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Abstract. Early stage diagnosis of laryngeal squamous cell carcinoma (SCC) is of primary importance for low-
ering patient mortality or after treatment morbidity. Despite the challenges in diagnosis reported in the clinical
literature, few efforts have been invested in computer-assisted diagnosis. The objective of this paper is to inves-
tigate the use of texture-based machine-learning algorithms for early stage cancerous laryngeal tissue classi-
fication. To estimate the classification reliability, a measure of confidence is also exploited. From the endoscopic
videos of 33 patients affected by SCC, a well-balanced dataset of 1320 patches, relative to four laryngeal tissue
classes, was extracted. With the best performing feature, the achieved median classification recall was 93%
[interquartile range ðIQRÞ ¼ 6%]. When excluding low-confidence patches, the achieved median recall was
increased to 98% (IQR ¼ 5%), proving the high reliability of the proposed approach. This research represents
an important advancement in the state-of-the-art computer-assisted laryngeal diagnosis, and the results are a
promising step toward a helpful endoscope-integrated processing system to support early stage diagnosis.© 2017
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1 Introduction
Squamous cell carcinoma (SCC) is the most common cancer of
the laryngeal tract, arising from 95% to 98% of all cases of
laryngeal cancer.1 It is well known from medical literature
that early stage SCC diagnosis can lower mortality rate and
preserve both laryngeal anatomy and vocal fold function.2

Histopathological examination of tissue samples extracted with
biopsy is currently the gold-standard for diagnosis. However,
the relevance of tissue visual analysis for screening purposes
has led, in the past few years, to the development of optical-
biopsy techniques such as narrow-band imaging (NBI) endos-
copy,3 which has become state of the art for laryngeal tract
inspection. The identification of suspicious tissues during the
endoscopic examination is, however, challenging due to the
late onset of symptoms and to the small modifications of the
mucosa, which can pass unnoticed to the human eye.4 Main
modifications occur to the mucosa vascular tree, with the pres-
ence of longitudinal hypertrophic vessels and dot-like vessels,
known as intraepithelial papillary capillary loops (IPCL).3

Changes in the epithelium aspect not related to the vascular
tree, such as thickening and whitening of the epithelial layer
(leukoplakia), are associated with increased risk of developing
SCC, too.5 Visual samples of laryngeal endoscopic video frames
of patients affected by SCC are given in Fig. 1.

Considering the clinical challenges in diagnosis, some pre-
liminary attempts of computer-assisted diagnosis have been pre-
sented,6,7 despite only Barbalata and Mattos6 specifically focus
on early stage diagnosis. The study proposes an algorithm for
the classification of early stage vocal fold cancer based on the

segmentation and analysis of blood vessels. Vessel segmentation
is performed with matched filtering coupled with first-order
derivative of Gaussian. Vessel tortuosity, thickness, and density
are used as features to discriminate between malignant and
benign tissue by means of linear discriminant analysis (LDA).
Despite the good results (overall classification accuracy ¼
84%), the classification proposed in Ref. 6 is strongly sensitive
to a priori set parameters, e.g., vessel width and orientation.
Moreover, focusing on vessels alone does not allow one to take
into account epithelial modifications that do not affect the vas-
cular tree (i.e., in case of leukoplakia).

The emerging and rich literature on surgical data science for
tissue classification outside the field of laryngoscopy has
recently focused on more sophisticated techniques, which
mainly exploit machine learning algorithms to classify tissues
according to texture-based information.8 In Ref. 9, the histogram
of local binary patterns (LBP) is exploited to classify ulcer and
healthy regions in capsule endoscopy images using multilayer
perceptron. In Ref. 10, the LBP histogram is combined with
intensity-based features to classify abdominal tissues in laparo-
scopic images by means of support vector machines (SVM).
Similarly, in Ref. 11, intensity-based features and LBP histo-
gram are used to characterize lesions in gastric images. In
Ref. 12, the LBP histogram is combined with gray-level co-
occurrence matrix (GLCM)-based features to classify gastros-
copy images. AdaBoost is used to perform the classification.
In Ref. 13, Gabor filter-based features are used to classify
healthy and cancerous tissue in gastroscopy images by means
of SVM. A recent work14 exploits NBI data for colorectal
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image analysis. Colorectal tissues are classified as neoplastic or
healthy by means of GLCM-based features and SVM.

Inspired by these recent and promising studies, in this paper,
we aim at investigating if texture-based approaches applied to
laryngeal tissue classification in NBI images can provide reli-
able results, to be used as support for early stage diagnosis.
Specifically, we investigate the following two hypotheses:

• Hypothesis 1 (H1): Machine-learning techniques can clas-
sify laryngeal tissues in NBI images by exploiting textural
information.

• Hypothesis 2 (H2): By estimating the level of classifica-
tion confidence and discarding low-confidence samples,
the number of incorrectly classified cases can be lowered.

The importance of estimating the level of classification con-
fidence with a view to improving system performance has been
widely highlighted in several research fields, such as face rec-
ognition,15 spam-filtering,16 and glioma and colon cancer
recognition.17 In particular, it has been reported that allowing
a system to produce “do not know” results can potentially
reduce the number of incorrectly classified cases.18 In the ana-
lyzed scenario, estimating the classification confidence would
be beneficial since tissue biopsy would be required only for
low-confidence regions in the image.

To the best of our knowledge, we are the first to investigate
the use of texture-based classification algorithms for laryngeal
tissue analysis.

2 Materials and Methods
This section explains the proposed approach to automatic laryn-
geal tissue classification (Sec. 2.1), as well as the evaluation

protocol (Sec. 2.2) used to investigate the two hypotheses intro-
duced in Sec. 1.

2.1 Automatic Laryngeal Tissue Classification

The proposed method consists of the following steps: (i) prepro-
cessing (Sec. 2.1.1), (ii) feature extraction (Sec. 2.1.2), (iii) clas-
sification (Sec. 2.1.3), and (iv) confidence estimation
(Sec. 2.1.4). The workflow of the approach is shown in Fig. 2.

2.1.1 Preprocessing

Anisotropic diffusion filtering19 is used to lower noise while pre-
serving sharp edges in NBI images. Specular reflections (SR),
usually present due to the wet and smooth laryngeal surface, are
automatically identified exploiting their low saturation and high
brightness and then masked.6 After denoising, squared patches
are selected from the image, as described in Sec. 2.2.

SR masking is necessary because it may not always be pos-
sible selecting patches without SR. This is due to the small
extension of early stage cancerous tissues in the image, which
may overlap with SR (especially for the case of intrapapillary
capillary loop-like vessels).

2.1.2 Feature extraction

As laryngeal endoscopic images are captured under various illu-
mination conditions and from different viewpoints, the features
that encode the tissue texture information should be robust to the
pose of the endoscope as well as to the lighting conditions.
Furthermore, with a view of a real-time computer-aided appli-
cation, they should be computationally cheap. In this paper, we
investigate the use of the following descriptors to characterize
the texture of laryngeal tissues:

Texture-based global descriptors. Among classic texture-
based global descriptors, LBP are widely considered as state of
the art for medical image texture analysis.20 LBP are gray-scale
invariant and provide low-complexity, well matching the requi-
site of this application. The first formulation of LBP (LBPR;P)
introduced in the literature requires defining, for a pixel
c ¼ ðcx; cyÞ, a spatial circular neighborhood of radius R with
P equally spaced neighbor points (fpngn∈ð0;P−1Þ):

EQ-TARGET;temp:intralink-;e001;326;299LBPR;PðcÞ ¼
XP−1
n¼0

sðgpn − gcÞ2n; (1)

where gc and gpn denote the gray values of the pixel c and of its
n’th neighbor pn, respectively, and s is defined as

Fig. 1 Visual samples of NBI laryngeal endoscopic frames of patients
affected by SCC.

Fig. 2 Workflow of the proposed approach to laryngeal tissue classification in NBI endoscopic video
frames.
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EQ-TARGET;temp:intralink-;e002;63;752sðgpn − gcÞ ¼
�
1; gpn ≥ gc
0; gpn < gc

: (2)

The most often adopted LBP formulation is the uniform rota-
tion-invariant one (LBPriu2R;P).

21 Rotation invariance is suitable for
the purpose of this paper since the endoscope pose during the
larynx inspection is constantly changing. From LBPriu2R;P, the L2-
normalized histogram of LBPriu2R;P (HLBPriu2

) is computed and
used as feature vector.

For comparison, the GLCM, a second widely used descrip-
tor, is tested. GLCM calculates how often pair of pixels ðc; qÞ
with specific values and in a specified spatial relationship occur
in an image. The spatial relationship is defined by θ and d,
which are the angle and distance between c and q. The
GLCM width (W), equal to the GLCM height (H), corresponds
to the number of quantized image intensity gray-levels. For the
w ¼ h intensity gray-level, the GLCM computed with θ and d is
defined as

EQ-TARGET;temp:intralink-;e003;63;547GLCMθ;dðh;wÞ

¼
8<
:

1; IðcÞ ¼ hand I½cx þ d · cosðθÞ; cy þ d · sinðθÞ� ¼ w
1; IðcÞ ¼ hand I½cx − d · cosðθÞ; cy − d · sinðθÞ� ¼ w
0; otherwise

:

(3)

From the normalized GLCMθ;d, as suggested in Ref. 22,
a feature set (FGLCM) is extracted, which consists of GLCM con-
trast, correlation, energy, and homogeneity. The normalized
GLCMθ;d, which expresses the probability of gray-level occur-
rences, is obtained by dividing each GLCMθ;d entry by the sum
of all entries.

First-order statistics. Intensity mean, variance, and entropy
[Eq. (4)] in each patch are computed and concatenated to form
a single-intensity-based feature set (stat1). The entropy is
defined as

EQ-TARGET;temp:intralink-;e004;63;349entropy ¼ −
X
i

hi log2ðhiÞ; (4)

where hi refers to the image histogram counts of the ið¼ 0∶255Þ
bin. As recommended in Ref. 23, such features are adopted to
integrate the texture-based information encoded in LBPriu2R;P.

In addition to these descriptors, we tested two feature com-
binations (FGLCM þ stat1, HLBPriu2

þ stat1), as suggested in
Ref. 23 for applications in colorectal image analysis.

2.1.3 Classification

To perform tissue classification, SVM are used.24 SVM are
chosen since they allow overcoming the curse-of-dimensionality
that arises when analyzing our high-dimensional feature
space.25,26 The kernel trick prevents parameter proliferation,
lowering computational complexity, and limiting over-fitting.
Moreover, the SVM decisions are only determined by the sup-
port vectors, which make SVM robust to noise in training
data. Here, SVM with the Gaussian kernel (Ψ) are used. For
a binary classification problem, given a training set of N data
fyk; xkgNk¼1, where xk is the k’th input feature vector and yk
is the k’th output label, the SVM decision function takes the
form of

EQ-TARGET;temp:intralink-;e005;326;752fðxÞ ¼ sign

�XN
k¼1

a�kykΨðx; xkÞ þ b

�
; (5)

where

EQ-TARGET;temp:intralink-;e006;326;701Ψðx; xkÞ ¼ expf−γkx − xkk22∕σ2g; γ > 0; (6)

b is a real constant and a�k is retrieved as follows:

EQ-TARGET;temp:intralink-;e007;326;663a�k ¼ max

�
−
1

2

XN
k;l¼1

ykylΨðxk; xlÞakal þ
XN
k¼1

ak

�
; (7)

with

EQ-TARGET;temp:intralink-;e008;326;601

XN
k¼1

akyk ¼ 0; 0 ≤ ak ≤ C; k ¼ 1; : : : ; N: (8)

In this paper, γ and C are retrieved with grid search, as
explained in Sec. 2.2. To implement multiclass SVM classifica-
tion, the one-versus-one scheme is used.

For the sake of completeness, the performance of other clas-
sifiers, such as k-nearest neighbors (kNN),27 naive Bayes
(NB),28 and random forest (RF),29 are also investigated.

Prior to classification, the feature matrices are normalized
within each feature dimension. Specifically, the feature matrices
are preprocessed by removing the mean (centering) and scaling
to unit variance.

2.1.4 Confidence estimation

As a prerequisite for our confidence estimation, we compute the
probability [PriðjÞ] of the i’th patch to belong to the j’th class,
with j ∈ ½1; J� and J the number of considered tissue classes.
For the probability computation, the Platt scaling method
revised for multiclass classification problems is used.30 The Platt
scaling method consists of training the parameters of an addi-
tional sigmoid function to map SVM outputs to probabilities.

To estimate the reliability of the SVM classification of the
i’th patch, inspired by the work in Ref. 31 for abdominal tissue
classification applications, we evaluate the dispersion of Pri
among the J classes using the Gini coefficient (GC)32

EQ-TARGET;temp:intralink-;e009;326;295GC ¼ 1 − 2

Z
1

0

LðxÞdx; (9)

where L is the Lorentz curve, which is the cumulative probabil-
ity among laryngeal classes rank-ordered by decreasing values
of their individual probabilities. The GC has value 0 if all the
probabilities are equally distributed (maximum uncertainty) and
1 for maximum inequality (the classifier is 100% confident in
assigning the label). The classification of a patch is considered
to be confident if GC is higher than a threshold (τ)

EQ-TARGET;temp:intralink-;sec2.1.4;326;175

�
patch ðiÞ is confident; GC ≥ τ;
patch ðiÞ is not confident; otherwise:

2.2 Evaluation

In this study, four tissue classes, which are typically evaluated
during early stage diagnosis with NBI laryngoscopy, are consid-
ered: (i) tissuewith IPCL-like vessels, (ii) leukoplakia, (iii) tissue
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with hypertrophic vessels, and (iv) healthy tissue. We retrospec-
tively analyzed 33 NBI videos, which refer to 33 different
patients affected by SCC. SCC was diagnosed with histopatho-
logical examination. Videos were acquired with a NBI endo-
scopic system (Olympus Visera Elite S190 video processor
and an ENF-VH rhino-laryngo videoscope) with frame rate
of 25 fps and image size of 1920 × 1072 pixels.

A total number of 330 in-focus images (10 per video) was
manually selected from the videos, in such a way that the dis-
tance between the endoscope and the tissue could be considered
constant and approximatively equal to 1 mm for all the images.
This distance is suggested in clinics for correct evaluation of
tissues during NBI endoscopy examination.33

The NBI images were preprocessed as in Sec. 2.1.1. The
parameters used for anisotropic diffusion filtering were set as
in Ref. 34. The saturation and brightness thresholding values
used to mask SR were set as in Ref. 6.

For each of the 330 images, 4 patches were manually
cropped with a size of 100 × 100 pixels, for a total of 1320
patches, equally distributed among the 4 classes (Table 1).
Each patch was cropped from a portion of tissue relative to only
one of the four considered classes (tissue with IPCL-like vessels,
leukoplakia, hypertrophic vessels, and healthy tissue), thus
avoiding tissue overlap in one patch. The selection was per-
formed under the supervision of an expert clinician (otolaryn-
gologist specialized in head and neck oncology). A visual
example of four patches cropped from a NBI frame is shown
in Fig. 3. We decided to select only one patch per tissue
class because, in most of the images, we were not able to select
more than a single patch for the IPCL-like class. This is due to
the small extension of this vascular alteration in early stage
cancer.

For the feature extraction described in Sec. 2.1.2, the LBPriu2R;P

were computed with the following ðR;PÞ combinations: (1; 8),
(2; 16), (3; 24), and the corresponding HLBPriu2

were concat-
enated. Such choice allows a multiscale, and therefore, a more
accurate description of the texture, as suggested in Ref. 10.
Twelve GLCMθ;d were computed using all the possible
combinations of ðθ; dÞ, with θ ∈ f0 deg; 45 deg; 90 deg;
and 135 degg and d ∈ f1;2; 3g, and the corresponding FGLCM

sets were concatenated. The chosen interval of θ allows one to
approximate rotation invariance, as suggested in Ref. 22. The
values of d were chosen to be consistent with the scale used
to compute LBPriu2R;P. LBP

riu2
R;P, GLCMθ;d, and stat1 were com-

puted for each channel in the NBI image. All the tested feature
vectors and their length are reported in Table 2.

As for performing the classification presented in Sec. 2.1.3,
the SVM hyperparameters ðγ; CÞ were retrieved via grid-search
and cross validation on the training set. The grid-search space
for γ and C was set to ½10−7; 10−1� and ½10−3; 103�, respectively,
with six values spaced evenly on log10 scale in both cases.
Similarly, we retrieved the number of neighbors for kNN with
a grid-search space set to [2,10] with nine values spaced evenly,

Table 1 Evaluation dataset. For each of the 33 patients’ video, 10 images are used for a total of 330 images. From each image, four tissue patches
are extracted for a total of 1320 patches relative to the four considered tissue classes: healthy tissue, tissue with hypertrophic vessels, leukoplakia,
and tissue with IPCL-like vessels. For a robust evaluation, the dataset is split at patient level to perform threefold cross validation. In each fold, 11
patients are included, for a total of 110 images per fold. Each fold contains 440 patches equally distributed among the laryngeal tissue classes.

Fold 1 Fold 2 Fold 3 Total

Patient ID 1–11 12–22 23–33 33

No. of images 110 (10 per patient) 110 (10 per patient) 110 (10 per patient) 330

No. of patches 440 patches (4 per image) 440 patches (4 per images) 440 patches (4 per image) 1320

Fig. 3 Four patches, relative to the four analyzed laryngeal tissue classes, are manually cropped from
the image. Blue: tissue with IPCL-like vessels; yellow: tissue with leukoplakia; green: healthy tissue; and
red: tissue with hypertrophic vessels.

Table 2 Tested feature vectors and corresponding number of fea-
tures. stat1, intensity mean, variance, entropy; FGLCM, GLCM-
based descriptors; and HLBPriu2

, normalized histogram of rotation-
invariant uniform LBPs.

Feature vector stat1 FGLCM FGLCM þ stat1 HLBPriu2
HLBPriu2

þ stat1

Number of
features

9 144 153 162 171
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and the number of trees in the forest for RF with a grid-search
space set to [40,100] with six values spaced evenly.

The computation of HLBPriu2
, FGLCM, and stat1 was imple-

mented using OpenCv.35 The classification was implemented
with scikit-learn.36

Investigation of H1. In order to assess our hypothesis that
machine-learning techniques can characterize laryngeal tissues
in NBI images by exploiting textural information, we first evalu-
ated the classification performance of the texture descriptors
without confidence estimation (base case).

To obtain a robust estimation of the classification perfor-
mance, threefold cross validation was performed, separating
data at patient level to prevent data leakage. The 1320-patch
dataset was split to obtain well-balanced folds both at patient-
level and tissue-level, as shown in Table 1. Each time, two folds
were used for training and the remaining one for testing purpose
only. This evaluation does not lead to biased results since our
dataset is balanced over the three folds.

Inspired by Ref. 10, we computed the class-specific recall
(recclass ¼ frecclassjgj∈½1;J¼4�) to evaluate the classification per-
formance

EQ-TARGET;temp:intralink-;e010;63;521recclassj ¼
TPj

TPj þ FNj
; (10)

where TPj is the number of elements of the j’th class correctly
classified (true positive of the j’th class) and FNj is the number
of elements of the j’th class wrongly assigned to one of the three
left classes (false negative of the j’th class). We further evalu-
ated the class-specific precision (precclass ¼ fprecclassjgj∈½1;J¼4�)

EQ-TARGET;temp:intralink-;e011;63;421precclassj ¼
TPj

TPj þ FPj
; (11)

where FPj the number of false positive of the j’th class, and the
F1 score (F1classfF1classjgj∈½1;J¼4�), where

EQ-TARGET;temp:intralink-;e012;63;354F1classj ¼ 2
precclassj × recclassj

precclassj þ recclassj
: (12)

For a comprehensive analysis, we computed the area under
the receiver operating characteristic (ROC) curve (AUC). Since
our task is a multiclass classification problem and our dataset is
balanced, we computed the macroaverage ROC curve. The gold-
standard classification was obtained by labeling the patches
under the supervision of an expert clinician.

We used the Wilcoxon signed-rank test (significance level
α ¼ 0.05) for paired sample to assess whether the classification
achieved with our best performing (highest recclass median
value) feature vector significantly differs from the ones achieved
with the other feature sets in Table 2. Similarly, we evaluated
whether the classification achieved with SVM differs (Wilcoxon
signed-rank test with α ¼ 0.05) from the ones achieved with the
other tested classifiers (kNN, NB, RF).

For the sake of completeness, we compared the performance
of our best-performing feature set with those of the most
recent—and so far, the only one—method6 published on the
topic of laryngeal tissue classification in NBI endoscopy, apply-
ing the latter to our dataset. As introduced in Sec. 1, the method
requires setting the vessel segmentation parameters, which
were here set as in Ref. 6. The feature classification was per-
formed with SVM, instead of LDA, for fair comparison. The

comparison was repeated excluding the leukoplakia class, to
avoid privileging the proposed method. Indeed, the method
in Ref. 6 focuses on the analysis of vessels, which, however,
are not visible in case of leukoplakia due to the thickening
of the epithelial layer.

Investigation of H2. To investigate the hypothesis that, by
estimating the level of classification confidence and discarding
low-confidence samples, the number of incorrectly classified
cases can be lowered, we evaluated how recclass, precclass, and
F1class obtained with our best performing feature vector change
considering different thresholds (τ ∈ ½0.6∶0.1∶1Þ) on the GC
value. Since, once the low-confidence patches are excluded,
the balance between classes did not hold, we computed the
ROC curves for each of the four laryngeal classes (and not
the macroaverage ones as for H1).

3 Results
For the base case, the best performance [median Recclass ¼ 93%,
interquartile range ðIQRÞ ¼ 6%] was obtained with HLBPriu2

þ
stat1 and SVM classification, as shown in Table 3. The same
was observed also when considering precclass (median ¼ 94%,
IQR ¼ 4%) and F1class (median ¼ 92%, IQR ¼ 4%). The clas-
sification statistics relative to all the analyzed features are
reported in Fig. 4(a). Significant differences (p-value < 0.05)
were found when comparing HLBPriu2

þ stat1 with stat1, FGLCM,
and FGLCM þ stat1. The normalized confusion matrix for
HLBPriu2

þ stat1 is shown in Fig. 4(b). In Fig. 5(a), the macro-
average ROC curves are reported for all tested features and
SVM classification. The mean AUC across the three folds
was 0.99 for HLBPriu2

þ stat1.
As shown in Table 4, SVM has shown comparable per-

formance with respect to kNN and RF in terms of recclass,
precclass, and F1class, whereas SVM outperformed (p-value <
0.05) NB. The same can be noticed from the ROC curve analysis
in Fig. 5(b).

When applying the algorithm proposed by Barbalata and
Mattos6 to our dataset, a median recclass value of 42%was obtained,
with IQR of 48%. Significant differences (p-value ≪ 0.05)
were found when comparing the algorithm results with those
obtained exploiting HLBPriu2

þ stat1. Visual examples of the ves-
sel segmentation obtained with the method proposed in Ref. 6
are reported in Fig. 6(a) for patches with hypertrophic vessels,
healthy tissue, and IPCL-like vessels. The confusion matrix for
the classification obtained with the method in Ref. 6 is reported
in Fig. 6(b). The Barbalata and Mattos algorithm correctly
labeled leukoplakias and abnormal IPCL only in the 7% and
26% of all cases, respectively. Almost half of leukoplakias and
abnormal IPCL were misclassified as healthy tissues. When
excluding the leukoplakia class, the recclass was: 62% (healthy
tissue), 70% (tissue with hypertrophic vessels), and 28% (tissue
with ICPL-like vessels).

As shown in Table 5, when varying τ in ½0.6∶0.1∶1Þ, the
median recclass forHLBPriu2

þ stat1 monotonically increased from
93% (base case) to 98% (τ ¼ 0.9). The corresponding statistics
are shown in Fig. 7(a). In particular, as can be seen by compar-
ing the confusion matrices in Figs. 4(b) and 7(b), the classifi-
cation recall increased from 98% (healthy tissue), 94%
(hypertrophic vessels), 92% (leukoplakia), 86% (IPCL-like ves-
sels) to 100% (healthy tissue), 99% (hypertrophic vessels), 97%
(leukoplakia), and 93% (IPCL-like vessels). Despite the fact that
a slightly lower improvement was observed for the IPCL class
with respect to the other classes, it is worth noting that, with the
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proposed approach, no misclassification occurred between the
IPCL class and the healthy tissue one. The same happened
also for the hypertrophic vessel class while only the 2% of sam-
ples with leukoplakia was misclassified as healthy. The same
trend was observed for precclass and F1class. The ROC curves for
τ ¼ 0.6 and τ ¼ 0.9 are shown in Fig. 8. The AUC is reported
for each of the analyzed classes [AUC ¼ 0.99� 0.01 (τ ¼
0.9)]. The recclass increment came at the cost of a reduction

of the percentage of confident patches to 80% (τ ¼ 0.9) of
all the patches in the testing set, which corresponds to
∼1056 patches. However, as shown in Fig. 6(b), with the exclu-
sion of low-confidence patches, even in the worst case (classi-
fication of tissue with IPCL-like vessels), the accuracy still
reached 93%.

Figure 9 shows visual samples of patches in our dataset
[Fig. 9(a)], as well as samples of patch classification results

Table 3 Median (first quartile to third quartile) class-specific recall (recclass), precision (precclass), and F1 score (F1class) obtained testing different
feature vectors for the base case (i.e., without the inclusion of confidence on classification estimation). Classification is obtained with SVM. stat1,
intensity mean, variance, entropy; FGLCM, GLCM-based descriptors; HLBPriu2

, normalized histogram of rotation-invariant uniform LBPs.

stat1 FGLCM FGLCM þ stat1 HLBPriu2
HLBPriu2

þ stat1

recclass 72 (54–82) 75 (72–81) 78 (71–86) 90 (87–92) 93 (90–96)

precclass 67 (57–80) 75 (71–80) 78 (72–84) 90 (88–92) 94 (91–95)

F1class 70 (56–81) 74 (71–80) 79 (72–85) 90 (89–91) 92 (91–95)

Fig. 4 Comparison of different features without including the classification confidence estimation.
Classification is obtained with SVM. (a) Boxplots of class-specific recall (recclass) for different features.
stat1, intensity mean, variance, entropy; FGLCM, GLCM-based descriptors; andHLBPriu2

, histogram of rota-
tion-invariant uniform LBPs. The stars indicate significant differences (Wilcoxon test, α ¼ 0.05).
(b) Normalized confusion matrix for HLBPriu2

þ stat1. The colorbar indicates the number of patches.
The total number of patches (no. of patches) is reported.

Fig. 5 Macroaverage ROC curves. The mean (� standard deviation) curves obtained from the three
cross-validation folds are reported in bold (transparent area). The mean (� standard deviation) area
under the ROC curve is reported in the legend. (a) ROC curves for the tested features. Classification
is obtained using SVM. stat1, intensity mean, variance, entropy; FGLCM, GLCM-based descriptors; and
HLBPriu2

, histogram of rotation-invariant uniform LBPs. (b) ROC curves for the tested classifiers.
Classification is obtained using the histogram of LBP and first-order statistics. kNN, k -nearest neighbors;
NB, naive Bayes; RF, random forest; and SVM, support vector machines.
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Table 4 Comparison of different classifiers. Median (first quartile to third quartile) class-specific recall (recclass), precision (precclass), and F1 score
(F1class) are reported for the four different tissue classes. Classification is obtained using the histogram of LBPs and first-order statistics. kNN,
k -nearest neighbors; NB, naive Bayes; RF, random forest; and SVM, support vector machines.

kNN NB RF SVM

recclass 90 (84–93) 78 (74–82) 89 (84–91) 93 (90–96)

precclass 89 (86–91) 81 (73–84) 87 (86–89) 94 (91–95)

F1class 89 (86–91) 79 (74–83) 89 (86–90) 92 (91–95)

Fig. 6 Performance of the state of art. (a) Visual samples of the vessel segmentation obtained applying
Barbalata and Mattos6 algorithm to patches with hypertrophic vessels (first row), healthy tissue (second
row), and IPCL-like vessels (third row). From left to right, original patch, vessel mask, and vessel mask
superimposed on the original patch. (b) Normalized confusion matrix obtained applying Barbalata and
Mattos6 algorithm to our dataset. Colorbar indicates the number of patches. The total number of patches
(no. of patches) is reported.

Table 5 Median (first quartile to third quartile) class-specific recall (recclass), precision (precclass), and F1 score (F1class) are reported at different
level of confidence (τ) on SVM classification.

τ ¼ 0 τ ¼ 0.60 τ ¼ 0.70 τ ¼ 0.80 τ ¼ 0.90

recclass 93 (90–96) 95 (91–97) 96 (92–99) 98 (93–99) 98 (95–100)

precclass 94 (91–95) 95 (92–96) 97 (93–98) 97 (95–98) 99 (96–100)

F1class 92 (91–95) 94 (93–96) 95 (94–97) 96 (95–97) 98 (97–99)

Fig. 7 Effect of varying the threshold (τ) on the classification confidence level. Classification is obtained
using LBP and first-order statistics with SVM. (a) Boxplot of the class-specific accuracy-rate (recclass) for
different τ. The percentage of confident patches for each τ is reported above each boxplot. τ ¼ 0 refers to
classification without confidence estimation. (b) Normalized confusion matrix for τ ¼ 0.9. The number of
patches for each class is reported in parenthesis.

Journal of Medical Imaging 034502-7 Jul–Sep 2017 • Vol. 4(3)

Moccia et al.: Confident texture-based laryngeal tissue classification for early stage. . .



at the base case [Fig. 9(b)] and after the introduction of the con-
fidence measure (τ ¼ 0.9) [Fig. 9(c)].

4 Discussion
In this paper, we presented and fully evaluated an innovative
approach to the computer-aided classification of laryngeal tis-
sues in NBI laryngoscopy. Different textural features were tested
to investigate the best feature set to characterize malignant and
healthy laryngeal tissues: texture-based global descriptors
(FGLCM and HLBPriu2

) and first-order statistics (stat1). A confi-
dence measure on the SVM-based classification was used to
estimate the reliability of the classification results.

When comparing noncombined features (FGLCM, stat1,
HLBPriu2

), the highest classification performance was obtained
with HLBPriu2

. In general, FGLCM performed worse with respect
toHLBPriu2

. This is probably due to the GLCM lack of robustness
to illumination condition changes, which are typically encoun-
tered during endoscopic examination.

SVM has shown comparable performance with respect to RF
and kNN, while significant differences (p-value < 0.05) were
found with respect to NB. This is probably due to NB not
being able to handle high-dimensional feature spaces such as
ours. This is in accord with previous findings in the
literature.25,37,38 Accordingly, for the tested dataset, we could
not conclude that SVM performance was better than the one
obtained with RF and kNN.

When comparing the proposed method with the state of the
art, the classification based on HLBPriu2

significantly outper-
formed (p-value ≪ 0.05) the one proposed by Barbalata and
Mattos,6 also when excluding the leukoplakia class. Since the
method in Ref. 6 relies on accurate vessel segmentation (to
extract vascular shape-based features), a possible reason of
such result could be related to the challenging nature of our val-
idation dataset, which, however, summarizes the diagnostic
scenario well. Indeed, vessel segmentation was not trivial
[Fig. 6(a)] due to (i) the noisy nature of NBI data, (ii) the
low contrast of vessels in patches with healthy tissue and leuko-
plakia, and (iii) the irregular shape of IPCL-like vessels. With
texture-based features, higher classification performance was
achieved with respect to shape-based features since texture-
based feature computation does not require vessel segmentation.
Moreover, the texture-based features here used are invariant to
illumination changes and endoscope pose, which makes them
suitable for the analyzed scenario.

The classification performance obtained with HLBPriu2
was

further increased by estimating the confidence of the SVM clas-
sification, with few misclassifications of confident patches that
mainly occurred with high-challenging vascular patterns, whose
classification is not trivial also for the human eye [Fig. 9(c)].
Such results support our hypothesis that the proposed approach
is suitable for classifying laryngeal tissues with high reliability,
since it automatically estimates its own confidence level and
provides high classification accuracy for confident patches.

Fig. 8 ROC curves at different level τ of confidence on classification. Each curve refers to one of the
laryngeal tissue classes. He, healthy tissue; Hbv, tissue with hypertrophic vessels; Le, leukoplakia; and
IPCL, tissue with IPCL-like vessels. The area under the ROC curve, for each curve, is reported in the
legend. Classification is obtained using LBP and first-order statistics with SVM. (a) ROC curves for
τ ¼ 0.6. (b) ROC curves for τ ¼ 0.9.

(a) (b) (c)

Fig. 9 Visual samples of classification results. Classification is obtained using LBP and first-order sta-
tistics with SVM. (a) Examples of patches for the four tissue classes in our dataset. (b) Visual confusion
matrices for the base case, i.e., without the inclusion of confidence estimation and (c) after including the
confidence estimation with τ ¼ 0.9. Black squares indicate the absence of misclassification between the
true and predicted label.

Journal of Medical Imaging 034502-8 Jul–Sep 2017 • Vol. 4(3)

Moccia et al.: Confident texture-based laryngeal tissue classification for early stage. . .



A limitation of the proposed study could be seen in its patch-
based nature. Note, however, that the choice of focusing on
patches manually extracted under the supervision of an expert
clinician was driven by the necessity of having a controlled and
representative dataset to fairly evaluate different features. As
future work, instead of manually selecting squared patches,
we plan to implement more automatic strategies, such as
superpixel segmentation.39 The features could be directly
extracted from superpixels, as to classify each superpixel as
belonging to one of the analyzed laryngeal classes. More-
over, considering that recent researches on gastrointestinal
image classification40,41 are focusing more and more on convo-
lutional neural networks (CNN), it would be interesting to
exploit also CNN as feature extractor for comparison.

Our expectation is that research on the classification of laryn-
geal tissues will be empowered by the proposed work, becoming
a topic of interest for the scientific community, which until now
has mainly focused on other anatomical sites, such as the gas-
trointestinal tract. Moreover, we hope this study will motivate a
more structured and widespread data collection in clinics and the
sharing of such data through public databases. Despite the
dimension of the analyzed dataset (330 images) is comparable
with that of similar researches (e.g., Barbalata and Mattos6 with
120 images, and Turkmen et al.7 with 70 images), larger
amounts of data would bring the possibility of further exploring
machine-learning classification algorithms, e.g., to classify a
larger number of laryngeal malignant tissues.

In conclusion, the most significant contribution of this work
is showing that LBP-based features and SVM can differentiate
laryngeal tissues accurately. This is highly beneficial for prac-
tical uses. Comparing with other state-of-the-art methods in the
area, the proposed method is simpler and the result is more accu-
rate. It is acknowledged that further research is required to fur-
ther ameliorate the algorithm as to offer all possible support for
diagnosis, but the results presented here are surely a promising
step toward a helpful endoscope-integrated processing system to
support the diagnosis of early stage SCC.
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