculated as follows:

P(Uauth |A r) =
dtotal − d

(
fAr , fAr,Uauth

)
2 .dtotal

(7)

P
(
Usupp |A r

)
=

dtotal − d
(

fAr , fAr,Usupp

)
2 .dtotal

(8)

P
(
Uimp |A r

)
=

dtotal − d
(

fAr , fAr,Uimp

)
2 .dtotal

, (9)
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where P(Uauth |A r), P
(
Usupp |A r

)
and P

(
Uimp |A r

)
represent the conditional probabilities of detecting

a user as authenticated, supplementary, or impostor respectively, given the activity recognized Ar.
These probability values were ranging from 0 to 1 and calculated in such a way that their sum

was equal to 1, as shown in Equation (10):

P(Uauth |A r) + P
(
Usupp |A r

)
+ P

(
Uimp |A r

)
= 1. (10)

To satisfy Equation (10), it is necessary that one of these probabilities should have a minimum
value of 0.34. If all these probabilities are less than 0.34, then their summation can never be equal
to 1. For this reason, the least maximum conditional probability value for a user class was taken as
PLmax = 0.34.

Normalization of Conditional Probabilities

The conditional probability values of detecting different class users were scaled from their initial
range, i.e., [Pmin Pmax] = [01], to a new range, i.e., [Rmin Rmax], using Equation (11):

PN = (P− Pmin).
(Rmax − Rmin)

Pmax − Pmin
+ (Rmin), (11)

where P represents a probability value from 0 to 1, PN represents the normalized probability value of
P, Pmin gives the minimum possible value of P that is equal to 0, Pmax denotes the maximum possible
value of P that is equal to 1, Rmin represents the minimum value of PN , and Rmax denotes the maximum
value of PN that is kept equal to Pmax.

The value of Rmin should be greater than or equal to the least maximum conditional probability
value for any user class, i.e., Rmin ≥ PLmax . If the conditional probability value for any user class is less
than PLmax , it means that one of the other two user classes has a maximum value of the conditional
probability. Consequently, all conditional probability values less than PLmax , i.e., 0.34, need to be
discarded. For this reason, the probability values were normalized to a new range, i.e., [Rmin Rmax],
such that, PLmax ≤ Rmin < 1 and Rmax = 1. Another purpose of normalizing these values to a higher
range was to expand the classification score to a wider range for the efficient computation of the
threshold values for classifying a user.

Let PN(Uauth |A r), PN
(
Usupp |A r

)
and PN

(
Uimp |A r

)
represent the normalized conditional

probabilities of detecting a user as authenticated, supplementary, or impostor, respectively. The
range of these probability values was equal to [Rmin Rmax]. The maximum normalized probability
PNmax was calculated using Equation (12):

PNmax = max
{

PN(Uauth |A r), PN
(
Usupp |A r

)
, PN

(
Uimp |A r

)}
. (12)

Computation of Access Level Values for Multiple User Classes

An access level value LAuser was used for each user class, which represented the level of access
privileges assigned to a user class. Generally, a higher value of the access level for a user class means
that a user belonging to that specific class is allowed to access more data and information as compare
to the users belonging to a user class with lower access level value. Therefore, the access level value
was assigned to each user class in such a way that the authenticated user class had the maximum value,
the impostor user class had the minimum value, and the supplementary user class had a median value
for this access level, i.e., LAauth > LAsupp > LAimp . This access level value was calculated on the basis of
Rmin using Equation (13):

LAuser = (Rmin)
n, (13)

where n represents an integer that was assigned a value of 0, 1, or 2 depending upon the value of
maximum normalized probability PNmax .
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The values were assigned to LAuser according to the following criteria:

• For PNmax = PN(Uauth |A r), the integer n was assigned a value of 0, i.e., n = 0.

Hence, from Equation (13), LAuser = LAauth = (Rmin)
0 = 1.

• For PNmax = PN
(
Usupp |A r

)
, the integer n was assigned a value of 1, i.e., n = 1.

Hence, from Equation (13), LAuser = LAsupp = (Rmin)
1 = Rmin.

• For PNmax = PN
(
Uimp |A r

)
, the integer n was assigned a value of 2, i.e., n = 2.

Hence, from Equation (13), LAuser = LAimp = (Rmin)
2.

Calculation of Classification Score

The classification score was calculated on the basis of the access level value assigned to a user
class, weight of the activity recognized WAr and the maximum normalized probability PNmax , as given
in Equation (14):

cs = LAuser .WAr .PNmax , (14)

where Ar represents the label of the activity recognized, e.g., walking.
The classification score was scaled to a different range of values, depending upon the value of

maximum normalized probability, according to the following criteria:

• For PNmax = PN(Uauth |A r), LAuser = LAauth = 1.

Hence, from Equation (14),
cs = WAr .PNmax . (15)

• For PNmax = PN
(
Usupp |A r

)
, LAuser = LAsupp = Rmin.

Hence, from Equation (14),
cs = Rmin.WAr .PNmax . (16)

• For PNmax = PN
(
Uimp |A r

)
, LAuser = LAimp = (Rmin)

2 Hence, from Equation (14),

cs = (Rmin)
2.WAr .PNmax . (17)

It can be observed from Equations (15) to (17) that even for the same value of the normalized
probability across different user classes, the classification score will be different. If the weight of the
activity recognized WAr is considered as close to 1, and a median value of 0.67 is chosen for Rmin, then
the classification score will have a different range of values depending upon the value of maximum
normalized probability, as given below:

• If PNmax = PN(Uauth |A r), then cs will have a range near to [0.67 1], with PN(Uauth |A r) having a
range [0.67 1].

• If PNmax = PN
(
Usupp |A r

)
, then cs will have a range near to [0.45 0.67], with PN

(
Usupp |A r

)
having

a range [0.67 1].
• If PNmax = PN

(
Uimp |A r

)
, then cs will nearly have a range of values less than 0.45 with

PN
(
Uimp |A r

)
having a range of [0.67 1].

Calculation of Threshold Values for Classifying a Smartphone User

Two threshold values, i.e., T1 and T2, were used for classifying a smartphone user into one of
three different user classes, such that T1 < T2. These threshold values were calculated as given in
Equations (18) and (19):

T1 = Rmin.(PLmax .(1− Rmin) + (Rmin)) (18)
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T2 = (PLmax .(1− Rmin) + (Rmin)), (19)

where Rmin represents the minimum possible value of the normalized conditional probability for a
user class, and PLmax is the least maximum conditional probability value equal to 0.34.

These threshold values discarded the normalized probability values that were obtained
corresponding to the conditional probability values less than PLmax because these values had no effect
on user classification. The criteria used for classifying a smartphone user on the basis of classification
score cs and threshold values T1 and T2 are as follows:

• For 0 ≤ cs ≤ T1, the user was classified as impostor.
• For T1 < cs ≤ T2, the user was classified as supplementary.
• For cs > T2, the user was classified as authenticated.

Effect of Varying Rmin on Threshold Values and User Classification

It can be seen from Equations (14) to (19) that the classification score and the threshold values
are dependent on the value of Rmin. Any change in the value of Rmin will result in a change in the
classification score. The threshold values are computed in such a way that upon any change in the
value of Rmin, these values will get updated according to the new classification score to avoid any
significant change in the user classification results. While testing user classification, a median value,
i.e., 0.67, was selected for Rmin, considering that 0.34 ≤ Rmin < 1. The classification score and the
threshold values were then computed accordingly.

Figure 4 shows the effect of varying Rmin on the threshold values T1 and T2, which are represented
by Threshold-1 and Threshold-2, respectively. It can be observed that the difference between these
threshold values, i.e., T1 and T2, is decreased by increasing the value of Rmin. If a maximum value
is taken for Rmin, the difference between these threshold values becomes least. Conversely, if Rmin
is assigned a minimum value of 0.34, then the difference between these threshold values becomes
maximum. In both these cases, the results of user classification may not be proficient because the
margin between these threshold values and the classification score will either become too small or
too large, which may influence the user classification results. Hence, a median value of Rmin is more
suitable for efficient user classification.
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5. Results and Performance Analysis

For the purpose of smartphone user authentication, the proposed framework utilized activity
recognition and user classification. The user classification was performed by means of activity
recognition. To evaluate the performance of the proposed scheme, the experimental results are
presented in two different sections separately for activity recognition and user classification. Following
sections discuss these results.

5.1. Performance Analysis of Activity Recognition

In order to evaluate the performance of activity recognition for this study, four different
classification algorithms including Decision Tree (DT), Bayes Net (BN), K-Nearest Neighbor
(K-NN), and Support Vector Machine (SVM) were trained and evaluated on the selected dataset.
These classifiers were selected because they have been used in the state of the art for activity
recognition [20,21,25,59]. To ensure fairness in activity recognition results, a 10-fold stratified cross
validation scheme was used for evaluating the performance of these classifiers. Hence, all activity
traces in the dataset were split randomly into 10 sets, and iterated 10 times in such a way that every set
of data was selected to use for testing and remaining sets were employed for training of the classifiers.
Only the average results of all 10 repetitions are included in this section. The performance metrics
used in this study for evaluating the classifiers performance for activity recognition are computational
time taken, average accuracy rate, f-measure, kappa statistic, Root Mean Squared Error (RMSE) and
Mean Absolute Error (MAE). The kappa statistic is a measure that is independent of the total number
of classes and the number of samples per class. A kappa statistic value of k = 0 represents a chance
level classification performance, whereas in case of perfect classification, k reaches its best value of 1.
If k < 0, it means that the performance of classification is poorer than the chance level classification
performance. These performance metrics are evaluated for all four classifiers selected for activity
recognition, and the results of activity classification are computed separately for all five body positions
selected in this study.

Figure 5 shows the individual percentage accuracies of classification for all selected activities
over five body positions when classified with DT, K-NN, BN and SVM classifiers. It can be observed
that the individual classification accuracies of standing, running, and sitting activities are higher
irrespective of the classifier and the body position. Thus, it can be said that these activities are more
easily recognizable than other selected activities. The activities of sitting and standing are distinguished
from each other on the basis of the fact that the orientation of the smartphone placed on a human body
changes when a user changes his/her posture or stance for sitting and standing. Thus, the readings of
smartphone inertial sensors are different. The classification of walking, walking upstairs, and walking
downstairs activities is position dependent, and gives better results if the smartphone is placed in
the left or right jeans pocket. All six activities are recognized with higher individual accuracies when
classified with SVM and BN classifiers.

Table 5 shows the performance parameters of the selected classifiers for activity recognition at
five different body positions. It can easily be observed that SVM classifier provides the best average
accuracy rate as compare to the accuracy rate values provided by DT, K-NN, and BN classifiers. On
the other hand, the error rate for SVM classifier, evaluated by MAE and RMSE, is also very high
for all body positions. Table 6 shows the average values of individual performance metrics for all
selected classifiers. It can be seen that the overall average values of accuracy rate, kappa statistic, and
f-measure are higher and comparable for SVM, BN, and DT classifiers. However, K-NN provides
lower accuracy rate along with lower kappa statistic and f-measure values. The average accuracy rate
for SVM classifier is 99.18%, which is 2.36%, 1.8%, and 5.88% higher than the average accuracy rate of
DT, BN, and K-NN classifier, respectively. The values of MAE and RMSE for SVM classifier are 0.22
and 0.312 respectively, which are higher as compare to the error rate values for DT and BN classifiers.
The average accuracy rate of BN classifier is 0.56% and 4.08% higher than the average accuracy rate of
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DT and K-NN classifier, respectively. Also, the error rate of BN classifier is better than the error rates
provided by DT, SVM, and K-NN classifiers.
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Table 5. Performance metrics of the selected classifiers for activity recognition at five body positions.

Classifier Average Accuracy % Kappa F-Measure MAE RMSE Body Position

Decision Tree 96.23 0.99 0.96 0.012 0.111

Waist
K-NN 92.53 0.91 0.92 0.025 0.157

Bayes Net 97.55 0.97 0.97 0.008 0.088
SVM 99.71 1.00 0.99 0.222 0.310

Decision Tree 98.90 0.98 0.99 0.004 0.067

Left ThighK-NN 95.23 0.94 0.95 0.016 0.125
Bayes Net 98.57 0.98 0.98 0.005 0.061

SVM 99.81 1.00 1.00 0.222 0.310

Decision Tree 97.87 0.97 0.98 0.007 0.083

Right ThighK-NN 95.23 0.94 0.95 0.016 0.125
Bayes Net 98.01 0.97 0.98 0.006 0.080

SVM 99.47 0.99 0.99 0.222 0.310

Decision Tree 95.93 0.95 0.96 0.014 0.121

Upper ArmK-NN 92.58 0.91 0.95 0.025 0.157
Bayes Net 95.45 0.94 0.95 0.015 0.115

SVM 98.75 0.98 0.99 0.222 0.310

Decision Tree 95.18 0.94 0.95 0.017 0.124

Wrist
K-NN 90.93 0.89 0.91 0.031 0.173

Bayes Net 96.85 0.96 0.97 0.015 0.100
SVM 98.18 0.97 0.98 0.222 0.311

Table 6. Average performance metrics of the selected classifiers for activity recognition.

Classifier Average Accuracy % Kappa F-Measure MAE RMSE

Decision Tree 96.82 0.96 0.96 0.010 0.102
K-NN 93.30 0.91 0.93 0.022 0.147

Bayes Net 97.38 0.96 0.97 0.027 0.086
SVM 99.18 0.98 0.99 0.222 0.310

Another important performance metric for evaluating the performance of these classifiers is their
computational complexity, which effects the time taken by each classifier for building training model
and performing classification. Figure 6 shows a comparison of the computational time taken by the
selected classifiers for activity classification. It can be observed that K-NN classifier takes less time as
compare to all other classifiers. The time taken by SVM classifier for activity classification is 25.21 s,
which is 10.8 times more than the time (2.32 s) taken by K-NN classifier, and 4.5 times more than the
time (5.61 s) taken by BN classifier to perform classification. The time taken by DT classifier for activity
classification is 10.11 s.
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On the basis of the results discussed above, it can be said that the overall performance of
Bayes Net classifier in classifying the selected activities is better than other classifiers performance.
Although, SVM provides the best accuracy rate for activity classification, but its error magnitude is
also quite higher. On the other hand, the BN classifier provides an accuracy rate that is comparable
to the accuracy rate of SVM classifier, but its error rate is very small. Also, the SVM classifier is
computationally expensive, and it takes significantly more time for building a training model and
performing classification. As a smartphone is equipped with limited processing power, memory, and
storage, therefore, it is not feasible to use SVM classifier for on-device activity classification in real-time.
Otherwise, the battery power will be drained quickly, and the output will be delayed because of
the extensive computational time taken by SVM classifier for classification. Bayes Net classifier is
based on a probabilistic model that is computationally very simple [39]. Hence, it takes less time in
building and updating the training model, and performing on-device activity classification in real
time. This suggests the Bayes Net classifier as an optimal choice for online activity recognition using
smartphone sensors.

5.2. Performance Analysis of User Classification

The user authentication was done by means of user classification based on activity recognition.
For user classification, three user classes were considered, including authenticated, supplementary,
and impostor class. The dataset used for the activity recognition was pre-labeled for all activities
performed by 10 participants/users. However, there were no user class labels for the participants in
the dataset. Our idea was to utilize the dataset for learning the activity patterns of different users or a
set of users. For this reason, the users in the dataset were randomly divided into three folds, i.e., Fold-1,
Fold-2, and Fold-3. Fold-1 and Fold-2 represented the sets of users belonging to the authenticated
and supplementary classes, respectively, whereas Fold-3 contained the set of users belonging to the
impostor class. Five different scenarios were taken for the distribution of 10 users among these folds,
as shown in Table 7. For each scenario, all possible permutations of the users were applied on three
folds iteratively in such a way that every user became a part of each fold at least once.

Table 7. Distribution of different users amongst three folds for user classification.

Scenario No. of Users in Fold-1 No. of Users in Fold-2 No. of Users in Fold-3

A 2 4 4
B 2 3 5
C 3 3 4
D 3 4 3
E 4 3 3

For validating the user classification results, a 70%-30% split was used for training and testing
data, respectively. For this purpose, each fold of data representing a specific user class was randomly
partitioned into two independent sets, i.e., training and testing sets, where 70% of the data were
selected for training the user classification model, and the remaining 30% were used for testing.
The authors in [66] performed a broad simulation study for the purpose of evaluating commonly
used splitting strategies for testing and training data, which concluded that allocating two-thirds
(nearly 67%) of the data for training provides better classification accuracy. Moreover, the existing
studies [60,67] also utilized a 70%/30% split for training and testing data, respectively, which provided
efficient results for physical activity recognition. For every user class, the authentication model was
trained to recognize six selected activities performed by the user while carrying the smartphone at
five different body positions. The research work in [20,21,58,59] showed that a time interval of 4–5 s
is sufficient for the recognition of a physical activity, considering a sampling rate of 50 Hz. For this
purpose, the user authentication model was trained to identify a user with the activity duration of
5 s. During testing of user classification, the selected features were extracted from testing data over a
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data segment of 5 s in time, having 250 samples at a rate 50 Hz. The activity performed by the user
was recognized based on these extracted features. After that, the recognized activity and the extracted
features were passed to the user authentication model. The probabilistic scoring model was applied
on the extracted features to calculate classification score on the basis of Euclidean distance between
different feature vectors, using Equation (14). A median value of 0.67 was taken for Rmin initially and
the threshold values T1 and T2 were calculated using Equations (18) and (19). The user was classified
as authenticated, supplementary, or impostor based on these threshold values.

Figure 7 shows Euclidean distance between the trained feature vector for the authenticated class
and the feature vectors computed from testing data for different class users to illustrate how sure the
system is about the authentication. The trained feature vector for the authenticated class was selected
corresponding to the walking activity for the left thigh position in this case. Similarly, the feature
vectors for the different candidate users were also computed corresponding to the walking activity for
the left thigh position over the data segments of 5 s. The distance was calculated after every 5 s’ interval
of time for the activity duration of one minute only. From Figure 7, it can be observed that the distance
of the authenticated class feature vector from the authenticated user is very small for all time intervals
(except at interval from 41 s to 45 s) as compare to its distance from the supplementary and imposter
users. Also, the distance values computed at the same time for the different candidate users have a
wide gap for most of the time intervals. It can be observed that both supplementary and impostor
users are well separated from the authenticated user on the basis of the computed distances. Also, the
supplementary and impostor users are at a fair distance from each other in this case. This shows that
the system is quite sure about the authenticity of different class users for most of the time intervals.
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Figure 7. Euclidean distance between the authenticated user class feature vector and the feature vectors
computed from testing data for different candidate users.

Looking at the relative distances of the different candidate users from the authenticated class
only (as shown in Figure 7), the output of the system cannot be realized. It is necessary to compute
the distance of each candidate user from all user classes in order to know the output of the system.
For example, to find the output of the system while classifying the authenticated user (whose distance
is plotted from the authenticated class in Figure 7), the distance of this specific user was calculated
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from other user classes as well. From Figure 7, it can be observed that the distance of this particular
user from the authenticated class is very large for the time interval from 41 s to 45 s. Therefore, after
this time interval the user was misclassified as an imposter because the user had minimum distance
from the imposter class. Figure 8 shows the output of the system after every five seconds’ interval
of time while classifying this candidate user. It can be seen that the system has correctly recognized
the user as an authenticated user for all time intervals, except the time interval from 41 s to 45 s, after
which the user was classified as an impostor. So, after a period of one minute, it can be said that the
system has correctly identified that the smartphone was possessed by an authenticated person with
a very high accuracy of 91.67%. These results also suggest that an activity pattern of 5 s duration is
sufficient to recognize and classify a user, considering a sampling rate of 50 Hz.
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Figure 8. Output of the classification model at different time intervals while classifying a candidate
user belonging to the authenticated class.

The results of the user classification were computed iteratively for all possible permutations of the
users across three folds, considering all the scenarios given in Table 7. Only the average results of all
iterations are included in this section. To thoroughly analyze the results, different values were chosen
for Rmin but no significant changes were observed in the results that were obtained corresponding
to the initial value of Rmin = 0.67. Therefore, this section reports the average results of the user
classification for only the initial value of Rmin. The metrics used to evaluate the user classification
performance are True Positive Rate (TPR), False Positive Rate (FPR), accuracy, precision, recall, and
f-measure. Table 8 shows the results of user classification based on activity recognition at five different
body positions. It can be seen that for all body positions, the value of TPR is higher for the impostor
class, which means that the authentication model has identified the impostor users more accurately as
compare to the authenticated and supplementary users.

Figure 9 shows that the individual classification accuracies of all the user classes are higher for
the waist, left thigh, and right thigh positions. It means that it is easy to identify a user by recognizing
an activity if the smartphone is placed in the left or right jeans pocket, or hung from a belt clip
at the waist. This is due to the fact that the performance of activity recognition is better for these
body positions as compared with other body positions used, as can be seen in Figure 5. The overall
classification accuracies for the authenticated, supplementary, and impostor classes are 87.94%, 87.78%,
and 90.74%, respectively.
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Table 8. Results of user classification based on activity recognition at five body positions.

User Class TPR FPR Precision Recall F-Measure Body Position

Authenticated 0.90 0.04 0.90 0.90 0.90
WaistSupplementary 0.91 0.03 0.92 0.91 0.91

Impostor 0.95 0.04 0.93 0.95 0.94

Authenticated 0.92 0.04 0.90 0.91 0.90
Left ThighSupplementary 0.90 0.03 0.92 0.90 0.91

Impostor 0.91 0.05 0.91 0.90 0.91

Authenticated 0.90 0.04 0.89 0.90 0.90
Right ThighSupplementary 0.88 0.04 0.89 0.88 0.88

Impostor 0.91 0.06 0.90 0.91 0.90

Authenticated 0.85 0.06 0.86 0.85 0.85
Upper ArmSupplementary 0.86 0.06 0.85 0.86 0.86

Impostor 0.86 0.09 0.86 0.86 0.86

Authenticated 0.82 0.07 0.83 0.82 0.82
WristSupplementary 0.83 0.06 0.85 0.83 0.84

Impostor 0.90 0.09 0.86 0.90 0.88
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Generally, a smartphone has a single authenticated user and a few supplementary users only.
All other users of the smartphone may be treated as impostors. Therefore, the impostor user class
has a large number of instances as compare to the authenticated and supplementary user classes.
For real-time authentication, the proposed framework requires the recording of training data for the
authenticated and supplementary class users only. During training, the system extracts different
features from the data recorded for the authenticated and supplementary class users, and divides
the feature vectors computed corresponding to different activities into K clusters using K-means
clustering. The system then takes the learned centroids as the trained feature vectors for authenticated
and supplementary classes. If new training data are added to the training set, then the training data are
clustered again using K-means clustering and the centroids are updated in accordance with the new
data. After computing trained feature vectors, the system calculates the distance of each computed
feature vector from the trained feature vectors and finds the maximum possible distance dmax. During
real-time authentication, the system considers a smartphone user as an impostor by default until and
unless a definite matching pattern is detected for an activity in the trained users’ profiles. It extracts
the feature vector from the real-time data obtained from the smartphone sensors and recognizes the
activity performed by the user. The extracted feature vector is then compared with the trained feature
vectors of the authenticated and supplementary classes, and user classification is performed. In the
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case of an authenticated or a supplementary user, the extracted feature vector will be matched with
one of the trained feature vectors and the Euclidean distance between the matched similar feature
vectors will be less than or equal to dmax. Hence, the user will be classified as an authenticated or a
supplementary user. On the other hand, if the user is an impostor, his/her activity pattern will be
different from those of trained activity patterns. So, the Euclidean distance between the feature vector
extracted for an impostor’s activity and that of trained feature vectors will be higher than dmax and the
user will be recognized as an impostor. In this way, the system ably handles a new smartphone user as
an impostor whose activity pattern is not yet determined.

6. Conclusions

In this paper, smartphone user authentication based on physical activity recognition using
mobile sensing has been analyzed. A novel multi-class user classification scheme is presented for the
authentication of smartphone users, which is based on physical activity recognition incorporated with
micro-environment sensing. Twelve different features from time and frequency domains are extracted
for the recognition of six different activities, i.e., walking, standing, sitting, running, walking upstairs,
and walking downstairs. The smartphone users are classified into three classes, i.e., authenticated,
supplementary, and impostor, by recognizing their activity patterns using a probabilistic scoring model.
It is observed that the recognition of standing, running, and sitting activities is easier irrespective of
the smartphone position on the human body. As a result, it is easy to identify a smartphone user
on the basis of these activities. On the other hand, the activities of walking, walking upstairs, and
walking downstairs are smartphone position-dependent. These activities can be best recognized only
if the smartphone is placed in the left or right jeans pocket, or hung with a belt clipper at the waist
position. This shows that these positions are best suited for placing a smartphone on the human
body for user authentication based on activity recognition. Moreover, it is noticed that the Bayes Net
classifier provides the best performance for on-device activity recognition in terms of accuracy, error
rate, and computational time required for activity classification. Hence, these findings conclude that
the Bayes Net classifier is an optimal choice for online authentication of a smartphone user based on
physical activity recognition.

This work can be extended to detect, recognize, and trace more complex activities for smartphone
user authentication. For this purpose, more sensors can be added to the framework including virtual
sensors such as apps usage, etc., to learn and recognize the behavior of a smartphone user while using
smartphone. In case of a large amount of input data, the processing can be done on the cloud instead
of the device itself. During real-time authentication of a smartphone user, because of noise and other
interference, the data collected from the smartphone sensors may give rise to a random or abnormal
activity sequence that can incorrectly classify a smartphone user. A knowledge-based authentication
can be incorporated into the framework along with behavioral authentication to improve the accuracy
of user classification. A list of security questions can be added to the framework. The answers to these
questions should only be acknowledged by the authenticated user. If an abnormal activity pattern is
detected by the system and the calculated classification score falls in a particular range, then a random
security question can be asked. In case of a correct answer, the classification score can be updated by
adding an additional score for the right answer. In case of a wrong answer, the classification score can
be decreased. The updated classification score can then be compared with the threshold values for
classifying the smartphone user. To further expand the work, the location of a smartphone user can be
traced using smartphone sensors and his/her activity information can be acquired. This information
can be further utilized for different purposes including forensic analysis and crime investigations.
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