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Abstract: Background subtraction (BS) is one of the most commonly encountered tasks in video
analysis and tracking systems. It distinguishes the foreground (moving objects) from the video
sequences captured by static imaging sensors. Background subtraction in remote scene infrared (IR)
video is important and common to lots of fields. This paper provides a Remote Scene IR Dataset
captured by our designed medium-wave infrared (MWIR) sensor. Each video sequence in this dataset
is identified with specific BS challenges and the pixel-wise ground truth of foreground (FG) for
each frame is also provided. A series of experiments were conducted to evaluate BS algorithms
on this proposed dataset. The overall performance of BS algorithms and the processor/memory
requirements were compared. Proper evaluation metrics or criteria were employed to evaluate
the capability of each BS algorithm to handle different kinds of BS challenges represented in this
dataset. The results and conclusions in this paper provide valid references to develop new BS
algorithm for remote scene IR video sequence, and some of them are not only limited to remote
scene or IR video sequence but also generic for background subtraction. The Remote Scene IR
dataset and the foreground masks detected by each evaluated BS algorithm are available online:
https://github.com/JerryYaoGl/BSEvaluationRemoteSceneIR.

Keywords: background subtraction; remote scene; IR video sequence; MWIR sensor; background
modeling; foreground detection

1. Introduction

Background subtraction is a common way to detect and locate moving objects in video sequences.
It is the first step for all kinds of applications in the computer vision field, such as video analysis,
object tracking, video surveillance, object counting, traffic analysis, etc. BS is related to the following
problems: background modeling, foreground extraction, change detection, foreground detection and
motion detection.

Since the 1990s a large number of BS algorithms have been proposed. Also different kinds of BS
datasets and benchmarks have been released to evaluate BS algorithms. Many reviews and evaluation
papers have been published to-date. In this paper, a Remote Scene IR Dataset is provided which is
captured by our designed medium-wave infrared sensor. This dataset is composed of 1263 frames in
12 video sequences representing different kinds of BS challenges and it is annotated with pixel-wise
foreground ground truth. We firstly selected 16 important and influential BS algorithms, and conducted
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a serious of comprehensive experiments on this Remote Scene IR Dataset to evaluate the performance
of these BS algorithms. We also conducted an overall experiment on the 24 BS algorithms from the
BGSLibrary [1] which is a powerful BS library. The results and conclusions in this paper provide valid
references to develop new BS algorithm for remote scene IR video sequences, and some of them are
not only limited to remote scenes or IR video sequences, but also generic for background subtraction,
such as experimental results concerning ghosts, high and low foreground movement speeds, memory
and processor requirements, etc.

1.1. Motivation and Contribution

Although numerous review and evaluation on background subtraction have been published in
the literature, there are still several reasons that motivated this evaluation paper:

(1) The released BS datasets [2–5] do not focus on the remote scene. Background subtraction and
moving targets detection in remote scene video is important and common to lots of fields, such
as battlefield monitoring, intrusion detection and outdoor remote surveillance. Remote scene
IR video sequences present typical characteristics: small and even dim foreground, less color,
texture and gradient information in the foreground (FG) and background (BG), which causes
difficulty for BS and affects the performance of BS. It is necessary to develop a remote scene IR
dataset and evaluate BS algorithms on it.

(2) The challenges of high and low speeds of foreground movement have been identified in previous
works [6,7], and are presented in the released cVSG dataset [6]. For the challenge of high speed
of foreground movement, if the speed is high enough, such as beyond 1 self-size per frame,
which means that there is no overlap between the foregrounds in two sequential frames, some BS
algorithms would yield hangover as shown in Figure 14. In the BS paradigm, each pixel is labeled
as foreground or background. For the challenge of low speed of foreground movement, if the
speed is low enough, especially below 1 pixel per frame, it is much more difficult to distinguish
the foreground pixels. It is important to evaluate BS algorithms to cope with these two challenges.
The speed units self-size/frame and pixel/frame are adopted respectively for the high and low
speed challenges in this evaluation paper.

(3) In the published evaluation papers, there is not enough experimental data and analysis on
some identified BS challenges. Camouflage is an identified challenge [3,4,8,9] which is caused
by foreground that has similar color and texture as the background, but these papers do not
provide a video sequence representing it. Reference [2] provided a synthetic video sequence
representing camouflage challenges concerning color. Camouflaged foreground is unavoidable
in video surveillance. It is important to conduct evaluation experiments on real video sequences
representing this challenge.

(4) It is illogical to evaluate the capability of BS to handle kinds of challenges based on the whole
video sequence or category with same evaluation metrics. Previous works [2–4] always group
the video sequences into several categories according to the type of challenge, and evaluate the
capability of BS algorithms to handle these challenges with same evaluation metrics based on the
whole category. Actually some challenges such as camera jitter only last for several frames or
impact several frames. Some challenges such as shadow and ghosting only occupy small parts
of the frame. To evaluate the capability of BS to handle these challenges, it is logical to evaluate
the performance change caused by these challenges with proper evaluation metrics or criteria.
As examples, for camera jitter, we should focus on the frames after it occurs and the changes
of performance; for ghosting, we should focus on whether it appears and how many frames it
lasts for; for high speed of foreground movement, we should focus on whether the hangover
phenomenon appears and how many frames the hangover lasts for.

(5) There is no detailed implementation and parameter setting in some BS algorithm papers [10,11]
and previous evaluation papers [5,8,12]. Because of the different implementations, the same BS
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algorithm often performs differently. It is reasonable to detail the implementation and parameter
setting of the evaluated BS algorithms.

(6) The comparison is not fair in some previous evaluation experiments. Post-processing is a
common way to improve the performance of BS. BS algorithms [13–17] utilize and benefit from
post-processing as part of the BS process. It would be fairer to remove post-processing from these
BS algorithms and evaluate the BS algorithms without and with post-processing, respectively.

The contributions of this paper can be summarized as follows:

(1) A remote scene IR BS dataset captured by our designed MWIR sensor is provided with identified
challenges and pixel-wise ground truth of foreground.

(2) BS algorithms are summarized in six important issues which are used to describe the
implementation of BS algorithms. The implementations of the evaluated BS algorithms are
detailed according to these issues. The parameter settings are also presented in this paper.

(3) We improved the rank-orders used in the CVRP CDW challenge [3,4] by combining several
evaluation metrics.

(4) BS algorithm evaluation experiments were conducted on the proposed remote scene IR dataset.
The overall performance of the evaluated BS algorithms and processor/memory requirements
are compared. Proper evaluation metrics and criteria are selected to evaluate the capability of BS
to handle the identified BS challenges represented in the proposed dataset.

1.2. Organization of This Paper

The rest of this paper is organized as follows: in Section 2, previous related works are reviewed,
including previous BS datasets and evaluation papers. In Section 3, an overview of the BS algorithm and
new mechanisms of BS are presented. Section 4 introduces the designed MWIR sensor, the proposed
Remote Scene IR BS Dataset and the challenges represented in each video sequence. Section 5 details
the setup of evaluation experiments, evaluation metrics and rank-order rules. In Section 6 we discuss
the experimental results, and compare the overall performance of the evaluated BS algorithms and their
capability to handle the identified challenges. We also compare their processor/memory requirements.
In Section 7, conclusions and future work perspectives are presented.

2. Previous Works

2.1. Previous Datasets

In the past, numerous datasets and benchmarks have been released to evaluate BS algorithms.
The early datasets (IBM [18], Wallflower [19], PETS [20], CMU [21], ViSOR [22] etc.) were developed
for tracking methods, and only part of these datasets provided bounding box ground truths. Some of
these early datasets are not identified with the challenges of BS. Recently, new datasets were developed
to evaluate BS algorithms, which provide the pixel-wise ground truth of foreground, even pixel-wise
shadow and Region of Interest (ROI). The specific BS challenges are identified in these datasets. Table 1
introduces the datasets developed recently.

The Stuttgart Artificial Background Subtraction (SABS) dataset is a synthetic dataset which
consists of video sequences representing nine different background subtraction challenges for outdoor
video surveillance [2].

The Change Detection Workshop 2012 (CDW2012) [3] dataset was developed for the CVPR2012
Change Detection Workshop challenge. It consists of 31 realistic videos spanning six categories:
Baseline, Dynamic Background, Camera Jitter, Intermittent Object Motion, Shadows and Thermal.

The Change Detection Workshop 2014 (CDW2014) [4] dataset was developed for the CVPR2014
Change Detection Workshop challenge. It extends the CDW2012 dataset with a new set of realistic
videos representing four additional categories: Challenging Weather, Low Frame-Rate, Night, PTZ
and Air Turbulence.
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The Background Modeling Challenge (BMC) [5] dataset was developed for the comparison
workshop of BS algorithms in ACCV2012. It is composed of 20 synthetic videos and nine realistic
videos. Part of the videos are labeled with pixel-wise ground truth of foreground.

The Maritime Detection, Classification, and Tracking (MarDCT) [23] dataset consists of videos
and images from multiple sources and different scenarios. The aim of this dataset is to provide a set of
videos that can be used to develop intelligent surveillance systems for the maritime environment.

The Camplani, Blanco, Salgado (CBS) [24,25] RGB-D dataset provides five sequences of indoor
environments captured by a Microsoft Kinect RGB-D camera. Each sequence represents different
identified challenges.

The Fernandez-Sanchez, Diaz, Ros (FDR) [26,27] RGB-D dataset contains two different sets
of sequences: one (four video sequences) was recorded by a stereo camera combined with three
disparity estimation algorithms; the other (four video sequences) was recorded by a Microsoft Kinect
RGB-D camera.

Table 1. Introduction of the datasets recently developed for background subtraction.

Datasets Type Ground Truth Challenges

SABS Synthetic Pixel-wise FG and
Shadow

Dynamic Background, Bootstrapping, Darkening,
Light Switch, Noisy Night, Shadow,

Camouflage, Video Compression

CDW2012 Realistic Pixel-wise FG, ROI and
Shadow

Dynamic BG, Camera Jitter, Intermittent Motion,
Shadow, Thermal

CDW2014 Realistic Pixel-wise FG, ROI and
Shadow

Dynamic BG, Camera Jitter, Intermittent Motion,
Shadow, Thermal, Bad Weather, Low Frame Rate,

Night, PTZ, Air Turbulence

BMC Synthetic and Realistic Pixel-wise FG for Part of
Video Sequences

Dynamic Background, Bad Weather, Fast Light
Changes, Big foreground

MarDCT Realistic Pixel-wise FG for Part of
Video Sequences Dynamic Background, PTZ

CBS RGB-D Realistic Pixel-wise FG Shadow, Depth Camouflage

FDR RGB-D Realistic Pixel-wise FG for Part of
Video Sequence

Low Lighting, Color Saturation, Crossing,
Shadow, Occlusion, Sudden Illumination Change

2.2. Previous Evaluation and Review Papers

A number of evaluations and reviews about BS can be found in the literature published to date.
The early papers [28–39] did not evaluate or review the new BS algorithms. Some of these papers
conducted evaluation experiments on their own, used non-public datasets, and some of these papers
did not evaluate BS algorithms for the identified challenges. Papers [40,41] only evaluated statistical
BS algorithms.

Since 2010, some new papers were published which evaluated and reviewed BS algorithms on
public datasets with identified challenges. The important evaluation and review papers are introduced
in Table 2.

Brutzer et al. [2] firstly identified the main challenges of background subtraction, and then
compared the performance of nine background subtraction algorithms with post-processing and their
capability to handle these challenges. This paper also introduced a new evaluation dataset with
accurate ground truth annotations and shadow masks which enables precise in-depth evaluation of
the strengths and drawbacks of BS algorithms.

Goyette et al. [3] presented various aspects of the CDW2012 dataset used in the CVPR2012 CDW
Challenge. This paper also discussed quantitative performance metrics and comparative results for
over 18 BS algorithms.

Wang et al. [4] presented the CDW2014 datasets used in the CVPR2014 CDW Challenge,
and described every category of dataset that incorporates challenges encountered in BS. This paper
also provided an overview of the results of more than 16 BS algorithms.
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Vacavant et al. [5] presented the BMC dataset with both synthetic and real videos and evaluated six
BS algorithms on this dataset. The BMC dataset focuses on outdoor scenes with weather variations such as
wind, sun or rain. This paper also proposed some evaluation criteria and a free software to compute them.

Sobral et al. [42] compared the 29 BS algorithms on the BMC dataset, and conducted experimental
analysis to evaluate robustness of BS algorithms and their practical performance in terms of
computational load and memory usage.

Dhome et al. [12] proposed a BS algorithm evaluation dataset developed by LIVIC SIVIC
simulator [43], and conducted evaluation of six BS algorithms on this dataset based on several
evaluation metrics.

Benezeth et al. [8] presented a comparative study of seven BS algorithms on various synthetic
and realistic video sequences representing kinds of challenges. These sequences are a collection from
other BS datasets.

Bouwmans [9] provided a complete survey of the traditional and recent approaches. First, this
paper categorized BS algorithms found in the literature and discussed them. Then this paper presented
the available resources, datasets and libraries. Finally, several promising directions for future research
were suggested, but there were no evaluation experiments for BS algorithms.

Table 2. Introduction of recent evaluation and review papers on background subtraction.

Papers Dataset Evaluation Metrics

Brutzer et al. SABS F-Measure, PRC
Goyette et al. CDW2012 Recall, Specificity, FPR, FNR, PWC, F-Measure, Precision, RC, R
Wang et al. CDW2014 Recall, Specificity, FPR, FNR, PWC, F-Measure, Precision, RC, R

Vacavant et al. BMC F-Measure, D-Score, PSNR, SSIM, Precision, Recall

Sobral et al. BMC Recall, Precision, F-Measure, PSNR, D-Score, SSIM, FSD, Memory
Usage, Computational Load

Dhome et al. Sequences from LIVIC
SIVIC Simulator 4-Measure, F-Measure

Benezeth et al. A collection from PETS,
IBM and VSSN Recall, PRC, Memory Usage, Computational Load

Bouwmans No No

3. Overview of Background Subtraction

3.1. Description of Background Subtraction Algorithm

Many BS algorithms have been designed to segment the foreground objects from the background of
a sequence, and generally share the same scheme [42], which is shown in Figure 1. A background (BG)
model Mt(x, y) is constructed and maintained for pixel pt(x, y) at time t. If pt(x, y) is similar with its
background model Mt(x, y), it is labeled as a background pixel or it is a foreground pixel. We summarize
six important issues of BS which are used to describe the implementation of BS algorithms. Initiation,
detection and updating are the steps of background subtraction as mentioned in [9,42,44].
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(1) Features: What features are selected for each pixel?

Pixel colors including RGB color, YUV color and HSV color, etc., are the features commonly used
in BS. Co-occurrence, chromaticity and gradient features are also employed in BS algorithms. Recently
different kinds of texture features are also employed. References [45–47] adopt Local Binary Pattern
(LBP) and modified LBP texture features; references [48–50] adopt Local Binary Similarity Pattern
(LBSP) texture features. To capture much more information, some BS algorithms adopt multi-features
with bit-wise OR operation or fusion. Bit-wise OR operation of multi-features is illustrated in Figure 2a.
Pixels are distinguished using each feature independently, and the final result comes from a bit-wise
OR operation. Reference [51] applies chromaticity and gradient features with bit-wise OR operations.
Fusion of multi-features as illustrated in Figure 2b is much more common. Pixels are distinguished using
the combined multi-features, and each feature plays its own role and makes different contributions,
and these features are even assigned weights. Reference [52] measures the similarity between pixels and
its BG model using weighted features: RGB color and gradient. Reference [53] utilizes fuzzy integrals to
fuse the Ohta color and gradient for background model. Reference [54] computes the Gaussian mixture
density for each pixel with RGB color, gradient and haar-like features.
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(2) BG Model: What variance parameters of features are saved in the background model?

Besides the original value of the selected features, BS algorithms also save variance parameters
of features in the BG model, such as average, median, density, neuronal map, dictionary, etc.
Reference [55] saves a buffer of color values over time in the BG model to get the median of them.
References [10] and [56] respectively save the running median and running average of color in the
BG model. Reference [57] saves a temporal standard deviation computed by a Sigma-Delta filter.
References [58–60] save a history of color in BG model. Reference [52] saves a history of color and
gradient in BG model. References [61,62] save the density in BG model. Reference [11] saves statistics
(mean and covariance) of features. References [14,15,63] save several statistics of features with weights
in BG model. References [17,64] use an artificial neural map as BG model.

(3) Initialization: How to initialize a BG model?

Initialization is the first step of background subtraction. A BG model is initialized using the
frames at the beginning of the video sequence. References [11,59,60] initialize the BG model using only
one frame. References [17,52] initialize the BG model using several frames and detect the foreground
on initialization, while [13,61] also initialize BG model using several frames but there is no foreground
detection in initialization.

(4) Detection: How to measure the similarity between pixels and the background model?

Detection is the second step of background subtraction, which is also referred to as segmentation.
In this step, the similarity between a pixel and its BG model is measured to label the pixel as
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background or foreground. As illustrated by Equation (1), if the similarity is beyond some threshold R,
the pixel is labeled as background, otherwise it is labeled as foreground. To measure the similarity,
references [10,57,59] apply L1 distance, while [11,17] apply L2 distance, [16,61] apply probability
and [45] applies histogram intersection:

Ft(x, y) =

{
1 dist(pt(x, y), Mt(x, y)) > R
0 otherwise

(1)

(5) Update: How to update BG model?

BG model update is the last step of background subtraction, which is also referred to as BG model
maintenance. If a pixel is labeled as background, its BG model should be updated. There are six update
strategies: non-update, iterative update, first-in-first-out (FIFO) update, selective update, random
update and hybrid update. In a static frame difference algorithm, a static frame is set manually as the
BG model, so there is no update. References [11] iteratively update the BG model with an IIR filter,
which is illustrated in Equation (2). The learning rate α is a constant in [0, 1], which determines the
speed of the adaptation to the scene changes:

Mt+1(x, y) = (1− α)Mt(x, y) + αpt(x, y) (2)

References [58,61] apply a FIFO update strategy. References [65,66] selectively replace the
codeword in the BG model. References [52,59,60] adopt a random replace strategy. References [13,16,45]
use the hybrid update in which more than one update strategies is adopted. Reference [13] removes the
features with minimum weight and iteratively updates the BG model with new features. Reference [16]
adopts iterative and selective updates, respectively, for gradual background change and “once-off”
background change. In [45], if measured proximity is below a threshold for all feature histograms,
a selective update strategy is adopted, or an iterative update is adopted.

(6) Multi-Channel: How to conduct background subtraction in multi-channel video sequence?

For multi-channel video sequences, there are three processing schemes: conversion, bit-wise OR
and fusion, which are shown in Figure 3.
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Reference [46] and Gray-ViBe in [59] first convert the color frames to gray frames, and then
conduct background subtraction on the gray frames. Reference [52] runs background subtraction
in each channel independently, and the final result comes from a bit-wise OR operation. Many
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more BS algorithms [13,14,61] employ multi-channel fusion methods which processes BS in a
multi-channel space.

3.2. New Mechanisms in BS Algorithm

Recent BS algorithms employ some new technologies and ideas to improve the performance,
such as regional diffusion, eaten-up and feedback. Regional diffusion of background information
proposed in [59,60] is used to update BG model, which is also referred to as spatial diffusion or spatial
propagation. Given a pixel pt(x, y) with BG model Mt(x, y) and its neighborhood pt(x̃, ỹ) with BG
model Mt(x̃, ỹ), if pt(x, y) is labeled as background, not only Mt(x, y) but also Mt(x̃, ỹ) is updated
using the feature of pt(x, y). Figure 4a illustrates how the regional diffusion works in BG model
update. This mechanism propagates background pixels spatially, which ensures spatial consistency.
The advantage of regional diffusion is that ghost will be slowly included into the background, and BS
is robust to camera jitter.

Eaten-up proposed in [52] is also used to update BG model. Different from regional diffusion,
the eaten-up mechanism is that if pixel pt(x, y) is label as background, Mt(x̃, ỹ) is updated with the
features of pt(x̃, ỹ), not the features of pt(x, y). Figure 4b illustrates how the eaten-up method works in
BG model update. In this mechanism, a neighboring pixel, which might be foreground, can be updated
as well. This means that certain foreground pixels at the boundary will gradually be included into the
background. The advantage of eaten-up is that erroneous foreground pixels will quickly vanish.
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Feedback loop is the key of the adaptive BS algorithm. It is used to dynamically adjust the
parameters of BS. Reference [52] applies feedback loops based on background dynamics to dynamically
adjust the decision threshold and learning rate. In [50,67], feedback loops based on temporal smoothing
are used to dynamically adjust the feature-space distance threshold, persistence threshold and update
rate. In almost the same way [50,67], [68] apply feedback loops to dynamically adjust the feature-space
distance threshold and update rate. In Figure 5, an overview of PBAS is shown [52].

Sensors 2017, 17, 1945  8 of 31 

 

3.2. New Mechanisms in BS Algorithm 

Recent BS algorithms employ some new technologies and ideas to improve the performance, 
such as regional diffusion, eaten-up and feedback. Regional diffusion of background information 
proposed in [59,60] is used to update BG model, which is also referred to as spatial diffusion or 
spatial propagation. Given a pixel p୲(x, y) with BG model M୲(x, y) and its neighborhood p୲(x, y) 
with BG model M୲(x, y), if p୲(x, y) is labeled as background, not only M୲(x, y) but also M୲(x, y) is 
updated using the feature of p୲(x, y). Figure 4a illustrates how the regional diffusion works in BG 
model update. This mechanism propagates background pixels spatially, which ensures spatial 
consistency. The advantage of regional diffusion is that ghost will be slowly included into the 
background, and BS is robust to camera jitter. 

Eaten-up proposed in [52] is also used to update BG model. Different from regional diffusion, 
the eaten-up mechanism is that if pixel p୲(x, y) is label as background, M୲(x, y) is updated with the 
features of p୲(x, y), not the features of p୲(x, y). Figure 4b illustrates how the eaten-up method works 
in BG model update. In this mechanism, a neighboring pixel, which might be foreground, can be 
updated as well. This means that certain foreground pixels at the boundary will gradually be 
included into the background. The advantage of eaten-up is that erroneous foreground pixels will 
quickly vanish. 

( , )tp x y

( , )tM x y

( , )tp x y 

( , )tM x y 

( , )tp x y

( , )tM x y

( , )tp x y 

( , )tM x y 

 
Figure 4. Regional diffusion and eaten-up in BG model update. 

Feedback loop is the key of the adaptive BS algorithm. It is used to dynamically adjust the 
parameters of BS. Reference [52] applies feedback loops based on background dynamics to 
dynamically adjust the decision threshold and learning rate. In [50,67], feedback loops based on 
temporal smoothing are used to dynamically adjust the feature-space distance threshold, persistence 
threshold and update rate. In almost the same way [50,67], [68] apply feedback loops to dynamically 
adjust the feature-space distance threshold and update rate. In Figure 5, an overview of PBAS is 
shown [52].  

 
Figure 5. Feedback loop used in PBAS. 

Compared with Figure 1, there is an additional feedback loop. This feedback loop steered by the 
background dynamic is used to adaptively adjust the parameters at runtime for each pixel 
separately. 
  

Figure 5. Feedback loop used in PBAS.



Sensors 2017, 17, 1945 9 of 31

Compared with Figure 1, there is an additional feedback loop. This feedback loop steered by the
background dynamic is used to adaptively adjust the parameters at runtime for each pixel separately.

4. MWIR Sensor and Remote Scene IR Dataset

In this evaluation paper, the Remote Scene IR Dataset is proposed. All the video sequences in this
dataset were captured by our designed medium-wave infrared sensor. Figure 6 is the schematic of this
medium-wave infrared imaging sensor. This sensor applies a highly sensitive thermoelectrically cooled
mercury cadmium telluride (MCT) detector which adapts to dark, smoke and strong illumination
because of its transmittance ability, and can be used to detect and track objects in remote scenes.
The key optical, electrical, physical specifications of this MWIR sensor are presented in Table 3.

Table 3. Specifications of the MWIR sensor.

Detector Material: HgCdTe NETD: <28 mk

Array Size: 640 × 512 Pixel Size: 15 µm
Diameter: 200 mm Focus length: 400 mm

Wavelength Range: 3~5 µm F/#: 4
Focusing Time: <1 s Average Transmittance: >80%

FOV: 15.2◦ (Wide), 0.8◦ (Narrow) Distortion: <7% (Wide), <5% (Narrow)
Data Bus: CameraLink or Fiber Control Bus: CameraLink or RS422

Storage Temperature: −45~+60 ◦C Operating Temperature: −40~+55 ◦C
Input Power: DC24 V ± 1 V, ≤35 W@20 ◦C
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This dataset is composed of 1263 frames in 12 video sequences, and each frame was manually
annotated with pixel-wise foreground. Frame samples of this dataset are shown in Figure 7. The frames
in each video sequence are resized to 480 × 320, and they are provided in .BMP format. These IR
video sequences represent several BS challenges, including dynamic background, ghosts, camera jitter,
camouflage, noise, high and low speeds of foreground movement, etc. This dataset is described in
Table 4 like the introduction of the previous datasets in Table 1. The challenges represented in each
video sequence are listed in Table 5.

Table 4. Introduction of the Remote Scene IR dataset.

Dataset Type Ground Truth Challenges

Remote Scene IR Dataset Realistic Pixel-wise FG
Dynamic BG, Camera Jitter, Camouflage, Device

Noise, High and Low speeds of Foreground
Movement, Small and Dim Foreground, Ghost
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Table 5. Challenges represented in each video sequence of the Remote Scene IR Dataset.

Sequences Challenges

Sequences_1 Ghost, Dynamic Background
Sequences_2 Dynamic Background, Long Time Camouflage
Sequences_3 Ghost, Dynamic Background, Short Time Camouflage
Sequences_4 Ghost, Device Noise, Camera Jitter
Sequences_5 Small and Dim Foreground, Device Noise
Sequences_6 Small and Dim Foreground, Device Noise, Camera Jitter

Sequence_7 series Low Speed of Foreground Movement
Sequence_8 series High Speed of Foreground Movement
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Sequence_1: In this sequence, foreground exists from the first frame. This is used to evaluate the
capability of BS algorithms to handle ghosts. There is also waving grass, a typical dynamic background,
in the frames of this sequence.

Sequence_2: Besides the challenges of ghost and dynamic background, there is a long duration
camouflage. Foreground moves into a background region which has very similar color and texture
with foreground.

Sequence_3: Challenges of ghost, dynamic background and camouflage are represented in this
sequence. Different from Sequence_2, there is a short duration camouflage in this sequence which lasts
from frame 77 to 102.

Sequence_4: This is a multi-foreground scene. Because of device noise, the left part of each frame
in this sequence is blurred. There are also camera jitters in frames 39, 74, 85, 92, 98, etc.
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Sequence_5: This sequence is used to detect small and dim foregrounds. Like sequence 4, there is
also device noise in this sequence.

Sequence_6: Besides the challenges of device noise, small and dim foreground, there are also
camera jitters in frames 18, 21, 24, 30, 108, etc.

Sequence_7 series: Sequences_7-1, Sequences_7-2 and Sequences_7-3 are the same videos
with different frame sample rate, which are used to evaluate the capability of BS to handle low
speed foreground movement. In Sequence_7-1, the speed is 1 pixel/frame. In Sequences_7-2 and
Sequences_7-3, the speeds are respectively below and above 1 pixel/frame: 0.6 and 1.38 pixel/frame.

Sequence_8 series: Sequence_8-1, Sequences_8-2 and Sequences_8-3 are also the same videos
with different frame sample rates. Contrary to the Sequence_7 series, these sequences are used to
evaluate the capability of BS to handle high speed foreground movement. In Sequence_8-1, the speed
is 1 self-size/frame. In Sequences_8-2 and Sequences_8-3, the speeds are respectively below and above
1 self-size/frame: 0.75 and 1.25 self-size/frame.

5. Experimental Setup

In the evaluation experiments, we attempted to select the most influential BS algorithms,
the important BS algorithms from each category according to the taxonomy provided by [42], and the
state-of-the-art BS algorithms.

The algorithms in the basic method category, such as frame difference, are very simple ways to
detect moving objects. AdaptiveMedian [10] and Sigma-Delta [57] are relatively new approaches in
this category. Bayes [16], an influential approach, is one of the earliest works which adaptively selects
parameters (background learning rate) and adopts multiple features. Texture [45] is the first work to
utilize discriminative texture features in the background model. SOBS [17] proposed a neural network
method in which the background is modeled in a self-organizing manner. Gaussian [11], GMM1 [69],
GMM2 [63] and GMM3 [15] are statistics-based approaches using a Gaussian model which is an
important and influential model in lots of computer vision fields. Even though the Gaussian model is
important, it is still not always perfectly corresponds to the real data because it is tightly coupled with
the underlying assumptions. On the other hand, non-parametric models are more flexible, and are
data dependent [17]. Codebook [65,66], GMG [13], KDE [61], KNN [14], ViBe [59] and PBAS [52] etc.
are non-parametric BS approaches. ViBe and PBAS, two of the state-of-the-art approaches, proposed
regional diffusion and eaten-up, respectively, which are effective mechanisms to increase the robustness
of BS by sharing information between the neighborhood pixels as mentioned in Section 3.2. PBAS also
proposed adopting a feedback loop to adaptively adjust the parameter for each pixel separately at
runtime. PACWS, which is also one of the state-of-the-art BS algorithms is a hybrid of Codebook [65,66]
and ViBe [59], and it also adopts a feedback loop to adjust parameters. The implementations and
parameter settings of these evaluated BS algorithms are presented in Sections 5.1 and 5.2. This
evaluation paper is described in Table 6 like with the introduction of the previous evaluation papers in
Table 2. All the evaluated BS algorithms were implemented based on Opencv-2.4.9.

Table 6. Introduction of this evaluation paper.

Evaluation papers Datasets Evaluation Metrics

This Paper Remote Scene IR Dataset Recalld, Precisiond, F-Measured, Recalls, Precisions, F-Measures,
Rankrc, Rankncr, USS, RSS, Execution Time, CPU Occupancy

5.1. Implementation of BS Algorithms

In this evaluation, we tried to keep the implementations of BS consistent with the description in BS
papers, and performed few modifications. For a fair comparison, we first removed any post-processing
described in BS papers, and then evaluated these BS algorithms without and with post-processing,
respectively. Also for a fair comparison of memory and processor requirements, we removed the
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parallel threads described in BS papers. The six issues of these 16 BS algorithms are detailed in Table 7,
and the modifications based on the original BS papers are presented as follows:

Bayes: We removed the morphological operation in the Section 3.3 of [16].
Codebook: We used the implementation in legacy module of Opencv2.4.9, which is a simplification

of the Codebook BS algorithm [65,66]. This implementation applies minus to measure the similarity
between pixel and its BG model and employs a bit-wise OR operation for multi-channel. In the
experiments, YUV color feature are adopted for this algorithm.

GMG: We removed filter and connected components in Section D of [13].
GMM3: We removed the shadow detection in Section 2 of [15].
KNN: We removed the shadow detection in Section 2 of [14].
PBAS: We only applied one thread to run this algorithm on three channels instead of three parallel

threads in Section 3.5 of [52].
SOBS: We removed the shadow detection in Section B of [17].

Table 7. Implementations of the evaluated BS algorithms.

BS Initiation Channels Features BG Model Detection Update

AdaptiveMedian
Several Frames
(Detection in

Initiation)
Bit-wise OR RGB Color Running

Median L1 Distance Iterative

Bayes One Frame Bit-wise OR

Multi-feature
Fusion (RGB

Color & Color
Co-occurrence)

Histogram Probability
Hybrid

(Selective &
Iterative)

Codebook
Several Frames

(No Detection in
Initiation)

Bit-wise OR YUV Color Codeword Minus Selective

Gaussian One Frame Fusion RGB Color Statistics L2 Distance Iterative

GMG
Several Frames

(No Detection in
Initiation)

Fusion RGB color Histogram Probability
Hybrid

(Selective &
Iterative)

GMM1 One Frame Fusion RGB Color Statistics
with Weights L2 Distance

Hybrid
(Selective &

Iterative)

GMM2 One Frame Fusion RGB Color Statistics
with Weights L2 Distance

Hybrid
(Selective &

Iterative)

GMM3 One Frame Fusion RGB Color Statistics
with Weights L2 Distance

Hybrid
(Selective &

Iterative)

KDE
Several Frames

(No Detection in
Initiation)

Fusion SGR Color Density Probability FIFO

KNN One Frame Fusion RGB Color Density L2 Distance Random

PBAS
Several Frames
(Detection in

Initiation)
Bit-wise OR

Multi-feature
Fusion (RGB

Color & Gradient)

Features
Value L1 distance Random

PCAWS One Frame Fusion
Multi-feature
Fusion (RGB

Color & LBSP)
Dictionary L1 Distance Random

Sigma-Delta One Frame Bit-wise OR RGB Color
Temporal
Standard
Deviation

L1 Distance Iterative

SOBS
Several Frames
(Detection in

Initiation)
Fusion HSV Color Neuronal

Map L2 Distance Iterative

Texture One Frame Fusion LBP Histograms
with Weights

Histogram
Intersection

Hybrid
(Selective &

Iterative)

ViBe One Frame Fusion RGB Color Features
Value L1 Distance Random
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5.2. Parameter Settings of BS Algorithms

For the parameter settings of the evaluated BS algorithms, we also tried to keep them consistent
with the values in BS papers. The parameter settings in the experiments are listed in Table 8.

Table 8. Parameter settings of the evaluated BS algorithms.

BS Algorithm Parameter Setting

AdaptiveMedian Threshold = 20, InitialFrames = 20

Bayes Lcolor = 64, N1color = 30, N2color = 50, Lco-occurrences = 32, N1co-occurrences = 50,
N2co-occurrences = 80, α1 = 0.1, α2 = 0.005

Codebook min = 3, max = 10, bound = 10, LearningFrames = 20
Gaussian InitialFrames = 20, threshold = 3.5, α = 0.001

GMG Fmax = 64, α = 0.025, q = 16, pF = 0.8, threshold = 0.8, T = 20
GMM1 Thredshold = 2.5, K = 4, T = 0.6, α = 0.002
GMM2 Thredshold = 2.5, K = 4, T = 0.6, α = 0.002
GMM3 Threshold = 3, K = 4, cf = 0.1, α = 0.001, cT = 0.01

KDE th = 10e-8, W = 100, N = 50, InitialFrames = 20
KNN T = 1000, K = 100, Cth = 20

PBAS N = 35, #min = 2, Rinc/dec = 18, Rlower = 18, Rscale = 5, Tdec = 0.05, Tlower = 2,
Tupper = 200

PCAWS Rcolor = 20, Rdesc = 2, t0 = 1000, N = 50, α = 0.01, λT = 0.5, λR = 0.01
Sigma-Delta N = 4

SOBS n = 3, K = 15, ε1 = 0.1, ε2 = 0.006, c1 = 1, c2 = 0.05
Texture P = 6, R = 2, Rregion = 5, K = 3, TB = 0.8, TP = 0.65, αb = 0.01, αw = 0.01

ViBe N = 20, R = 20, #min = 2, Φ = 16

5.3. Statistical Evaluation Metrics

Background subtraction is considered as a binary classification problem: a pixel is labeled as
background or foreground. As shown in Figure 8, the circle and square respectively represent the true
and detected foreground. TP is the number of true positives, TN is the number of true negatives, FN
is the number of false negatives and FP is the number of false positives. Three important evaluation
metrics are computed with Equations (3)–(5):

Precision = TP/(TP + FP) (3)

Recall = TP/(TP + FN) (4)

F−measure = 2 ∗ Recall ∗ Precision/(Recall + Precision) (5)

Precision can be seen as a metric of exactness or quality, whereas recall is a metric of completeness
or quantity. For a better BS algorithm, the scores of precision and recall should be both high, but there
is an inverse relationship between precision and recall, where it is possible to increase one at the cost
of reducing the other. The F-Measure which is a harmonic mean of precision and recall can be viewed
as a compromise between precision and recall. It balances the precision and recall with equal weighs,
and it is high only when both recall and precision are high. A higher score of F-Measure means that
the performance of BS algorithm is better.
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In the CVPR CDW challenges, the evaluation metrics are average-based. The metrics for each
sequence are firstly calculated. The category-average metrics for each category are computed from
these metrics for all videos in a single category. The final metrics are also computed by averaging the
category-average metrics. This calculation process of the evaluation metrics is presented in Figure 9.
It is clear that there is a shortcoming of these average-based metrics. They are not suitable for situations
where the number of frames in each video is unbalanced or the number of videos in each category
is unbalanced.
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Even though there is no category level in the Remote Scene IR dataset, the situation that the
number of frames is unbalanced indeed exists. For example, the frame number of Sequence_6 is
five times that of Sequence8_1. To overcome this problem, we also employ the overall-based metrics.
We term these two kinds of metrics, which are shown in Figure 10, as sequence-based evaluation metrics
(Prs, Res, F-ms) and dataset-based evaluation metrics (Prd, Red, F-md), respectively. For sequence-based
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1 

 

 

Figure 10. Dataset-based and sequence-based evaluation metrics.



Sensors 2017, 17, 1945 15 of 31

5.4. Rank-Order Rules

Two kinds of rank-orders (named as R and RC) are given in the CDW challenge. Like the
average-based metrics, the rank-order R is also not suitable for the situation where the number of
videos in each category is unbalanced. R and RC are both calculated in the same process: BS algorithms
are firstly ranked based on each evaluation metric independently, and the average of these ranks is
calculated as the final rank. Actually it is difficult to be certain that the process in which the rank of each
metric is firstly calculated is better than the process in which the average of metrics is firstly calculated.

In the following evaluation experiments, we attempt to employ both of the two calculation
processes in which rank and average is respectively firstly calculated. These two rank-orders named
Rankrc and Rankncr are not only based on the sequence-based evaluation metrics (Prs, Res, F-ms),
but also the dataset-based evaluation metrics (Prd, Red, F-md). Figure 11a is the overview of Rankrc.
Firstly BS algorithms are ranked based on each evaluation metric independently, and the average of
these ranks is calculated as the combined rank. The BS algorithms are finally ranked based on this
combined rank. Figure 11b is the overview of Rankncr. Each evaluation metric is normalized in the
range [0, 1], and the average of these normalized metrics is firstly calculated as a combined metric.
The BS algorithms are ranked based on this combined metric.
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5.5. Other Evaluation Metrics

To compare BS algorithms in the intrusion detection context, [70] proposed a multi-level evaluation
methodology including pixel level, image level and sequence level. Besides the aforementioned
evaluation metrics precision (Pr), recall (Re) and F-Measure (F-m), [70] also adopted the average
error number (Err) and standard deviation (SD). To locate the detection errors, [70] proposed D-Score.
The pixel of the pixel S(x, y) is computed as the Equation (6).

D− Score(S(x, y)) = exp(− ln (2DT(S(x, y))− 5/2)2) (6)

where DT(S(x, y) is given by the minimal distance between the pixel S(x, y) and the nearest reference
point (by distance transformation algorithm). A good D-Score has to tend to 0. The D-Score on a given
frame is the mean of D-Score on each pixel, and the D-Score on a given sequence is also the mean of
D-Score on each frame.
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In [70], Pr, Re and F-m were used in all levels of its proposed multi-level evaluation methodology,
and Err, SD and D-Score were used only in the pixel-based level. Different from the intrusion detection
context, the true foreground exists almost in each frame of the Remote Scene IR Dataset, which means
that both FP and TN are always 0 in the frame level and sequence level, even FN is also 0 in these two
levels. According to Equations (3)–(5), Pr, Re and F-m in the frame and sequence levels are always 1
which cannot represent the real performance of BS, so we only employ pixel level metrics (Pr, Re, F-m, Err,
SD and D-Score) in [70] for our evaluation experiments. Actually, the two kinds of metrics introduced in
Section 5.3 are both pixel-level metrics, and they will be used in all the experiments. For Err, SD and
D-Score, we will try to adopt them for the overall evaluation of BS algorithms in Section 6.1.

6. Experimental Results

In this section, the overall experimental results and the effects by post-processing are presented.
Proper evaluation metrics or criteria are selected to evaluate the capability of the evaluated BS
algorithms to handle various challenges. The computational load and memory usage required by each
BS algorithm are also presented in this section.

6.1. Overall Results

The evaluation metrics and rank-orders of BS algorithms are listed in Table 9. Because of the
characteristics of the remote scene IR video sequence, this evaluation result is different with that of the
previous evaluation works.

Table 9. Evaluation metrics and rank-orders of the evaluated BS algorithms.

BS Prd Red F-md Prs Res F-ms Rankrc Rankncr

AdaptiveMedian 0.3362 0.2600 0.2933 0.3445 0.5870 0.3971 7 4
Bayes 0.2138 0.2915 0.2467 0.3527 0.3908 0.3119 9 8

Codebook 0.5759 0.0559 0.1019 0.5425 0.1038 0.1482 11 12
Gaussian 0.5196 0.1944 0.2829 0.5680 0.2725 0.3471 4 5

GMG 0.4927 0.0210 0.0402 0.5000 0.0172 0.0324 14 14
GMM1 0.6838 0.0612 0.1124 0.7069 0.0720 0.1275 10 10
GMM2 0.1066 0.5165 0.1767 0.1138 0.6690 0.1744 8 9
GMM3 0.8121 0.0207 0.0403 0.8330 0.0181 0.0353 12 11

KDE 0.1976 0.1120 0.1429 0.1653 0.3086 0.1776 13 13
KNN 0.2408 0.4083 0.3029 0.3700 0.4690 0.3399 5 6
PBAS 0.6924 0.1279 0.2159 0.7724 0.1020 0.1716 6 7

PCAWS 0.0168 0.9475 0.0330 0.0058 0.0833 0.0108 16 16
Sigma-delta 0.4544 0.5553 0.4998 0.5200 0.5646 0.5037 1 1

SOBS 0.4548 0.3561 0.3995 0.4724 0.4673 0.4462 2 2
Texture 0.2431 0.0483 0.0806 0.3848 0.0584 0.0950 15 15

ViBe 0.3544 0.3526 0.3535 0.3791 0.63619 0.4318 3 3

It is noted that two recent BS algorithms SOBS and ViBe which employ regional diffusion and
a traditional BS algorithm Sigma-Delta perform best. All three of these BS algorithms adopt color
features. The BS algorithms PCAWS and Texture which adopt texture features perform worst because
of the insufficient texture information in the remote scene IR video sequence. The evaluation metrics
Err, SD and D-Score of the BS algorithms are also calculated according to [70] and are shown in Table 10.

Table 10. Evaluation metrics (Err, SD and D-Score) of the evaluated BS algorithms.

BS Err
%

SD
%

D-Score
10−2 BS Err

%
SD
%

D-Score
10−2

AdaptiveMedian 0.244 0.453 0.177 KDE 0.297 0.382 0.193
Bayes 0.177 0.139 0.116 KNN 0.156 0.148 0.098

Codebook 1.145 1.030 0.998 PBAS 0.882 0.403 0.781
Gaussian 0.417 0.686 0.339 PCAWS 0.136 0.132 0.01

GMG 3.793 0.917 3.461 Sigma-delta 0.141 0.171 0.091
GMM1 1.552 1.872 1.352 SOBS 0.184 0.196 0.125
GMM2 0.136 0.144 0.05 Texture 0.781 0.422 0.657
GMM3 5.487 2.80 4.892 ViBe 0.197 0.349 0.137
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It is noted that the results presented in this table are different from those presented in Table 9
and neither are consistent with what we directly observe from the detected foreground masks. For
example, PCAWS and KDE give good results in Table 10 but bad results in Table 9. We argue that
there are two reasons which could explain the ‘good’ results in Table 10. First, Err, SD and D-Score are
one-sided metrics which only consider the errors of the detection including FN and FP, not the whole
detection including FN, FP and TN, TP. They cannot present the real performance of the BS algorithm
in some situations. We take the Err of PCAWS as an example. This small value of Err (FN and FP)
is due to the small moving object (including FN) in the remote scene and the worse performance of
PCAWS which detects little foreground (including FP), not due to the ‘good’ performance of PCAWS.
This situation also can be illustrated by Figure 8 in which the circle and square are both very small.
Second, for D-Score, each error cost depends to the distance with the nearest corresponding pixel in the
ground-truth, and the penalty applied to the medium range is heavier than that applied to the short or
long range [70]. According this evaluation criterion based on the range, [70] implemented D-Score
with a tolerance of 3 pixels from the ground-truth. Also due to the small moving objects in remote
scene, actually the errors with 3 pixels range would really affect the detection process, so the Err, SD
and D-Score cannot effectively present the real performance of BS algorithms in this proposed dataset,
therefore in the following experiments, Err, SD and D-Score would not be adopted for evaluation.
In order to assess the difficulty that each IR video sequence poses to the evaluated BS algorithms,
we calculate the average of all the evaluated BS algorithms’ F-ms for each sequence, and rank the
difficulty according to this average value. The results are listed in Table 11 which shows that it is much
more difficult to subtract background on the video sequences presenting challenges of small and dim
foreground, camouflage and low speed of foreground movement.

Table 11. Rank of difficulty that each IR video sequence poses to the evaluated BS algorithms.

Ave. F-ms Difficulty Rank Ave. F-ms Difficulty Rank

Sequence_1 0.3253 10 Sequence_7-1 0.2397 5
Sequence_2 0.1025 3 Sequence_7-2 0.2226 4
Sequence_3 0.3105 8 Sequence_7-3 0.2438 6
Sequence_4 0.2630 7 Sequence_8-1 0.3159 9
Sequence_5 0.0773 2 Sequence_8-2 0.3565 12
Sequence_6 0.0297 1 Sequence_8-3 0.3260 11

6.2. Post-Processing

After BS post-processing approaches that detect foreground masks including median filter,
morphological operation and shadow removal are commonly used to improve the performance
of BS. Because of the inexistence of shadow in the Remote Scene IR Dataset, we only focused on
the median filter and morphological operation. In this post-processing experiment, firstly a median
filter with a 3 × 3 window was employed on the detected foreground masks. Then a morphological
operation was employed on the detected foreground masks, including opening operation and closing
operation within one iteration with a 3 × 3 window.

Table 12 illustrates the results of the BS with median filters (BS + M), and Table 13 illustrates the
results of the BS with median filters and morphological operation (BS + MM). Most of BS algorithms
benefit from these post-processing approaches, and the improvements of performance are presented in
Tables 14 and 15.
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Table 12. Evaluation metrics and ranks of the evaluated BS with median filter.

BS + M Prd Red F-md Prs Res F-ms Rankrc Rankncr

AdaptiveMedian 0.3232 0.3323 0.3277 0.3273 0.6762 0.3919 6 5
Bayes 0.1644 0.5141 0.2491 0.3008 0.5549 0.3177 9 8

Codebook 0.5735 0.1051 0.1777 0.5322 0.2380 0.2805 8 10
Gaussian 0.5036 0.2631 0.3456 0.5407 0.4255 0.4193 4 4

GMG 0.4828 0.0655 0.1154 0.4909 0.0546 0.0897 14 14
GMM1 0.6826 0.0867 0.1539 0.6869 0.1496 0.2295 10 9
GMM2 0.0891 0.5932 0.1549 0.1032 0.5098 0.1617 11 12
GMM3 0.8344 0.0338 0.0650 0.8387 0.0336 0.0635 12 11

KDE 0.1847 0.1250 0.1491 0.1516 0.3866 0.1797 13 13
KNN 0.1871 0.6488 0.2905 0.3164 0.6249 0.3333 7 6
PBAS 0.6835 0.2117 0.3233 0.7579 0.1618 0.2500 5 7

PCAWS 0.0154 0.9484 0.0303 0.0053 0.0833 0.0100 16 16
Sigma-delta 0.4361 0.7082 0.5398 0.4918 0.6907 0.5261 1 1

SOBS 0.4441 0.5280 0.4824 0.4473 0.6169 0.4771 2 2
Texture 0.1493 0.0977 0.1181 0.3187 0.0956 0.1178 15 15

ViBe 0.3408 0.4553 0.3898 0.3626 0.6942 0.4294 3 3

Table 13. Evaluation metrics and ranks of the evaluated BS with median filter and morphological operation.

BS + MM Prd Red F-md Prs Res F-ms Rankrc Rankncr

AdaptiveMedian 0.3125 0.4434 0.3666 0.3098 0.6227 0.3803 6 6
Bayes 0.0909 0.5531 0.1561 0.2193 0.5777 0.2263 10 11

Codebook 0.5521 0.1520 0.2384 0.5069 0.3992 0.3747 7 7
Gaussian 0.4865 0.3552 0.4106 0.5127 0.5425 0.4565 3 3

GMG 0.4343 0.1253 0.1945 0.4395 0.1104 0.1492 11 12
GMM1 0.6559 0.1054 0.1817 0.6481 0.2251 0.2981 9 9
GMM2 0.0683 0.6016 0.1227 0.0872 0.4364 0.1411 14 13
GMM3 0.8260 0.0467 0.0884 0.8239 0.0608 0.1089 12 10

KDE 0.1675 0.1660 0.1667 0.1348 0.4266 0.1700 13 14
KNN 0.1130 0.7604 0.1968 0.2472 0.6180 0.2719 8 8
PBAS 0.6607 0.2952 0.4081 0.7320 0.2286 0.3310 5 5

PCAWS 0.0152 0.9556 0.0298 0.0052 0.0833 0.0098 16 15
Sigma-delta 0.4161 0.8228 0.5527 0.4674 0.7669 0.5676 1 1

SOBS 0.4245 0.6771 0.5218 0.4216 0.7371 0.4915 2 2
Texture 0.0896 0.1187 0.1021 0.2789 0.1114 0.1107 15 16

ViBe 0.3333 0.5788 0.4230 0.3500 0.6560 0.4298 4 4

Table 14. Improvement of BS performance caused by median filter.

BS + M F-md F-mS

Average Improvement 0.0369 0.0329
Maximum Improvement 0.1073 (PBAS) 0.1323 (Codebook)

Table 15. Improvement of BS performance caused by median filter and morphological operation.

BS + MM F-md F-mS

Average Improvement 0.0523 0.0479
Maximum Improvement 0.1922 (PBAS) 0.2265 (Codebook)

Due to the benefit from median filter, F-md and F-ms are improved by an average of 0.0369 and
0.0329, respectively. PBAS and Codebook get the most benefit. F-md of PBAS is increased by 0.1073.
Rankrc of PBAS is improved by 1. F-ms of Codebook is increased by 0.1323. Rankrc and Rankncr of
Codebook are respectively improved by 3 and 2.
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Due to the benefit from median filter and morphological operation, F-md and F-ms are improved
by an average of 0.0523 and 0.0479, respectively. PBAS and Codebook also get most benefit. F-md of
PBAS is increased by 0.1922. Rankrc and Rankncr of PBAS are respectively improved by 1 and 2. F-ms of
Codebook is increased by 0.2265. Rankrc and Rankncr of Codebook are respectively improved by 4 and 5.

6.3. Camera Jitter

In many situations, camera jitter is often encountered, which poses a great challenge for BS. When
it occurs, FP is increased significantly in the next several frames. Take the camera jitter in frame 85 of
Sequence_4 as an example, Figure 12 shows frames 84 to 87, their ground truth and the foreground
masks detected by PBAS and Sigma-Delta, and it is obvious that camera jitter could introduce much
more FP in the some BS algorithms. It is easy to understand that a BS algorithm with a strong capability
to handle this challenge, should introduce few FP, but as a special case, the few FP after camera jitter is
caused by the weak capability of detection. As an extreme example, there are few foreground pixels
(including TP and FP) detected by PCAWS in each frame of Sequence_4. It is clear that the few FP after
camera jitter is not caused by the strong capability of PCAWS to handle this challenge, so we evaluate
the capability of BS to handle camera jitter not only based on the increase of FP, but also based on the
detected foreground pixels (sum of FP and TP). Suppose the FPi and TPi are respectively FP and TP of
the frame i and the cameral jitter occurs in frame t, the evaluation metric Pcj employs first n frames after
camera jitter, which is defined by Equation (7). A small value of Pcj means a strong capability to handle
camera jitter. We try to only focus on the impact caused by camera jitter, and take a small value 3 for n:

Pcj =
t+n−1

∑
i=t

FPi − FPt−1

FPi + TPi
where n = 3 (7)

In this experiment, 10 distinct camera jitters (frames 39, 74, 85, 92, 98 of Sequence_4 and frames 18,
21, 24, 30, 108 of Sequence_6) were employed to evaluate the capability of BS to handle this challenge.
Table 16 presents the average Pcj of these 10 camera jitters for each evaluated BS algorithm. Adaptive
Median, Bayes as well as ViBe perform best, and Codebook, PBAS as well as SOBS perform worst.
This evaluation result is consistent with what we directly observe from the detected foreground masks.

Table 16. Capability of the evaluated BS algorithms to handle camera jitter.

BS AVE. Pcj BS AVE. Pcj

AdaptiveMedian −0.8732 KDE 0.0030
Bayes −0.4557 KNN 0.3918

Codebook 1.2910 PBAS 1.1581
Gaussian 0.9122 PCAWS 0.1000

GMG 0.3183 Sigma-Delta 0.3096
GMM1 0.8081 SOBS 1.1807
GMM2 0.2985 Texture 0.8852
GMM3 0.5778 ViBe −0.8261
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A ghost is a set of connected points, detected as in motion but not corresponding to any true 
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the ghost challenge. The capability of each algorithm to handle this challenge can be evaluated by 
directly observing the detected foreground masks. BS algorithms including Bayes, GMG, KDE, KNN 
which adopt density feature or probability measurement and BS algorithm PBAS perform best. 
There is no ghost in the foreground masks detected by these algorithms. For SOBS, ghosts do not 
appear in the foreground masks of Sequence_3 and Sequence_4, but appear in the foreground masks 
of Sequence_2 in which the foreground has a big size. In the foreground masks of GMM3, 
Sigma-Delta and ViBe, ghosts appear but they obviously fade out over time. The order of fade rate is 
Sigma-Delta, GMM3, ViBe. Texture and PCAWS are not evaluated for the ghost challenge because of 
the poor results on these three sequences. There are ghosts in each foreground mask detected by the 
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Figure 12. Comparsion of the results detected by different BS algorithms for the challenge of
camera jitter.

6.4. Ghosts

When a foreground exists from the first frame or a static foreground starts moving, there would
be an artifact ghost left because the pixels of the foreground are involved in the BG model initiation.
A ghost is a set of connected points, detected as in motion but not corresponding to any true
foreground [71]. In the Remote Scene IR Dataset, Sequence_1, Sequence_3 and Sequence_4 represent
the ghost challenge. The capability of each algorithm to handle this challenge can be evaluated by
directly observing the detected foreground masks. BS algorithms including Bayes, GMG, KDE, KNN
which adopt density feature or probability measurement and BS algorithm PBAS perform best. There is
no ghost in the foreground masks detected by these algorithms. For SOBS, ghosts do not appear in the
foreground masks of Sequence_3 and Sequence_4, but appear in the foreground masks of Sequence_2
in which the foreground has a big size. In the foreground masks of GMM3, Sigma-Delta and ViBe,
ghosts appear but they obviously fade out over time. The order of fade rate is Sigma-Delta, GMM3,
ViBe. Texture and PCAWS are not evaluated for the ghost challenge because of the poor results on these
three sequences. There are ghosts in each foreground mask detected by the remaining BS algorithms,
which perform worse at handling this challenge. Figure 13 shows the three kinds of Ghost results
detected by KDE, Sigma-Delta and Gaussian, respectively.
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6.5. Low Speed of Foreground Movement

Low speed of foreground movement is a challenge of BS, and it is very common in remote
scenes. As described in Section 1.1, when the foreground moves with a low speed, it is difficult to
distinguish foreground pixels. In the Remote Scene IR Dataset, Sequence_7 series represents this
challenge. The speeds in Sequence_7-1, Sequence_7-2 and Sequence_7-3 are respectively 1 pixel/frame,
0.6 pixel/frame and 1.38 pixel/frame.

To only focus this challenge which poses difficulty to distinguish foreground pixels, we selected
evaluation metric recall to evaluate the capability of BS to handle this challenge. Table 17 shows
Res of each BS algorithm tested on the Sequence_7 series. The averages of all the evaluated BS
algorithms’ Res are 0.2226, 0.2397 and 0.2438, respectively, for Sequence_7-2, Sequence_7-1 and
Sequence_7-3. This means that for this challenge, the slower the foreground moves, the fewer
foreground pixels are detected. It is noted that Res of Bayes and KNN on Sequence_7-2 are much
smaller than them on Sequence_7-1 and Sequence_7-3. This means that when the speed is below
1 pixel/frame, the performance of Bayes and KNN will decrease significantly. Table 17 also shows that
GMM3 as well as PBAS perform best for this challenge, and GMM2, KDE as well as PCAWS which
hardly detect foreground pixels perform worst for this challenge.
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Table 17. Res of the evaluated BS algorithms tested on Sequence_7 series.

Sequence_7-1 Sequence_7-2 Sequence_7-3

AdaptiveMedian 0.3137 0.3157 0.3173
Bayes 0.3048 0.1358 0.4321

Codebook 0.6683 0.7034 0.6512
Gaussian 0.5853 0.5679 0.6069

GMG 0.6926 0.5737 0.7391
GMM1 0.7315 0.7358 0.7389
GMM2 0.0006 0.0070 0.0002
GMM3 0.8646 0.8590 0.8679

KDE 0.0935 0.0984 0.0981
KNN 0.2424 0.1004 0.3442
PBAS 0.8250 0.8369 0.8331

PCAWS 0 0 0
Sigma-Delta 0.5211 0.4307 0.5720

SOBS 0.5581 0.5659 0.5542
Texture 0.2352 0.1576 0.3036

ViBe 0.3666 0.3617 0.3748
Average 0.2397 0.2226 0.2438

6.6. High Speed of Foreground Movement

High speed of foreground movement is also a challenge of BS which is not mentioned in the
previous BS works. As described in Section 1.1, if the foreground moves with high speed, there would
be a hangover. In Remote Scene IR Dataset, Sequence_8 series represents this challenge. The speeds
in Sequence_8-1, Sequence_8-2 and Sequence_8-3 are 1 self-size/frame, 0.75 self-size/frame and
1.25 self-size/frame, respectively. When the speed of foreground movement is enough high, some BS
algorithms produce hangover which is FP. By observing the foreground masks of Sequence_8 series
detected by each evaluated BS algorithm, we found that only Bayes and GMG produce hangover.
The faster the foreground moves, the longer the distance between the detected foreground and the
hangover is. Figure 14 shows the different results detected by ViBe, Bayes and GMG for the challenge of
high speed foreground movement. Figure 14c shows the foreground masks of frame 21 in Sequence_8-2,
Sequence_8-1 and Sequence_8-3 detected by ViBe without hangover. Figure 14d,e show foreground
masks of the same frames detected by Bayes and GMG, and there are hangovers appeared. In the
foreground masks detected by GMG, besides handover, there is also other FP, which is not caused by
the challenge of high speed of foreground movement. We only focus on the hangover caused by this
challenge. It is noted that hangover fades out over time in the foreground masks detected by GMG,
but cannot fade out in the foreground masks detected by Bayes.

6.7. Camouflage

Camouflage is a challenge of BS which is caused by foreground that has similar color and texture
as the background. There is a long duration of camouflage in Sequence_2, and the foreground moves
into a background region which has very similar color and texture as the foreground. Table 18 presents
the evaluation metric F-ms of each evaluated BS algorithm. Two recent algorithms PBAS, SOBS, and a
traditional algorithm, Codebook, perform the best and they benefit greatly from the post-processing.
GMM2, KDE and PCAWS perform the worst. They hardly detect foreground pixels, and do not gain
any benefit from post-processing.



Sensors 2017, 17, 1945 23 of 31

Sensors 2017, 17, 1945  23 of 31 

 

 
Figure 13. Comparison of the results detected by different BS algorithms for the challenge of high 
speed foreground movement. 

Table 16. F-ms of the evaluated BS algorithms tested on Sequence_2. 

 BS BS+M BS+MM
AdaptiveMedian 0.0317 0.0387 0.0544 

Bayes 0.1683 0.0911 0.0105 
Codebook 0.1865 0.2771 0.3714
Gaussian 0.0964 0.1109 0.1435 

GMG 0.0709 0.1477 0.1931 
GMM1 0.0572 0.0565 0.0573 
GMM2 0.0001 0 0 
GMM3 0.0421 0.0435 0.0470 

KDE 0.0041 0.0015 0 
KNN 0.1114 0.0328 0.0027 
PBAS 0.2665 0.3244 0.3450

PCAWS 0 0 0 
Sigma-Delta 0.1771 0.1854 0.1860 

SOBS 0.2182 0.2850 0.3274
Texture 0.1574 0.1543 0.1008 

ViBe 0.0520 0.0677 0.0899 

Figure 14. Comparison of the results detected by different BS algorithms for the challenge of high
speed foreground movement.

Table 18. F-ms of the evaluated BS algorithms tested on Sequence_2.

BS BS + M BS + MM

AdaptiveMedian 0.0317 0.0387 0.0544
Bayes 0.1683 0.0911 0.0105

Codebook 0.1865 0.2771 0.3714
Gaussian 0.0964 0.1109 0.1435

GMG 0.0709 0.1477 0.1931
GMM1 0.0572 0.0565 0.0573
GMM2 0.0001 0 0
GMM3 0.0421 0.0435 0.0470

KDE 0.0041 0.0015 0
KNN 0.1114 0.0328 0.0027
PBAS 0.2665 0.3244 0.3450

PCAWS 0 0 0
Sigma-Delta 0.1771 0.1854 0.1860

SOBS 0.2182 0.2850 0.3274
Texture 0.1574 0.1543 0.1008

ViBe 0.0520 0.0677 0.0899
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6.8. Small Dim Foreground

Small and dim foregrounds are also challenges in BS which are common in remote scenes. There
are small and dim foregrounds in Sequence_5 and Sequence_6. Table 19 presents the average F-ms of
all the evaluated BS algorithms for these two sequences. It is noticed that median filter improves the
performance of BS but morphological operation decreases the performance of BS, so we only focus
on the results of BS and BS with median filter for this challenge. Table 20 depicts the average F-ms of
these two sequences for each BS algorithm. Sigma-Delta, KNN, Gaussian as well as Bayes perform
best, and when the median filter is employed, Codebook, GMM1, PBAS as well as Bayes get the most
benefit and perform best.

Table 19. Average F-ms of the evaluated BS algorithms test on Sequence_5 and Sequence_6.

BS BS + M BS + MM

Sequence_5 0.0773 0.0842 0.0631
Sequence_6 0.0297 0.0313 0.0175

Table 20. Average F-ms of Sequence_5 and Sequence_6 detected by the evaluated BS algorithms.

BS BS + M

AdaptiveMedian 0.0265 0.0011
Bayes 0.1036 0.1366

Codebook 0.0345 0.1412
Gaussian 0.1130 0.1054

GMG 0.0091 0.0312
GMM1 0.0460 0.1108
GMM2 0.0001 0
GMM3 0.0128 0.0374

KDE 0.0097 0
KNN 0.1193 0.0571
PBAS 0.0708 0.1313

PCAWS 0 0
Sigma-Delta 0.1712 0.1086

SOBS 0.1018 0.0592
Texture 0.0008 0.0010

ViBe 0.0367 0.0036

6.9. Computational Load and Memory Usage

Because computational load and memory usage are crucial for the real-time video analysis and
tracking applications and embedded systems, it is necessary to evaluate them for BS algorithms. In this
paper, all the evaluation experiments were conducted on a personal computer with an Intel Core
i7-3740QM 2.7 GHz × 8 CUP, 16 GB DDR3 RAM and Ubuntu 14.04 LTS.

Resident Set Size (RSS) and Unique Set Size (USS) were adopted to evaluate the memory usage of
the BS algorithms. CPU occupancy and execution time were adopted to evaluate the computational
load of BS algorithms. Table 21 presents the maximum USS, maximum RSS, average CPU occupancy
and average execution time. Adaptive Median, Gaussian and Sigma-Delta consume the least memory.
Codebook, KDE and ViBe have the minimum computational complexity.
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Table 21. Computational load and memory usage of the evaluated BS algorithms.

BS
Memory Usage Computational Load

USS (kb) RSS (kb) Execution Time (ms/Frame) CPU Occupancy 1 (%)

Adaptive Median 15,844 24,760 11.65 58.41
GMG 131,524 140,432 16.58 68.89

Gaussian 19,352 28,172 21.44 79.07
GMM1 30,060 39,100 27.59 81.03
GMM2 34,292 43,216 38.02 87.55
GMM3 27,680 36,540 31.99 80.66

Codebook 102,640 111,328 6.09 24.18
Bayes 307,752 316,672 123.31 95.45
KDE 51,896 60,844 10.33 54.36
KNN 195,972 204,788 39.29 84.39
PBAS 103,336 112,332 345.73 97.39

PCAWS 422,696 431,596 594.84 98.55
Sigma-Delta 16,336 25,328 15.63 70.27

SOBS 74,008 82,824 223.29 97.13
Texture 132,192 14,1048 3157.05 99.64

ViBe 23,680 32,672 7.66 44.07
1 In this experiment, CPU occupancy is the percentage based on one core. For this computer with eight cores,
the maximum CPU occupancy is 800%.

6.10. Extensional Evaluation with BGSLibrary

BGSLibrary [1] is a very powerful library with many BS algorithms already implemented.
We conducted an extensional evaluation on the BS algorithms from this library. We selected the
BS algorithms which are not evaluated in the previous experiments of this paper, which are listed in
Table 22. The BS algorithms in this library are implemented by many contributors. After checking
the implementations of the selected algorithms in this library, it is found that the results of some
algorithms cannot be evaluated using the same metrics and the implementations of some algorithms
are different from the descriptions in the original papers. For example, the foreground mask detected
by the MultiCue algorithm [72] is not the binary mask; the update of the BG model in the Texture2
algorithm [45] is different from the update in the original paper. Therefore we just conducted an overall
evaluation experiment on these BS algorithms. The comprehensive evaluation of the BS algorithms
from BGSLibrary [1] on the proposed Remote Scene IR dataset will be conducted after a clear grasp of
their detailed implementation.

We ported 24 BS algorithms from BGSLibrary, and made some modifications to ensure
that these BS algorithms can be evaluated in the same context as the previous experiments
in this paper. For example, we removed the median filter from AdaptiveSelectiveBGLearning,
adopted the foreground mask with single channel instead of foreground image with three
channels in FuzzyGaussian [11,73], TextureMRF [46], GMM-Laurence [40], SimpleGaussian [28] and
FuzzyAdaptiveSOM [64], and also some other modifications. The dataset-based evaluation metrics
of these BS algorithms are presented in Table 22, including the results of BS, BS with median filters
(BS + M) and BS with median filters and morphological operation (BS + MM). It is found that the
conclusion of this extensional evaluation is similar with that of the previous experiments in Section 6.1.
The performance of these BS algorithms on this dataset is different from the performance on other
datasets. There are also some state-of-the-art BS algorithms such as SuBSENSE [68] and LOBSTER [48]
which do not perform so well, because they only employ texture features; and there are also some
simple basic algorithms such as AdaptiveBGLearning which perform well.
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Table 22. The Evaluation Results of the BS, and BS with post-processing with the BGSLibrary.

BS
BS BS + M BS + MM

Prd Red F-md Prd Red F-md Prd Red F-md

AdaptiveBGLearning 0.556 0.267 0.361 0.551 0.378 0.448 0.535 0.488 0.511
AdaptiveSelectiveBGLearning 0.604 0.162 0.256 0.597 0.213 0.313 0.571 0.268 0.364

FrameDifference 0.213 0.421 0.283 0.17 0.601 0.265 0.11 0.641 0.188
FuzzyAdaptiveSOM [64] 0.208 0.323 0.253 0.202 0.485 0.285 0.193 0.649 0.298

FuzzyChoquetIntegral [47] 0.114 0.178 0.139 0.104 0.191 0.134 0.081 0.197 0.115
FuzzyGaussian [11,73] 0.701 0.05 0.094 0.704 0.074 0.135 0.679 0.092 0.162

FuzzySugenoIntegral [74] 0.089 0.226 0.128 0.081 0.276 0.125 0.058 0.306 0.097
GMM-Laurence [40] 0.596 0.163 0.256 0.589 0.218 0.318 0.563 0.277 0.371

LOBSTER [48] 0.206 0.983 0.34 0.204 0.985 0.337 0.202 0.99 0.335
MeanBGS 0.051 0.695 0.096 0.033 0.644 0.063 0.019 0.536 0.037

MultiLayer [75] 0.362 0.762 0.491 0.357 0.769 0.488 0.35 0.779 0.483
PratiMediod [55,76] 0.299 0.874 0.445 0.293 0.896 0.442 0.286 0.919 0.436
SimpleGaussian [28] 0.717 0.041 0.078 0.722 0.064 0.118 0.7 0.08 0.144

StaticFrameDifference 0.626 0.082 0.145 0.621 0.111 0.188 0.593 0.134 0.219
SuBSENSE [68] 0.175 0.989 0.297 0.174 0.99 0.295 0.172 0.991 0.294

T2FGMM_UM [77] 0.088 0.995 0.161 0.077 0.999 0.143 0.073 0.999 0.136
T2FGMM_UV [77] 0.605 0.188 0.286 0.596 0.32 0.417 0.566 0.449 0.501
T2FMRF_UM [78] 0.058 0.968 0.11 0.047 0.986 0.091 0.039 0.999 0.075
T2FMRF_UV [78] 0.35 0.534 0.423 0.343 0.743 0.469 0.323 0.855 0.469

Texture2 [45] 2 0.397 0.344 0.369 0.39 0.376 0.383 0.381 0.406 0.393
TextureMRF [46] 0.356 0.149 0.21 0.346 0.167 0.225 0.335 0.185 0.238

VuMeter [79] 0.722 0.025 0.048 0.735 0.055 0.103 0.714 0.089 0.158
WeightedMovingMean 0.107 0.677 0.185 0.078 0.705 0.141 0.045 0.644 0.083

WeightedMovingVariance 0.136 0.624 0.223 0.109 0.662 0.188 0.076 0.63 0.136
2 The implementation of Texture in the BGSLibrary [1] is different from the description in the original paper
[45], so the evaluation result shown in Table 22 is also different from the result of the implementation in the
previous experiments shown in Table 9. To distinguish these two implementations, we name the implementation in
BGSLibrary as Texure2.

7. Discussion

In this paper, we proposed a challenging Remote Scene IR dataset which represents several
challenges of BS. We improved the rank-order rules in CVPR CDW challenge to overcome the unbalance
and uncertainty problems. We also proposed a selection of proper evaluation criteria to evaluate the
capabilities of BS to handle various BS challenges, instead of using the same evaluation criteria for all
the evaluations of capabilities.

In the evaluation experiments, it is found that due to the characteristics of the proposed dataset,
the performance of BS algorithm on this dataset is different with the performance on other datasets.
The PCAWS and Texture which only employ texture features perform worse, even though PCAWS is
one of the state-of-the-art BS algorithms and performs well on other datasets. One simple basic BS
algorithm, Sigma-Delta, performed unexpectedly well.

In extension evaluation experiments on the BS algorithms from the BGSLibrary, the same
conclusions were drawn. The BS algorithms, including the state-of-the-art methods which only employ
texture features, perform worse, while some simple basic BS algorithms perform well. However the
extended evaluation experiments were not as comprehensive as the evaluation experiments, therefore,
a double check on the implementations of the BS algorithms in the BGSLibrary and a comprehensive
evaluation experiment on this proposed dataset are future works.

Remote scene IR video sequences poses enormous difficulties to background subtraction, and
F-md of the best BS algorithm with post-processing in the evaluation experiments and the extension
evaluation experiment were only 0.5398 and 0.511, respectively, which cannot meet the requirement of
some video analysis and tracking systems or applications. According to the results of the evaluation
experiments, the algorithms SOBS and ViBe which employ regional diffusion and the algorithm
Sigma-Delta perform well, and ViBe, Sigma-Delta also require a small computational load and low
memory consumption, but Sigma-Delta performs worse when handling the challenge of camera jitter.
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Both Sigma-Delta and ViBe perform worse at handling the challenges of camouflage and low speed of
foreground movement. It is also found that even though the overall result of PBAS was not as good as
the results of Sigma-Delta and ViBe, PBAS has good capability to handle the challenge of camera jitter
due to its eaten-up mechanism and good capability to handle the challenges of camouflage and low
speed of foreground movement due to its feedback loop mechanism. These good capabilities can be
explained by the roles of these new mechanisms which have been introduced in Section 3.2. We also
argue that a reason why the overall result of PBAS is not so good is that PBAS adopts the gradient
magnitude as the feature which is weak information in IR remote scenes.

Regarding the final purpose of developing an effective and efficient BS algorithm for IR remote
scenes, it is clear that ViBe could be improved by adding a feedback loop to adaptively adjust
parameters, or Sigma-Delta could be improved by adding a region diffusion or eaten-up mechanism
and also adding a feedback loop. We can also try to remove the gradient magnitude feature from PBAS
and only retain the color feature. Compared to ViBe and Sigma-Delta, PBAS would still have a heavy
computer load and memory usage, even if the gradient magnitude feature were removed.

Supplementary Materials: Remote Scene IR Dataset and the foreground masks detected by each evaluated BS
algorithm are available online: https://github.com/JerryYaoGl/BSEvaluationRemoteSceneIR.
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