
Learning-Based Multimodal Image Registration for Prostate 
Cancer Radiation Therapy

Xiaohuan Cao1,2, Yaozong Gao2,3, Jianhua Yang1, Guorong Wu2, and Dinggang Shen2

1School of Automation, Northwestern Polytechnical University, Xi’an, China

2Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 
USA

3Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 
USA

Abstract

Computed tomography (CT) is widely used for dose planning in the radiotherapy of prostate 

cancer. However, CT has low tissue contrast, thus making manual contouring difficult. In contrast, 

magnetic resonance (MR) image provides high tissue contrast and is thus ideal for manual 

contouring. If MR image can be registered to CT image of the same patient, the contouring 

accuracy of CT could be substantially improved, which could eventually lead to high treatment 

efficacy. In this paper, we propose a learning-based approach for multimodal image registration. 

First, to fill the appearance gap between modalities, a structured random forest with auto-context 

model is learnt to synthesize MRI from CT and vice versa. Then, MRI-to-CT registration is 

steered in a dual manner of registering images with same appearances, i.e., (1) registering the 

synthesized CT with CT, and (2) also registering MRI with the synthesized MRI. Next, a dual-core 

deformation fusion framework is developed to iteratively and effectively combine these two 

registration results. Experiments on pelvic CT and MR images have shown the improved 

registration performance by our proposed method, compared with the existing non-learning based 

registration methods.

1 Introduction

Prostate cancer is a common cancer worldwide. In clinical treatments, external beam 

radiation therapy (EBRT) is one of the most efficient methods. In EBRT, computed 

tomography (CT) is acquired for dose planning since it can provide electron density 

information. However, due to low tissue contrast, it is difficult to contour major pelvic 

organs from CT images, such as prostate, bladder and rectum. Also, the low contouring 

accuracy largely limits the efficacy of prostate cancer treatment. Nowadays, magnetic 

resonance (MR) image is often used together with CT in the EBRT. MR image provides high 

tissue contrast, which makes it ideal for manual organ contouring. Therefore, it is clinically 

desired to register the pelvic MR image to the CT image of the same patient for effective 

manual contouring.
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However, there are two main challenges for accurate pelvic MRI-to-CT registration. The 

first one comes from local anatomical deformation. This is because CT and MRI of the same 

patient are always scanned at different time points, thus the positions, shapes and 

appearances of pelvic organs could change dramatically due to possible bladder filling and 

emptying, bowel gas and irregular rectal movement. This necessitates the use of non-rigid 

image registration to correct the local deformations.

The second challenge comes from the appearance dissimilarities between CT and MRI. For 

example, there are no obvious intensity differences among the regions of prostate, bladder 

and rectum in CT image. But, in MR image, the bladder has brighter intensity than the 

prostate and rectum, as shown in Fig. 1. Moreover, the texture patterns of prostate in MRI 

are much more complex. These appearance dissimilarities make it difficult to design a 

universal similarity metric for MRI-to-CT registration.

To date, many approaches have been developed for multimodal image registration. They fall 

into two categories [1]. The first category is using mutual information (MI) [2] as similarity 

metric for registration. However, MI is a global similarity metric, thus has limited power to 

capture local anatomical details. Although it is technically feasible to compute MI between 

local patches, the insufficient number of voxels in the patch makes the intensity distribution 

less robust to compute MI.

The second category is based on image synthesis for registration. In these methods, one 

modality (e.g., CT) is synthesized from the other modality (e.g., MRI) to reduce large 

appearance gap between different modalities. Afterwards, the multimodal image registration 

problem is simplified to unimodal image registration, where most existing methods can be 

applied. Currently, the synthesis process is often applied to synthesizing the image with 

simple appearance from the image with rich and complex appearance, i.e., synthesizing CT 

from MRI [3]. However, such complex-to-simple image synthesis offers limited benefit to 

the pelvic MRI-to-CT registration. This is because the alignment at soft tissues such as 

prostate can hardly get improved due to low image contrast in CT. To alleviate this issue, we 

argue that image synthesis should be performed in bi-directions, and also the estimated 

deformations from both synthesized modalities should be effectively combined to improve 

multimodal image registration.

In this paper, we propose a learning-based multimodal image registration method based on 

our novel bi-directional image synthesis. The contributions of our work can be summarized 

as follows:

1. To reduce the large appearance gap between MRI and CT, we propose to use 

structured random forest and auto-context model for bi-directional image 

synthesis, i.e., synthesizing MRI from CT and also synthesizing CT from MRI.

2. To fully utilize the complementary image information from both modalities, we 

propose a dual-core registration method to effectively estimate the deformation 

pathway from MRI to CT space, by iteratively fusing two deformation pathways: 

(a) from the synthesized CT of MRI to CT, and (b) from MRI to the synthesized 
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MRI of CT. Experimental results show that the registration accuracy could be 

boosted under this dual-core registration framework.

2 Method

As shown in Fig. 2, the proposed multimodal image registration method consists of the 

following two major steps.

Learning-Based Image Synthesis—A learning-based image synthesis method is 

proposed to fill the appearance gap between CT and MRI. Since MRI synthesis is more 

challenging, our method will introduce in the context of CT-to-MRI synthesis. The same 

method can be applied to MRI-to-CT synthesis. In our method, a structured random forest is 

first used to predict the entire MRI patch from the corresponding CT patch. Then we further 

adopt an auto-context model [4] to iteratively refine the synthesized MRI. The details of this 

step are described in Sect. 2.1.

Dual-Core MRI-to-CT Image Registration—In the beginning of image registration, a 

synthesized MRI ÎMR is obtained from CT ICT, and also a synthesized CT ÎCT is obtained 

from MRI IMR. Then, the deformation between MRI and CT is estimated in two ways: (a) 

registering ÎCT to ICT, and (b) registering IMR to ÎMR, as shown in Fig. 2. Eventually, the 

MRI is warped to the CT space by following the iterative dual-core deformation fusion 

framework. The details of this step are described in Sect. 2.2.

2.1 Learning-Based Image Synthesis

Random Forest Regression—Random forest is a general machine learning technique, 

which can be used for non-linear regression. It can be used to regress MRI intensity from the 

corresponding CT patch. In the training of random forest, the input is N feature vectors X = 
[x1, x2, …, xN] and the corresponding N target MRI values y = [y1, y2, …, yN], where each x 
corresponds to appearance features extracted from a single CT patch, and each y is the MRI 

value corresponding to the center of the CT patch. Random forest consists of multiple binary 

decision trees, and each one is trained independently. For a given tree, the training is 

conducted by learning a set of split nodes to recursively partition the training set. 

Specifically, in each split node, for a feature indexed by k, its optimal threshold τ is found to 

best split the training set into left and right subsets SL and SR with consistent target MRI 

values. Mathematically, it is to maximize the variance reduction by a split:

(1)

(2)
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where V(·) computes the variance of target MRI values in the training set, xk indicates the 

value of the k-th feature, and S indicates a training set. The same split operation is 

recursively conducted on SL and SR, until (a) the tree reaches the maximum tree depth, or 

(b) the number of training samples is too few to split. In the testing stage, given a testing 

sample with feature vector xnew, it is pushed to the root split node of each tree in the forest. 

Under the guidance of the split node (i.e., go left if , and go right otherwise), the 

testing sample will arrive at a leaf node of each tree, where the averaged target MRI values 

of training samples in that leaf is used as the prediction of the tree. The final output is the 

average of predictions from all trees.

Structured Random Forest (SRF)—In our MRI synthesis, structured random forest is 

adopted for prediction. The main difference between classic random forest and structured 

random forest is illustrated in Fig. 3. Instead of regressing a single MRI voxel intensity, the 

whole MRI intensity patch is concatenated as a vector and used as the regression target. 

Variance V(·) in Eq. (1) is then computed as the average variance across each dimension of 

the regression target vector. Through predicting a whole MRI patch, the neighborhood 

information can be preserved during patch-wise prediction and eventually will lead to better 

image synthesis performance, which is crucial for the subsequent registration. In the testing 

stage, the prediction is a vector, which can be constructed as a patch. The final prediction of 

each voxel is obtained by averaging values from all patches containing this voxel.

Feature Extraction—In this paper, we extract Haar-like features [5] from CT patch to 

serve as appearance features for random forest. Specifically, a Haar-like feature describes (a) 

an average intensity within a sub-block, or (b) the average intensity difference between two 

sub-blocks, in the patch. To generate more Haar-like features, we randomly sample 

information within the patch. To capture both local and global appearances of the underlying 

voxel, Haar-like features are extracted from coarse, medium and fine resolutions, 

respectively.

Auto-Context Model (ACM)—To incorporate the neighboring prediction results, an auto-

context model [4] is adopted to iteratively refine the synthesized MRI. In this paper, we use 

three layers as illustrated in Fig. 4. In the first layer, appearance features (Haar-like features) 

from CT are extracted to train a SRF. Then, the trained forest can be used to provide an 

initial synthesized MRI. In the second layer, additional features (context features, also Haar-

like features) are also extracted from the initial synthesized MRI to capture the information 

about neighborhood predictions. By combining the context features with appearance 

features, a second SRF can be trained. Similarly, with this new trained forest, the 

synthesized MRI and context features can be updated. This process iterates until reaching 

the maximum number of layers.

2.2 Dual-Core MRI-to-CT Image Registration

Intensity-based Non-rigid Registration—After CT and MRI are synthesized from 

MRI and CT, respectively, we can utilize the existing non-rigid registration methods to 

estimate the deformation (a) from synthesized CT to CT, and (b) from MRI to synthesized 
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MRI. Here, we choose two popular methods for evaluation: (1) Diffeomorphic Demons (D. 

Demons) [6] and (2) Symmetric Normalization (SyN) [7].

Dual-Core Deformation Fusion (DDF) for MRI-to-CT Registration—Based on bi-

directional image synthesis, both synthesized CT and MRI are utilized in registration. Let 

ICT, ÎCT, IMR and ÎMR denote the CT, synthesized CT, MRI and synthesized MRI, 

respectively. The goal is to estimate the deformation pathway φ from MRI to CT space. The 

objective function for MRI-to-CT non-rigid registration can be given as:

(3)

where ℳ is a dissimilarity metric,  is an operator that deforms the image by deformation 

field φ, and ℛ is a regularization term to constrain the smoothness of φ.

To solve Eq. (3) and reuse the existing registration tools, we apply an alternative 

optimization method, by decomposing Eq. (3) into three steps:

(4)

(5)

(6)

The first and second steps (Eqs. (4) and (5)) are used to minimize the image difference (a) 

between CT modality pair and (b) between MRI modality pair, respectively. The third step 

(Eq. (6)) is used to ensure that the final deformation pathway φ is close to both separately 

estimated φ1 and φ2.

Both φ1 and φ2 can be solved by using either D. Demons or SyN, although the objective 

functions are slightly different in Eqs. (4) and (5). After fixing φ1 and φ2, the final 

deformation φ can be efficiently solved by letting the gradient of Eq. (6) equals to zero, 

which brings to . To approximate the optimal solution of Eq. (3), we alternate 

these three steps until convergence, as summarized in Algorithm 1.

In each iteration i, the tentatively deformed images  and  are used to estimate a next 

set of deformations  and . The estimated deformations are then merged to form a 

combined deformation φi, which is used to update the currently estimated deformation φ = φ 
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∘ φi. Here, “∘” means deformation field composing. This procedure iterates until the 

incremental deformation φi is small enough.

Algorithm 1

Alternating Optimization of Eq. (3) in the i-th iteration

Result: φ – the final deformation field and approximated solution of Eq. (3)

i = 0; ; φ = 0;

do{

 i = i + 1; ;

  ; φ = φ∘φi; ;

 } while (||φi||2 > ε);

3 Experiments

The experimental dataset consists of 20 pairs CT and MRI acquired from 20 prostate cancer 

patients. Three pelvic organs, including prostate, bladder and rectum, are manually labeled 

by physicians. We use them as the ground-truth. All the images are resampled and cropped 

to the same size (200*180*80) and resolution (1*1*1 mm3). The cropped image is 

sufficiently large to include prostate, bladder and rectum.

In the training step, the CT and MRI of the same patient are pre-aligned to train our image 

synthesis models and we use manual labels to guide accurate pre-alignment. Specifically, 

linear (FLIRT [8]) and non-linear (SyN [7]) registrations are first performed to register the 

CT and MRI of same patient. Then D. Demons [6] is applied to register the manual labels of 

prostate, bladder and rectum to refine the pre-alignment. Finally, all the subjects are linearly 

aligned to a common space. Note that, the well-aligned CT and MR image dataset are only 

used in image synthesis training step.

2-layer ACM and 10-fold cross validation (leave-2-out) are applied. For SRF, the input patch 

size is 15*15*15 and the target patch size is 3*3*3. We use 25 trees to synthesize MRI from 

CT, while 20 trees to synthesize CT from MRI. The reason of using more trees in the former 

case is because CT-to-MRI synthesis is more difficult.

Dice similarity coefficient (DSC), symmetric average surface distance (SASD) and 

Hausdorff distance (HAUS) between manual segmentations on CT and aligned MRI are 

used to measure the registration performance.

3.1 Registration Results

Figure 5 illustrates MRI-to-CT registration results from the whole dataset under different 

layers of ACM in image synthesis (Fig. 5-(a)) and different DDF iterations in image 

registration (Fig. 5-(b)). As shown in Fig. 5-(a), more layers of ACM lead to better 

registration accuracy due to better quality of synthesized images. The synthesized CT (S-
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CT) and synthesized MRI (S-MRI) are also visualized in Fig. 6. Figure 5-(b) demonstrates 

that the DDF framework improves registration performance of both D. Demons and SyN 

iteratively. In practice, we found that the use of 2-layer ACM in image synthesis and 3 

iterations (3-iter) in DDF often leads to convergence, as shown in Fig. 5, the 3-layer ACM 

and 4-iter DDF do not have significant improvement.

Table 1 provides the mean and standard deviation of DSC for the three organs. It can be 

observed that, for D. Demons, which is not applicable for multimodal registration, can now 

work well by introducing the synthesized image. For SyN, using MI as similarity metric can 

get reasonable registration results on the original CT and MRI. However, better performance 

can be obtained using the synthesized image. This demonstrates that using synthesized 

image can enhance the performance of multimodal registration method. Moreover, the best 

performance is achieved under our dual-core deformation fusion algorithm as both 

demonstrated in Tables 1 and 2. The consistently higher DSC and lower SASD and HAUS 

by our proposed method demonstrate both its robustness and accuracy in multimodal image 

registration. Also, from those SyN-based registration results shown in Fig. 6, our proposed 

method can (a) better preserve structures during the registration than the direct registration 

of MRI to CT with MI, and (b) achieve more accurate results as shown by the overlaps of 

the label contours and indicated by arrows in the figure.

4 Conclusion

In this paper, we propose a learning-based multimodal registration method to register pelvic 

MR and CT images for facilitating prostate cancer radiation therapy. To reduce the 

appearance gap between two modalities, the structured random forest and auto-context 

model are used to synthesize CT from MRI, and also synthesize MRI from CT. Furthermore, 

we propose the dual-core image registration method to drive the deformation pathway from 

MR image to CT image by fully utilizing the complementary information in multiple 

modalities. Experimental results show that our method has higher registration accuracy than 

the compared conventional methods.
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Fig. 1. 
Pelvic CT and MRI. From left to right: CT, labeled CT, labeled MRI and MRI.
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Fig. 2. 
The framework of proposed learning-based MRI-to-CT image registration.
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Fig. 3. 
Classic random forest (top) and SRF (bottom).
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Fig. 4. 
Iterative refinement of synthesized MRI by the auto-context model.
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Fig. 5. 
Comparison of MRI-to-CT non-rigid registration results. (a) The mean DSC of prostate, 

bladder and rectum by different number of ACM layers in image synthesis. (b) Registration 

results of D. Demons (left) and SyN (right) with respect to different DDF iterations in 

Algorithm 1. Note that, 3-iter DDF is applied in (a), and 2-layer ACM is used in (b).

Cao et al. Page 13

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Demonstration of synthesized images and SyN registration results. (e) Result 1: direct 

registration of MRI to CT using MI; (f) Result 2: registration with our proposed method. 

Yellow contours: original CT labels of 3 organs. Red contours: warped MRI labels of 3 

organs. (Color figure online)
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Table 2

Comparison of mean SASD(mm) and HAUS(mm) values (with standard deviation of total 20 subjects) of 

three pelvic organs after non-rigid registration based on single-directional image synthesis and our proposed 

bi-directional image synthesis under 3-iter DDF.

Metric Method Single-directional Bi-directional

CT & S-CT S-MRI & MRI Proposed

SASD D. Demons 1.3 ± 0.7 1.7 ± 0.8 1.0 ± 0.6

ANTs-SyN 1.4 ± 0.8 1.3 ± 0.7 1.1 ± 0.7

HAUS D. Demons 8.9 ± 2.7 8.6 ± 3.0 6.7 ± 2.3

ANTs-SyN 7.6 ± 2.7 7.2 ± 2.0 6.7 ± 1.9
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