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Abstract: This paper presents a systematic and general method for Lamb wave-based crack size
quantification using finite element simulations and Bayesian updating. The method consists of
construction of a baseline quantification model using finite element simulation data and Bayesian
updating with limited Lamb wave data from target structure. The baseline model correlates two
proposed damage sensitive features, namely the normalized amplitude and phase change, with the
crack length through a response surface model. The two damage sensitive features are extracted
from the first received S0 mode wave package. The model parameters of the baseline model are
estimated using finite element simulation data. To account for uncertainties from numerical modeling,
geometry, material and manufacturing between the baseline model and the target model, Bayesian
method is employed to update the baseline model with a few measurements acquired from the actual
target structure. A rigorous validation is made using in-situ fatigue testing and Lamb wave data
from coupon specimens and realistic lap-joint components. The effectiveness and accuracy of the
proposed method is demonstrated under different loading and damage conditions.
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1. Introduction

Structural health monitoring (SHM) is an integrated approach combining data acquisition
and interpretation. It provides a means for damage status assessment and remaining useful life
prediction [1–4]. In recent years, guided ultrasonic waves have gained widespread applications in the
field of SHM as a method of non-destructive evaluations (NDE) due to its ability of traveling large
distances in structures with little energy loss [5–9]. Lamb wave is one of the popular guided waves
and has been identified as an effective tool to detect damages in plate-like structures. Lamb wave
is a form of elastic perturbation that can remain guided between two parallel free surfaces, such as
the upper and lower surfaces of plates or shells. The fundamental idea behind Lamb wave based
damage detection is that discontinuities such as cracks and delamination in the wave path will alter
characteristics of the wave. Lamb wave propagation properties such as amplitude, velocity and phase
shift depend on both test frequency and material thickness. Those properties are expected to change
due to the existence of structural defects. Lamb wave-based NDE has been extensively investigated for
damage identification in metallic and composite materials [10–12]. Souza presented a method based
on Lamb wave and a circular array of sensors for assessing faults in aluminum plates [13]. A damage
index was defined from the analysis of the first package of received Lamb wave signal. Michaels
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presented a damage index called time domain difference which scales the Lamb wave signal to unity
energy in order to evaluate the amplitude difference between damaged signal and healthy signal [14].
Zima proposed a diagnostic system dedicated for plate structures with variable lengths of linear cracks
using guided wave-based techniques and the ellipse-based binary damage imaging algorithm, which
has a great potential for damage growth evaluations in structural monitoring systems [15].

Despite a number of studies on Lamb wave damage detection have been reported in existing
studies, there are still some challenges for engineering applications [16,17]. First, a great number of
experimental datasets of Lamb wave testing are required to establish a reliable and accurate crack size
quantification model. This is due to the fact that Lamb wave propagation properties are sensitive to
local geometry features of the target structure, and there is no universal model available for direct
applications in an given arbitrary target structure. However, such experiments may not be practical
due to time and economic constrains. Meanwhile, Lamb wave data collected in real engineering
structures are often contaminated by operational and environmental noises, which further increase the
difficulty of achieving accurate damage quantification results. Therefore, instead of acquiring test data
from the target structures for model development, a few studies used finite element (FE) simulation
to investigate the underlying mechanisms for Lamb wave damage detection in order to minimize
the required experimental work [18,19]. Hong proposed an approach to locate fatigue damage using
nonlinear Lamb wave. In the method, FE simulations were used to obtain the linear and nonlinear
damage indices from the Lamb wave testing data [20]. Vanli proposed a probabilistic method using
both FE simulations and sensor data to predict the extent and location of damages [21]. In the study,
the damage index calculated from finite element model was utilized as a bias correction function for
damage size. De Fenza reported the propagation of Lamb wave in metallic and composite plates using
FE simulations [22]. A damage index was defined as a determinant of structural damage by magnitudes
of spectra for the damaged and undamaged structures. The damage index was shown to have a direct
relationship with the crack size in the plates. Shen and Giurgiutiu investigated the FE model of Lamb
waves interacting with linear notch cracks and nonlinear breathing cracks. The result of FE simulation
agrees well with the analytical model [23]. Agrahari and Kapuria studied a damage detection strategy
based on the time-reversal process (TRP) of Lamb waves [24]. The time reversibility of Lamb waves in
metallic plates were studied using both experiments and FE simulations. The reported studies have
shown that FE simulation is an effective tool to simulate Lamb wave responses of damages to support
the development of damage detection and assessment methods. However, most of the existing studies
using FE simulations focus on specific targets and the resulting methods cannot directly be applied
to other structures. On the other hand, differences between FE simulation and field testing, such as
boundary conditions, material properties, loading conditions and other factors, may have a significant
influence on the accuracy of the damage quantification model. Therefore, obtaining a general and
reliable damage quantification model using FE simulations is still a practical challenge.

This study has two objectives. The first one is to establish a general methodology for a reliable,
effective and accurate Lamb wave-based crack size quantification model using FE simulation data
and Bayesian updating. The focus is to investigate whether using FE simulation data from a
numerical model can be used to replace the process of acquiring training data from actual components.
The uncertainty of interest is between the numerical model and the realistic structures. It is different
from the previous study reported in Ref. [10] where the uncertainty of interest is the inter-component
uncertainty of physical components with different dimensions and geometry features. The motivation
is to further reduce the economic impact on acquiring necessary data for building the baseline crack
size quantification model. The second is to investigate the influence of uncertainties to the proposed
method for realistic applications. The rest of the study is structured as follows. First, the procedure
of finite element model simulation of Lamb wave propagation in an aluminum plate is presented.
Two sensitive features, namely the normalized amplitude and the phase change, are proposed based
on the physical mechanisms of Lamb wave interactions with cracks. Next, a baseline crack size
quantification model is established using the FE simulation data. The crack size is correlated with
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the two damage sensitive features through a proposed response surface model. To account for the
difference between numerical experiments and Lamb wave data from actual target structures, Bayesian
updating is proposed to calibrate the initial baseline model with sparse measurement data from the
target structures. Following that, a rigorous validation of the proposed method is made using a large
set of experimental data acquired from coupon specimens and realistic lap-joint components in an
in-situ fatigue testing environment. Uncertainties from numerical modeling, loading, material, and
manufacturing are systematically considered in the validation process. The effectiveness and accuracy
of the proposed method is demonstrated. Finally, conclusions are drawn based on the current study.

2. Finite Element Modeling of Lamb Wave Propagation

The simulation of Lamb wave propagation is a highly computational demanding task. It requires
both a fine temporal and spatial discretization to capture the different wave modes. To alleviate the
computational hurdle, semi-analytical finite element methods (SAFE) [25] and wave finite element
methods (WFE) [26,27] were developed to offer fast and accurate results. However, these methods
are difficult to analyze complex three-dimensional geometries and arbitrary perturbations of the
waveguide. The wave propagation in structures containing discontinues, such as delamination, cracks
or other defects, are hard to be described analytically [28]. There are mainly two ways to simulate Lamb
wave propagation in plate-like structures using FE models. In the first method, both the piezoelectric
(PZT) transducers and the host structures are modeled [23,24,29]. The PZT transducers are modeled
with piezoelectric elements. A perfect bonding between the plate and PZT is assumed. A voltage input
of tone burst signal is applied to the top surface of the PZT sensor as an excitation [24]. For signal
sensing, the equipotential condition of the electrode surface of the sensor is imposed by coupling the
electric potential degrees of freedom (DOFs) of the surface. For the second method, the input signal is
equivalently represented by applying vertical forces or uniform in-plane radial concentrated forces on
the nodes of sensors [30,31]. The tone burst can also be excited as the out-of-plane displacement [32].
The coupling effect between the PZT transducer and the host structure is therefore no needed in this
method. Both methods have been proven to be consistent with experimental results based on reported
studies. Finite element models including PZT transducers can be computational expensive and time
consuming. Therefore, the vertical displacement of sensor central point is employed as the input signal
in this study. As shown in Figure 1, a 3.5-cycle tone burst is used in this study as an excitation signal.
Additionally, a Hamming window function is adopted to concentrate the maximum amount of energy
at the desired driving frequency.
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The dimension of the modeled aluminum plates is 400 mm × 200 mm × 2 mm, as shown in
Figure 2. The propagation of Lamb wave is known to be dispersive in nature. The velocity of Lamb
wave propagation depends on not only the elastic constants and density of the material, but also the
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frequency of waves. Theoretically, multiple Lamb wave modes can exist simultaneously in plate-like
structures, and the number of modes increases with the frequency. It is known that S0 mode of Lamb
wave has a significantly larger wave length than the thickness of the plate; therefore, it has advantages
over other modes regarding the sensitivity to smaller damages [33]. In addition, the group velocity of
S0 mode wave is faster than that of the A0 mode wave. The first received S0 wave package has the least
interrupted signal from boundary reflection and is more distinguishable. In this paper, the first wave
package of S0 mode in the received signal data is employed to extract the damage sensitive features.
The excitation frequency of the Lamb wave is set to be 0.16 MHz given the product of the thickness
and excitation frequency is 0.32 MHz mm. The group velocity of S0 mode remains constant with a
slight dispersion.
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Figure 2. The dimension of the plate structure, crack location, and mesh of the 3D finite element model.

The mechanical properties of the plate are listed in Table 1. A through-thickness crack with a
0.3 mm width is modeled in the center of plate. Crack sizes varying from 1 mm to 30 mm with an
increment of 1 mm are used. A plate with no crack is also modeled as a reference. An actuator and a
receiver with a distance of 300 mm are assumed on each side of the crack. The plate model is meshed
with C3D8R solid elements as displayed in Figure 2. The four lateral sides of the plate model are fixed
and the non-reflective boundary condition is used.

Table 1. Mechanical properties of 2024-T3 aluminum alloy plates.

Material E (GPa) G (GPa) v ρ (kg/m3)

Al2024-T3 72 27 0.33 2780

As Lamb waves travel in a plate, the longitudinal waves travel in the direction of wave
propagation and transverse waves oscillate perpendicular to the direction of wave propagation.
The wave propagation depends on the properties of medium, and the transverse wave velocity and
longitudinal wave velocity of isotropic material are expressed as

cT =

√
E

2ρ(1 + υ)
, (1)

and

cL =

√
E(1− υ)

ρ(1− 2υ)(1 + υ)
, (2)
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respectively. The term E is Young’s modulus, ν is Poisson’s ratio, and ρ is density. The transverse wave
velocity and longitudinal wave velocity given by Equations (1) and (2) are 3120.3 m/s and 6194.6 m/s,
respectively. The smallest wavelength (λmin) is

λmin =
cT

fmax
=

3120.3 m/s
160 kHz

= 19.5 mm, (3)

where f is the frequency of Lamb wave. The size of the elements is chosen in a manner so that
the propagating waves can spatially be resolved. For this purpose, usually more than 10 nodes per
wavelength are required. The typical element edge length can be determined as

Le <
λmin

10
= 1.95 mm. (4)

The minimum element edge length is chosen as 1 mm. The medial axis algorithm is used to
mesh the area near the crack with regular-shaped mesh elements. The plate model without crack
has 160,000 mesh elements and 241,803 nodes. The plate model with a crack has a variable number
of elements and nodes depending on the crack size, for example, the plate with 5 mm crack has
157,656 mesh elements and 238,296 nodes.

For time integration, the accuracy of the model can generally be improved with an increasingly
smaller integration time step. A large time step cannot resolve the high frequency components, and
a small time step can lead to a significant computational demand. Therefore, a proper time step is
required. In this paper, the time step (∆t) selection follows two criteria in Ref. [34]. The CFL condition
(Courant–Friedrichs–Lewy condition) ensures that there are at least 20 time steps during the cycle of a
wave at the highest frequency to prevent a longitudinal wave from traveling completely through an
element during a single time step. The time step calculation can be expressed as

∆t <
1

20 fmax
=

1
20× 160 kHz

= 0.3125 µs. (5)

Another criterion given by Moser uses the minimum element edge length and longitudinal wave
velocity to obtain the minimum time step [35]

∆t <
Lmin

cL
=

1 mm
6194.6 m/s

= 0.161 µs. (6)

The maximum time step is set to 0.1 µs considering Equations (5) and (6). FE simulation results of
the excitation and receiving sensor locations are obtained and shown in Figure 3. The damaged plates
are modeled with different crack sizes ranging from 5 mm to 30 mm. The data from the healthy plate
without crack are also presented for comparison purposes.
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3. Baseline Model of Lamb Wave Damage Detection Using FE Model

3.1. Signal Processing

As mentioned earlier, the first S0 wave package is selected to determine the targeted time window
for damage detection. The demonstration of time-of-flight (ToF) and the time window are shown
Figure 4. The group velocity of Lamb wave is experimentally obtained as 5338 m/s. The time window
of the first wave package is defined as the time duration between the start time point (Tstart) and
the end time point (Tend) of the response signal data. The response signal data in the selected time
window are presented in Figure 5. It can be seen that the amplitude of received signal data gradually
reduces as the crack size increases. This can be explained that a larger crack size can cause more
energy loss when the wave propagates across it. The ratio of damaged signal amplitude to healthy
signal amplitude is defined as normalized amplitude. For a notch or an open crack with no contact
between two crack surfaces, the received signal contains the scattered waves in a detour route from the
crack tip. The detour route results in a phase change of received signal; therefore, the phase change is
considered as the time difference between the damaged plate and the healthy plate. The phase change
of the received signal data becomes larger due to the fact that the traveling distance of the wave is
longer for a longer crack. The crack length versus the normalized amplitude and phase change are
shown in Figure 6a,b, respectively. A general monotonic relationship can be observed from the plots.
Considering the above two physical mechanisms, the phase change and normalized amplitude are
used as damage sensitive features to correlate the crack size in this study.
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3.2. Baseline Crack Size Quantification Model

To quantify the crack length, a regression model, with the damage sensitive features as model
independent variables, needs to be developed. According to previous study, a single feature is difficult
to quantify the damage accurately [36]. A response surface model incorporating the normalized
amplitude, phase change, and the interaction between the two is established as

a = a1 + a2x + a3y + a4xy (7)

where a is crack length, a1, . . . ,4 are model parameters, x is the normalized amplitude, y is the phase
change, and xy is the interaction between the two damage sensitive features. The method of Bayesian
Estimator is used to identify parameter statistically. Consider the difference of model prediction
for crack length and the actual measurement as a zero-mean Gaussian variable, e, with a standard
deviation of σε, the joint distribution of the model parameter θ = (a1,a2,a3,a4) and e writes

p0(θ, σε) ∝
1
σε

(
1√

2πσε

)n
exp

{
−1

2

n

∑
i=1

[
ai − a1 − a2xi − a3yi − a4xiyi

σε

]2
}

, (8)

where ai is the i-th measurement of crack length, xi and yi are the corresponding values of the
normalized amplitude and the phase change, respectively, and n is the total number of data
points. The leading term of Equation (8) is the non-informative prior of σε and the remaining
term is the likelihood function. A total number of 1,000,000 samples are drawn from Equation (8)
using Markov-Chain Monte-Carlo (MCMC) method with Metropolis-Hastings algorithm [37–39].
The resulting samples of the prior distributions of model parameters are presented as histograms in
Figure 7. Basic statistics such as the mean vector and covariance matrix of (a1,a2,a3,a4) can trivially be
calculated from the samples. A deterministic baseline model can be expressed using the mean vector
of (a1,a2,a3,a4) as

a = 35.2813− 34.6471x + 41.6452y− 14.5872xy. (9)

It should be noted that the damage sensitive features (normalized amplitude and phase change)
have specific physical meaning, and the baseline model obtained using FE simulation data reflects an
ideal interaction of Lamb wave with cracks. It reflects the interaction from a numerical experiments
point of view. In addition, the FE simulation is performed in a deterministic framework, which cannot
account for uncertainties caused by the influencing factors in the real testing. Factors that affect the
outcome of the Lamb wave damage detection can be classified into three groups, input parameters
(geometry of component, defect type, etc.), procedure parameters (wave mode, frequency, etc.), and
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acquisition parameters (sampling rate, averaging rate, bandwidth of receiver, etc.). As a result, the
model obtained using FE simulation data is not generic to be used for other geometry or loading
configurations, as it may lead to unreliable results. A rational approach of calibrating the baseline
model with a specific application structure is to update the model with information measured from that
specific structure; therefore, Bayesian updating is proposed to update the baseline model parameters
using a few measurement data points from the target structure.
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3.3. Bayesian Updating of Baseline Model

Bayesian updating approach combines prior belief (i.e., mathematical model) and new information
to obtain a “calibrated” distribution of model parameters [39–42]. Denote the model parameter as
θ and its prior distribution as p0(θ). Given a likelihood function L(D|θ) describing the probability
of measurement data D and parameter θ, the posterior distribution of the parameter, using Bayes’
theorem, reads

p(θ) ∝ p0(θ) · L(D|θ) (10)

With the known prior distribution of model parameters and a Gaussian likelihood function,
the posterior distribution given a number of k measurement from the application structures can be
expressed as

p(a1, a2, a3, a4|D) ∝ p0(a1, a2, a3, a4) · exp

{
−1

2

k

∑
i=1

[
ai − a1 − a2xi − a3yi − a4xiyi

σε

]2
}

(11)

where p0(a1, a2, a3) is the prior distribution of model parameters estimated using samples drawn from
Equation (8), and σε is the standard deviation of the difference between the baseline model prediction of
the crack length and the actual measurement of crack length. In Equation (11), a total of k measurements
of (ai, xi, yi) are used for updating. Without loss of generality, the value of σε can be chosen as the
mean value of the samples from the model parameter estimation in previous section. To validate the
effectiveness of the Bayesian updating on the baseline model from FE simulation data, two sets of
fatigue testing data on actual aluminum plate structures are performed. A few measurement data
points are used to perform the Bayesian updating. The crack length prediction results of the updated
model are compared with the actual crack lengths. The economic advantage of the overall method is to
minimize the cost during baseline model construction. Previous studies use plate-like structures or real
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components for the training data acquisition. This study uses a numerical FE model for training data;
therefore, training data acquisitions on real specimens and components are not needed.

4. Experimental Validation

Two groups of in-situ fatigue testing with Lamb wave data acquisition are performed to validate
the overall proposed method. Lamb waves are generated and response data are collected using PZT
sensors. The pitch-patch configuration is used for Lamb wave data acquisition. Naturally initiated
fatigue cracks instead of artificially inserted crack-like defects are developed during the fatigue testing.
For each small crack increment, the fatigue testing is paused and the Lamb wave data acquisition is
performed. Coupon specimens are used to validate the accuracy of the proposed crack quantification
method. Following that, data on realistic lap-joint components with bolt joints are employed to further
validate the performance of the proposed method on engineering structures under different loading
and damage conditions.

4.1. Coupon Application

The experimental setup for coupon test is shown in Figure 8a. The specimens are made of 2024-T3
aluminum with one hole in the center of the plate. The mechanical properties of the specimen are
listed in Table 1. The geometry information of specimen is shown in Figure 8b. The crack size is
measured by optical microscopy techniques. The piezoelectric wafers A1 and A2 are used as actuators.
The piezoelectric wafers S1 and S2 are used as receivers. The excitation frequency is 160 KHz, which is
identical with the setting used in the previous FE model. Before starting the fatigue testing, data from
the undamaged plate are acquired and regarded as a reference for comparison purposes. For fatigue
testing, a constant loading with a 5 Hz of cycling frequency is used. The peak value of constant
loading is 80 MPa and the stress ratio is 0.1. The machine is paused as necessary for Lamb wave data
acquisition with the loading stayed at 44 MPa. Test 1 represents the data of Lamb wave propagated
from actuator A1 to sensor S1. Test 2 represents the data of Lamb wave propagated from actuator A2
to sensor S2. A total of 23 datasets are acquired for Test 1 and Test 2 during fatigue testing as the crack
develops and propagates to different lengths.
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The first package of S0 mode wave is used to extract the two damage sensitive features (normalized
amplitude and phase change). The damage sensitive features at different crack lengths from
experiments data are shown in Figure 9. It is observed that the damage sensitive features from
experimental data resemble the same monotonic linear relationship as that of FE simulation results.
The normalized amplitude decreases and the phase change increases as the crack propagates.
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To investigate performance of the direct application of the baseline model on coupon components,
the damage sensitive features from the acquired Lamb wave data are used in the baseline model, i.e.,
Equation (9), and the crack size prediction is made. The results are presented in Figure 10, where a
large discrepancy between the baseline model prediction and the actual crack growth curve is observed.
The large difference indicates that the baseline model from FE modeling only reveals the underlying
mechanism of the Lamb wave damage detection and it does not include uncertainties associated with
material property, manufacturing, environment, and so on. Direct applications of the baseline model
to real structures may lead to unreliable results due to those uncertainties. The baseline model must be
further calibrated to a target-specific model for accurate predictions.
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The difference between the prediction from the baseline model and the actual measurements
shown in Figure 10 indicates that direct applications of the baseline model are not reliable to obtain
accurate results for realistic components; therefore, model calibration is necessary. One rational method
for model calibration is using the proposed Bayesian updating with measurement data. To validate
the effectiveness of the proposed Bayesian updating for the baseline model, a few measurements of
(a, x, y) of Test 1 are used to update the baseline model using Equation (11). The updated model is
used to predict the crack length using the extracted (x, y) from the remaining data of Test 1, and the
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results are compared with the actual crack size. The crack size predictions using the updated model
are further compared with the crack size measurements for the entire Test 2 data. A total number
of 1,000,000 samples are generated using MCMC simulations. For each of the samples, a crack size
prediction is made using the sample as model parameters and the extracted (x, y) as model independent
variables; therefore, at each of the model updating stage a total number of 1,000,000 model prediction
results of crack size can be obtained. For illustration purposes, the median prediction results and the
actual crack growth curve are presented in Figure 11. It can be seen that the number of updating points
has an influence on the accuracy of predictions. The difference between actual and predicted crack
lengths is obvious in Figure 11a since the prior information of the baseline model is dominant and
three points for updating is not sufficient to yield accurate results. The prediction gradually converges
to the actual crack size with additional updating points, as shown in Figure 11b,c. It can be expected
that as more and more structure related specific data points are used for updating, features associated
with actual structure will dominate the posterior. As a result the updated model can produce more
accurate results compared with the baseline model. It is seen in Figure 11c that the predicted crack
lengths and the actual crack lengths are very close, indicating the model updated by seven points is
reliable for crack length prediction in this case.
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Figure 12 shows the posterior distribution of the updated model parameters using seven points.
Using the samples, the mean prediction model based on the mean vector of the parameters is
obtained as

a = 14.4605− 14.5193x + 8.6573y− 6.2484xy (12)
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Equation (12) is employed to predict the crack size for Test 2 and results are shown in Figure 13.
A good agreement between the prediction crack size and actual crack size can be observed in Figure 13.
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Both median prediction and 95% confidence bounds of Test 1 and Test 2 are shown in Figure 14, where
most of the data points are within the 95% prediction bounds.Sensors 2017, 17, 2097  12 of 18 
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4.2. Structural Component Application

To further investigate the effectiveness of the proposed method applied to real-world engineering
plate structures under different geometry, material properties, manufacturing, and loading conditions.
Data acquired from realistic lap-joint components with naturally developed fatigue crack reported
in the previous study are used to validate the accuracy of the proposed method for more complex
structures [36].

The overall experimental setup of the in-situ crack damage quantification of riveted lap-joint
components under fatigue loading is shown in Figure 15. It consists of three major parts: (1) the data
acquisition system with PZT sensors for Lamb wave signal data generation and acquisition; (2) the
fatigue crack optical measurement system, in which a traveling optical microscope with a CCD camera
is employed to record the crack propagation during the fatigue testing; and (3) the fatigue cyclic
loading system. The lap-joint components are made of 2024-T3 aluminum. PZT sensors are attached
on specimens as a pitch-catch configuration. A 3.5-cycle tone burst excitation signal is generated by
the actuator, and the response data are received by sensor to interrogate the integrity of the specimen.
A band-pass filter is used for de-noising of the raw data. As fatigue loading applied on specimens,
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the crack is naturally initiated and propagates as the number of loading cycle increases. The details
and more information of lap-joint fatigue testing can be referred to Ref. [36]. Damage features are
extracted from response signal data acquired during fatigue testing using the same signal processing
procedure mentioned in Section 3.1. As shown in Figure 16, the general relationship between the
damage sensitive features and the crack sizes are consistent with that obtained in the FE simulation
and coupon specimen testing.

Sensors 2017, 17, 2097  13 of 18 

 

relationship between the damage sensitive features and the crack sizes are consistent with that 
obtained in the FE simulation and coupon specimen testing. 

 
Figure 15. Experimental setup for riveted lap-joint fatigue tests. 

 
(a) (b)

Figure 16. Crack length versus damage sensitive features obtained from in-situ testing of five 
lap-joint components named T1–T5: (a) normalized amplitude; and (b) phase change. 

The application example here represents a typical case of using Lamb wave for damage 
quantification. Because the Lamb wave propagation depends highly on the geometry details of the 
plate structure of interest, the ideal baseline model calibrated using actual data from the target 
structure can be time-consuming and expensive. In addition, the local geometry features on plates 
can vary case by case, and it becomes infeasible to obtain the structure-specific model for every 
cases. Therefore, the proposed method provides a viable solution for the real applications since it 
requires numerical experiments to generate the baseline model, which is convenient and easy to 
perform. As noted before, direct applications of the baseline model based on the FE simulation data 
may yield unreliable results. The following Bayesian updating using sparse structure specific data 
can calibrate the model to the structure. The resulting updated model becomes structure specific 
model and is expected to be accurate and reliable. Data of specimen T1 are used to update the 

Figure 15. Experimental setup for riveted lap-joint fatigue tests.

Sensors 2017, 17, 2097  13 of 18 

 

relationship between the damage sensitive features and the crack sizes are consistent with that 
obtained in the FE simulation and coupon specimen testing. 

 
Figure 15. Experimental setup for riveted lap-joint fatigue tests. 

 
(a) (b)

Figure 16. Crack length versus damage sensitive features obtained from in-situ testing of five 
lap-joint components named T1–T5: (a) normalized amplitude; and (b) phase change. 

The application example here represents a typical case of using Lamb wave for damage 
quantification. Because the Lamb wave propagation depends highly on the geometry details of the 
plate structure of interest, the ideal baseline model calibrated using actual data from the target 
structure can be time-consuming and expensive. In addition, the local geometry features on plates 
can vary case by case, and it becomes infeasible to obtain the structure-specific model for every 
cases. Therefore, the proposed method provides a viable solution for the real applications since it 
requires numerical experiments to generate the baseline model, which is convenient and easy to 
perform. As noted before, direct applications of the baseline model based on the FE simulation data 
may yield unreliable results. The following Bayesian updating using sparse structure specific data 
can calibrate the model to the structure. The resulting updated model becomes structure specific 
model and is expected to be accurate and reliable. Data of specimen T1 are used to update the 

Figure 16. Crack length versus damage sensitive features obtained from in-situ testing of five lap-joint
components named T1–T5: (a) normalized amplitude; and (b) phase change.

The application example here represents a typical case of using Lamb wave for damage
quantification. Because the Lamb wave propagation depends highly on the geometry details of
the plate structure of interest, the ideal baseline model calibrated using actual data from the target
structure can be time-consuming and expensive. In addition, the local geometry features on plates
can vary case by case, and it becomes infeasible to obtain the structure-specific model for every cases.
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Therefore, the proposed method provides a viable solution for the real applications since it requires
numerical experiments to generate the baseline model, which is convenient and easy to perform.
As noted before, direct applications of the baseline model based on the FE simulation data may yield
unreliable results. The following Bayesian updating using sparse structure specific data can calibrate
the model to the structure. The resulting updated model becomes structure specific model and is
expected to be accurate and reliable. Data of specimen T1 are used to update the baseline model,
and data of the rest specimens are used for model validation. A total number of 1,000,000 MCMC
samples are drawn from the posterior distribution, and the resulting histograms of model parameters
are presented in Figure 17. The mean prediction model based on the mean values of model parameters
is obtained as

a = 7.5063− 7.0025x− 1.7436y + 7.1554xy (13)
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Model prediction results for other specimens are presented in Figure 18a, where a satisfactory
agreement is observed. Figure 18b presents the detailed prediction results using 95% prediction bounds.
It is observed that all data points of T1 are properly overlapped the mean prediction line, because crack
features of T1 are used for model updating. Prediction results for other specimens (T2–T5) are close to
the mean prediction line and enclosed by the 95% prediction bounds. The comparison demonstrates
the overall proposed method is able to quantify crack length for realistic structures using the baseline
model from FE data (Figure 2) and sparse measurements from the target structures (Figure 15).
To further investigate the performance of the method subject to loading uncertainty and manufacturing
uncertainty, two additional testing datasets are used. One dataset is obtained using a different loading
spectrum and the other is obtained using a specimen provided by a different manufacture.
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4.2.1. Different Loading Spectrum

The constant fatigue loading is used for specimen T1–T5. A block loading spectrum with an
overload is applied to specimen T6. The updated model, Equation (13), is used to predict the crack
size for specimen T6. Figure 19 compares the model predictions of the crack size and the actual
measurement of crack size. The prediction can still capture the crack size reliably as shown in
Figure 19a, and the 95% prediction bounds encloses all the measurement data as shown in Figure 19b.Sensors 2017, 17, 2097  15 of 18 
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4.2.2. Specimen from a Different Manufacturer

Specimens T1–T6 are made by the same manufacturer. An additional specimen T7 from a different
manufacture is used to investigate the influence of manufacturing uncertainty to the proposed method.
The same constant loading for T1–T5 is used for T6. Results are shown in Figure 20, where a good
agreement between the prediction and actual measurements is observed.
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5. Conclusions

This paper presents an integrated method for crack quantification in plate structures using
Lamb wave testing. The method consists of a baseline model built from FE simulation data and
Bayesian updating with limited data acquired from the target structure. The baseline model combines
two proposed damage sensitive features to formulate a response surface model. The two sensitive
features, namely the normalized amplitude and the phase change, extracted from the first received
S0 wave package, are chosen based on the physical mechanisms of the interaction between Lamb
wave propagation and the crack damage. Since the nature of Lamb wave propagation is highly
dependent on the local geometry features of the target structure, using FE simulation data to build
the baseline quantification model allows for efficient and economic characterization of Lamb wave
propagation in the structures. It can flexibly be adapted to new structures with minimal efforts and
avoid time-consuming and expensive data acquisition from the actual structure. Due to the difference
between FE simulation data and realistic testing data, the baseline model is updated using a few data
points from the actual structure. Bayesian updating with MCMC simulations are used. The updated
model is expected to be adapted to the specific target structure and provide reliable prediction results.
The overall proposed method is rigorously validated using both coupon specimens and realistic
lap-joint components. The testing is performed in an in-situ fatigue testing environment to represent
the real-world application scenarios. Uncertainties from numerical simulation, loading condition,
manufacturing, model parameter, materials are considered during the validation. Based on the current
study, conclusions are drawn.

(1) The baseline model using FE simulation data can reliably identify the relationship between the
damage sensitive features and the crack length. It provides an economic and efficient way to
generate data for the development of damage quantification models.

(2) Direct use of baseline model for realistic application may lead to unreliable results, and the
baseline model must be further calibrated to a target-specific model. Bayesian updating provides
a rational way to update the initial baseline model with Lamb wave data acquired from the
specific target structure. As more data points are used for updating, the model can be calibrated
to the target structure and yield accurate prediction results.

(3) The overall method is validated using testing data from coupon specimens and lap-joint
components. Due to Bayesian updating, uncertainties from numerical simulation, loading
condition, manufacturing, and materials can be included. Validation results indicates the
proposed method provide a systematic solution to crack size quantification in plate-like structures.
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