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Abstract

The aryl hydrocarbon receptor repressor (AhRR) was first described as a specific competitive 

repressor of aryl hydrocarbon receptor (AhR) activity based on its ability to dimerize with the 

AhR nuclear translocator (ARNT) and through direct competition of AhR/ARNT and AhRR/

ARNT complexes for binding to dioxin-responsive elements (DREs). Like AhR, AhRR belongs to 

the basic Helix-Loop-Helix/Per-ARNT-Sim (bHLH/PAS) protein family but lacks functional 

ligand-binding and transactivation domains. Transient transfection experiments with ARNT and 

AhRR mutants examining the inhibitory mechanism of AhRR suggested a more complex 

mechanism than the simple mechanism of negative feedback through sequestration of ARNT to 

regulate AhR signaling. Recently, AhRR has been shown to act as a tumor suppressor gene in 

several types of cancer cells. Furthermore, epidemiological studies have found epigenetic changes 

and silencing of AhRR associated with exposure to cigarette smoke and cancer development. 

Additional studies from our laboratories have demonstrated that AhRR represses other signaling 

pathways including NF-κB and is capable of regulating inflammatory responses. A better 

understanding of the regulatory mechanisms of AhRR in AhR signaling and adverse outcome 

pathways leading to deregulated inflammatory responses contributing to tumor promotion and 

other adverse health effects is expected from future studies. This review article summarizes the 

characteristics of AhRR as an inhibitor of AhR activity and highlights more recent findings 

pointing out the role of AhRR in inflammation and tumorigenesis.
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Introduction

The aryl hydrocarbon receptor (AhR) belongs to the superfamily of basic Helix-Loop-Helix/

Per-ARNT-Sim (bHLH/PAS) proteins and is activated by low molecular weight compounds 

(1–3). Upon ligand-binding in the cytoplasm, AhR shuttles in the nucleus, dimerizes with 

AhR nuclear translocator (ARNT) and binds to dioxin-responsive elements (DRE) in the 

enhancer/promoter of target genes to induce transcription. AhR target genes encode for 

drug-metabolizing enzymes, such as cytochrome P450 (CYP) 1A1, as well as for proteins 

controlling cell proliferation, differentiation, and apoptosis (1, 2). In addition, AhR 

activation is frequently associated with the stimulation of other signal transduction 

pathways, including epidermal growth factor receptor (EGFR) (4, 5), protein kinase A 

(PKA) (6, 7), and NF-κB signaling (7, 8).

In 1999, the team of Yoshiaki Fujii-Kuriyama screened a mouse genomic library using an 

AhR cDNA as hybridization probe, and discovered a novel component of AhR signaling: 

The AhR repressor (AhRR) (9). Meanwhile, the Ahrr gene has been identified in the human 

(10, 11), rat (12, 13), chicken (14), frog (15), and fish (16–18) genome.

AhRR as a feedback regulator of AhR signaling

The N-terminal half of the AhRR protein has high structural similarities with AhR, i.e. it 

contains the DNA-binding bHLH domain and the PAS-A domain. In contrast, its C-terminal 

part does neither contain the PAS-B domain nor the Q-rich transactivation domain, 

indicating that AhRR lacks the established AhR ligand-binding domain and is 

transcriptionally inactive (9). AhRR expression is regulated by one or more DREs located in 

the enhancer/promoter sequence of the murine and human Ahrr gene (19–21), indicating that 

the AhR controls the expression of its own repressor protein. Indeed, overexpression 

experiments revealed that AhRR is capable of inhibiting AhR/ARNT-triggered 

transactivation of DRE-containing gene promoters by competing with AhR for both 

dimerization with ARNT and DRE-binding (9, 19) (figure 1). Specifically, after post-

translational sumoylation (22) AhRR may recruit co-repressor molecules and histone 

deacetylases to DRE-containing gene promoters (21, 23, 24). The subsequent condensation 

of the local chromatin structure hinders a further binding of transcription factors and 

abrogates transcription of AhR target genes (25).

In addition, a so-called “transrepression” model was proposed to explain the inhibitory effect 

of AhRR on AhR transactivation (26). The authors observed that repression of AhR-

dependent gene expression by AhRR involves the N-terminal part of AhRR and does not 

involve a competition for ARNT. Also, DRE-binding was not necessary for AhRR’s 

repressive function in this study, but further contributed to it. One hypothesis of the authors 

is that AhRR represses AhR by competing for limiting co-activator molecules (26). 

Comparable transrepression models have been proposed for the interaction of AhR with NF-

κB RelA (27) and EGFR (28).

Besides the DRE, the human and rodent Ahrr genes contain binding sites, which are 

recognized by NF-κB and zinc-finger transcription factors of the Sp1 family (13, 19–21). 
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Whereas under inflammatory conditions the NF-κB subunit RelA may cooperate with AhR 

to induce AhRR expression (19, 29), Sp1-related factors may contribute to basal AhRR 

expression (21). In addition, nuclear factor erythroid-2-related factor-2 (Nrf2) has been 

recently identified to control AhRR expression in murine kidney tissue by inducing the 

expression of microRNA-125b (30).

Mammalian AhRR is expressed in nearly all tissues tested so far, but may be restricted to 

some and not all of the cell populations in a given tissue (9, 31–35). Interestingly, its 

expression level does not always correlate with CYP1A1 inducibility, indicating that AhRR 

may affect other signaling pathways and cellular functions.

The AhRR as regulator of inflammatory responses

Inflammatory processes contribute to a multitude of pathologies and have emerged as a 

major factor promoting cancer development (36). A link of environmental exposure with 

changes of inflammatory mediators and the possible consequences for carcinogenesis has 

been recently reviewed (37). 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent tumor 

promoter that exerts its action via prolonged activation of AhR signaling. Studies on the 

mechanism of TCDD-induced liver tumor promotion revealed that inflammatory signaling 

and increased expression of pro-inflammatory cytokines are critical components (38). This 

hypothesis is also supported by findings showing that the classical AhR signaling pathway 

does not completely explain the toxic or carcinogenic action of dioxins. In contrast, there is 

evidence indicating that CYP1A1 and CYP1A2 provide protection from dioxin-induced 

acute hepatotoxicity and inflammation (39). On the other hand, the deficiency of CYP1A1 

protected male mice from TCDD-induced wasting and lethality (40).

Increased levels of AhR as well as constitutively active AhR have been found in tumors and 

various cancer cell-lines (41–44). The enhanced expression of AhR in cancer may be 

triggered by NF-κB and STAT3 (45, 46), which could explain the positive correlation of 

AhR expression with an inflammatory status and inflammatory-dependent tumor 

development. These findings may provide a possible mechanism connecting anti-

inflammatory responses of AhRR with its tumor-suppressive properties. In fact, we have 

created AhRR-overexpressing transgenic mice (AhRR Tg), which have significantly reduced 

inflammatory and acute toxic responses to TCDD compared to wild-type (wt) mice (47).

Recent studies, including our own report, revealed that the AhR is involved in immunity and 

bacterial lipopolysaccharide (LPS)-mediated responses in vivo (48–51). Studies on the basic 

mechanism of LPS tolerance found that it is mediated by the sustained silencing of a set of 

acute pro-inflammatory genes (52, 53). This paradigm is well-established as an effective 

means to help animals as well as humans survive serious infections accompanied with severe 

systemic inflammation. The importance of IL-1β in mediating LPS shock has been 

demonstrated using knockout (ko) mice that lack IL-1β-converting enzyme and are unable to 

produce active IL-1β and are resistant to LPS shock (54). This is particularly important since 

a recent report shows a reduced susceptibility towards LPS shock in AhRR-reporter and 

AhRR−/− mice (55). The authors found that AhRR is highly expressed in immune cells of 

barrier organs, and has a major impact on the regulation of inflammatory responses. AhRR 
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prevents excessive IL-1β production in bone-marrow derived macrophages. This is 

consistent with a reduced expression of IL-1β found in tissues from TCDD-treated AhRR 

Tg mice (47). In contrast to the antagonizing effect of AhRR in response to LPS, AhR and 

AhRR seem to cooperate dampening intestinal inflammation (55). Similar to AhR-

deficiency (56–58), AhRR−/− mice exhibited an enhanced susceptibility to dextran sodium 

sulfate-induced colitis. In contrast to AhR, whose expression in intestinal epithelial cells is 

important to maintain proper barrier functions (59), AhRR contributes to the maintenance of 

colonic intraepithelial lymphocytes and prevents excessive production of IL-1β and 

differentiation of Th17/Tc17 cells. Moreover, AhRR enhances γ-interferon production by 

effector T cells in the inflamed gut (55). These findings underscore that AhR and AhRR are 

expressed in a cell- and tissue-specific manner and may affect different target cells. Future 

studies with AhRR Tg and AhRR-reporter mice for instance may provide further insight into 

the role that AhRR plays in various inflammatory responses.

The AhRR in cancer biology

AhR is overexpressed and/or over-activated in various solid cancers (41–43), in which it 

may drive proliferation, apoptosis resistance, extracellular matrix degradation, and 

immunosuppression (60–66). Thus, AhR’s opponent may exhibit tumor-suppressive 

properties as depicted in figure 2. Indeed, the human Ahrr gene is located on the short arm 

of chromosome 5 (5p15.3), a region which is frequently deleted in various tumors (67–72), 

indicating the presence of a tumor suppressor gene. Frank Cuttitta and his team observed a 

very low AhRR expression rate in several human cancer biopsies, which was due to 

hypermethylation of the AhRR promoter (73). These cancers include colon, lung, esophagus 

and stomach tumors (73), and, interestingly, AhR is abundantly expressed in these cancer 

types (74–78). A low AhRR expression level that correlated with poor prognosis was also 

found in gastric adenocarcinomas (79). In human colorectal cancer tissue, AhRR expression 

correlated with CD40/CD40L signaling and histological grade. Subsequent experiments in 

colon cancer cell-lines revealed that CD40L treatment increases AhRR expression, resulting 

in a more pronounced inhibition of tumor cell growth and induction of apoptosis, 

respectively (80). Like other members of the tumor necrosis factor (TNF) receptor family, 

CD40 activation induces nuclear translocation and DNA-binding of RelB/p50 (81), which 

may contribute to proper anti-tumor immune responses (82), for instance in colorectal 

cancer (83). However, whether the CD40-dependent induction of AhRR is triggered by non-

canonical NF-κB signaling remains to be elucidated. Alternatively, AhRR expression may 

be induced by constitutive AhR activation via CD40L. Allan and Sherr demonstrated that 

CD40L upregulates AhR mRNA and protein levels in B cells leading to nuclear 

translocation of AhR and induction of CYP1A1 in the absence of exogenous ligands (84).

In vitro analyses of several human tumor cell-lines further underscored a tumor-suppressive 

function of AhRR (table 1). For example, RNAi-mediated AhRR-silencing in human lung 

carcinoma cells enhanced proliferation, apoptosis resistance, motility, and invasive growth 

(73). Transplantation of AhRR-silenced tumor cells into immune compromised mice 

resulted in an enhanced growth and a pronounced angiogenic potential of the tumors (73). 

AhRR overexpression inhibited anchorage-dependent and –independent growth as well as 

the angiogenic potential of lung cancer cells (73), and abrogated proliferation and AhR-
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mediated anti-apoptosis in breast cancer cells (85–87) (table 1). Overexpressed AhRR was 

clearly capable of overcoming the anti-apoptotic effect of TCDD-activated AhR in those 

cells. Moreover, a recent study with AhRR−/− mice showed a lower number of apoptotic 

cells in liver of LPS-treated mice (55), confirming the role of AhRR to resolve an anti-

apoptotic response in vivo.

In MCF7 breast cancer cells, an inhibitory effect of AhRR on the transcriptional activity of 

estrogen receptor-α (ERα), which was probably due to a direct protein-protein interaction, 

was observed (88). Interestingly, some of the ERα target genes whose expression was 

repressed by AhRR, such as pS2 and cathepsin D, have been previously reported to be 

down-regulated in TCDD-exposed MCF7 cells (89–91). Further analyses revealed that the 

repression of ERα target gene expression occurred in an AhR-dependent but ARNT-

independent manner (91), suggesting that AhR and AhRR may directly cooperate to inhibit 

ERα-dependent transcription. Notably, a physical interaction between AhR and AhRR has 

been observed in ectopic overexpression experiments (92).

The above mentioned changes in angiogenesis and invasion (73) may be also explained by a 

potential crosstalk with the other binding partner of ARNT, hypoxia-inducible factor-1α 
(HIF-1α). The HIF-1α/ARNT complex is activated by low oxygen concentrations or 

oncogenic signal transduction (e.g. overactive RAS) to enable angiogenesis and ensure 

oxygen and nutrient supply in fast growing tumors (93). HIF-1 is also important for tissue 

invasion and metastasis of tumor cells and thus is a key player in cancer progression (93). 

Interestingly, Mark Hahn and co-workers have identified a splice variant of AhRR that lacks 

exon 8 and is pre-dominantly expressed in human cells and tissues (92). Overexpression 

experiments revealed that this AhRR variant is capable of inhibiting HIF-1-dependent 

transcription (92). Although further research is needed, these observations already mark 

AhRR as a potentially very attractive target molecule for cancer therapy.

In soft tissue angiofibroma, a histologically distinctive benign mesenchymal neoplasm of 

unknown cellular origin, a chromosomal rearrangement between chromosomes 5 (5p15) and 

8 (8q13) resulted in the creation of a fusion protein between AhRR and nuclear receptor co-

activator-2 (NCOA2) (94). The N-terminal part of the chimeric protein consists of the AhRR 

protein and thus harbors all domains necessary for DRE-binding. The C-terminal AhRR 

domain, lacking a Q-rich transactivation domain, is substituted by the NCOA2 protein, 

producing a fusion protein with two activation domains (94). Global gene expression 

analyses showing an upregulation of AhR target genes, revealed that the AhRR/NCOA2 

fusion protein is able to mimic canonical AhR signaling (94). Although this chimeric AhRR/

NCOA2 protein has so far only been detected in a small number of soft tissue 

angiofibromas, it is conceivable that an inactivation of AhRR’s repressive function through 

chromosomal rearrangements may also occur in other tumor types.

In context of chemical skin carcinogenesis, however, AhRR may not act as a tumor 

suppressor. Benzo[a]pyrene (BaP) and structurally related PAHs need to undergo CYP1A-

mediated oxidations in order to unleash their carcinogenic potential (95). Accordingly, 

AhR−/− mice as well as transgenic mice carrying an epidermis-specific ARNT-deficiency are 

largely protected against the skin carcinogenicity of BaP (96–98). Thus, one would expect 
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that AhRR−/− mice are more prone to BaP-induced skin cancer. However, a chronic 

carcinogenesis study on AhRR+/+ and AhRR−/− mice has shown a significantly delayed 

occurrence of BaP-induced skin tumors in mice that lack AhRR (99). The authors conclude 

that a shift of CYP1A1-driven metabolism from metabolic activation to detoxification is 

responsible for this unexpected outcome (99). A comparable shift in toxification/

detoxification was previously discussed with regards to various CYP1-ko strains, exhibiting 

significantly more DNA adducts after oral BaP exposure than wt littermates (100).

Another observation that may contradict AhRR’s tumor-suppressive function is the 

hypomethylation of the AhRR promoter, which is frequently observed in blood and lung 

tissue samples from smokers (101–110). These epigenetic modifications are associated with 

an elevated risk to develop malignancies of the respiratory tract (104, 108, 109) and thus 

imply a putative role of AhRR in lung carcinogenesis. As previously discussed (106), 

tobacco smoke is rich in PAHs and may cause an AhR-mediated induction of AhRR gene 

expression, which requires chromatin relaxation associated with DNA demethylation (111). 

However, at least three studies found that the alterations in AhRR promoter methylation 

induced by prenatal maternal smoking may persist in the exposed offspring until 

adolescence (101, 102, 110).

With the exception of PAH-induced cancer (figure 3), the majority of the publications 

discussed above points to the idea that AhRR is a potent tumor suppressor protein. Its 

expression level may serve as a prognostic factor with low levels correlating with tumor 

malignancy. AhRR may inhibit proliferation and increase apoptosis susceptibility of 

malignant cells, and thus prevent the establishment of a tumor-promoting, pro-inflammatory 

microenvironment by modulating cytokine responses, and attenuating angiogenic and 

invasive processes. The underlying molecular mechanisms, however, are enigmatic and 

probably involve a crosstalk of AhRR with other signal transduction pathways including C/

EBPβ and NF-κB as recently shown (47). Future studies are needed to address the 

regulatory mechanisms of AhRR in AhR signaling and adverse outcome pathways based on 

deregulated inflammatory and/or anti-apoptotic responses contributing to tumor promotion 

and other adverse health effects.

Conclusion

While AhRR can effectively block AhR-dependent responses, there are many unanswered 

questions, including why CYP1A1 is not always suppressed when AhRR is overexpressed 

(112). The model of “transrepression” as described above may explain, at least partially, this 

observation. As AhR-driven CYP1A1 gene expression requires transcriptional co-activators, 

including CBP/p300 and SRC-1 (113–115), cell- or tissue-specific expression patterns of 

such co-factors could explain the observed discrepancy between AhRR expression and 

CYP1A1 inducibility.

Previous reports show that AhRR is predominantly located in the nucleus (116), however the 

effect of AhRR on non-canonical AhR signals (47) suggests the presence and functional 

activity of AhRR in the cytosol. In this context, it is noteworthy that both the interaction of 

AhR with HSP90 and XAP2 in the cytosol as well as the repression of AhR by AhRR 
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involve the N-terminal domain of AhR (26, 117). Although AhRR does not contain the 

established AhR ligand-binding domain, it would be important to determine if the nuclear 

localization of AhRR or dimerization with ARNT can be stimulated by AhR agonists.

Interestingly, the NF-κB member RelB, which may interact with AhR in the non-canonical 

AhR pathway (118), has been found to interact with ARNT via CD30-mediated NF-κB-

dependent transcription (119). RelB has been demonstrated to promote cell growth through 

regulation of p53 stability and retinoblastoma protein activation (120). This mechanism 

supports recent findings showing that promotion of certain blood cancers (e.g. human 

multiple myeloma and anaplastic large cell lymphoma) rely on ARNT by antagonizing RelB 

and p53-dependent cell-cycle arrest and apoptosis (121). Expression of RelB was also shown 

to be critical for survival of Hodgkin lymphoma (122). Interestingly, a recent meta-analysis 

found that exposure and increased blood levels of TCDD are significantly associated with 

the mortality caused by non-Hodgkin’s lymphoma (123). Furthermore, our previous reports 

strongly support the function of AhR to mediate an anti-apoptotic response in human 

lymphoma cells (124) and the vital role of RelB in AhR-mediated apoptotic resistance in 

human breast cancer cells (61, 66). Because both, AhRR and RelB, may form heterodimers 

with ARNT (figure 2), it is essential to understand the possible interaction of AhRR/ARNT 

with RelB and its consequences in regulation of cellular processes, like cell-cycling and 

apoptosis. Moreover, it is likely that the dominant role of AhRR in complex with ARNT is 

via its interaction with RelB and the non-canonical AhR pathway resulting in down-

regulation of cellular inflammation, suppression of an anti-apoptotic response, and 

supporting its role as a tumor suppressor gene. Figure 3 summarizes the possible interactions 

of AhRR with AhR signaling pathways and its consequences in cellular processes and 

carcinogenesis.
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Abbreviations

AhR aryl hydrocarbon receptor

AhRR aryl hydrocarbon receptor repressor

ARNT AhR nuclear translocator

BaP Benzo[a]pyrene

CYP cytochrome P450

DREs dioxin-responsive elements

EGFR epidermal growth factor receptor

bHLH/PAS Helix-Loop-Helix/Per-ARNT-Sim
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HIF-1α hypoxia-inducible factor-1α

LPS lipopolysaccharide

NCOA2 nuclear receptor co-activator-2

Nrf2 nuclear factor erythroid-2-related factor-2

TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
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Highlights

• The AhRR as a specific competitive repressor of AhR

• The AhRR represses alternative AhR signaling pathways

• The AhRR regulates inflammatory responses

• The AhRR may act as a tumor suppressor gene
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Figure 1. 
Schematic illustration of the repression of the canonical AhR signaling pathway by AhRR. 

The ligand-activated AhR translocates into the nucleus, dimerizes with ARNT and binds on 

DRE sequences in the promoter region of AhR target genes, including CYP1A1 and AhRR. 

The increased expression of AhRR inhibits AhR activity as a result from the competition 

with AhR for dimerization with ARNT. Alternatively, the formation of an AhRR/ARNT 

complex may inhibit AhR function through binding on DRE sequences, which does not 

involve the competition for dimerization with ARNT.
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Figure 2. 
Schematic illustration of the interaction of AhRR with the canonical and non-canonical AhR 

pathways. AhRR represses the canonical AhR pathway including the induction of CYP1A1 

via competitive binding with ARNT. AhRR may protect from non-canonical AhR-mediated 

inflammatory responses and inflammation-dependent carcinogenesis via interaction of 

AhRR with RelB in complex with ARNT and/or AhR. Black double arrows indicate the 

interaction of AhRR with ARNT and RelB with AhR. The white double arrow indicates the 

interaction of ARNT with RelB. Abbreviations: Protein kinase A (PKA)
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Figure 3. 
Interactions of AhRR with AhR signaling pathways and possible consequences in 

carcinogenesis. Abbreviation: CCAAT-enhancer-binding protein (C/EBP), Estrogen receptor 

(ER), Hypoxia-inducible factor-1 (HIF-1), Retinoblastoma protein (Rb). In red: oncogenic 

properties; in green: tumor suppressive properties

Vogel and Haarmann-Stemmann Page 20

Curr Opin Toxicol. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vogel and Haarmann-Stemmann Page 21

Table 1

Effects of AhRR overexpression and RNAi on cell biological endpoints and gene expression in vitro.

CELL-LINE MANIPULATION OUTCOME REF #

A549 bronchoalveolar 
carcinoma cells

overexpression of human AhRR diminished anchorage-dependent and -independent cell 
growth, reduced angiogenic potential (tube formation)

73

A549 cells transient RNAi of AhRR enhanced anchorage-dependent and -independent cell 
growth

73

BP1 mammary epithelial cells overexpression of fish AhRR 
(Fundulus heteroclitus)

reduced constitutive AhR activity; reduced expression of 
CYP1B1

60

MCF7 breast cancer cells overexpression of human AhRR reduced cell proliferation; increased expression of cyclin 
D1; reduced expression of E2F and cathepsin D

86

MCF7 cells overexpression of human AhRR reduced expression of the estrogen-responsive genes 
pS2, cathepsin D, and complement C3

87

MCF7 cells transient RNAi of AhRR no effect on TCDD-induced expression of CYP1A1, 
CYP1B1, and TCDD- inducible poly (ADP-ribose) 
polymerase

125

MCF-10AT1 mammary 
epithelial cells

overexpression of murine AhRR enhanced susceptibility towards UV-induced apoptosis 87

MCF-10A mammary epithelial 
cells

stable RNAi targeting AhRR induced colony formation in soft agar 73

MCF-10F mammary epithelial 
cells

overexpression of fish AhRR (F. 
heteroclitus)

reduced cell proliferation 85

MCF-10F cells lentiviral overexpression of fish 
AhRR (F. heteroclitus)

reduced constitutive AhR activity; reduced expression of 
CYP1B1

60

HC11 mammary epithelial cells overexpression of human AhRR reduced expression of 3-casein 126

HepG2 hepatoma cells overexpression of human AhRR reduced expression of the estrogen-responsive genes 
pS2, cathepsin D, and complement C3

87

Hs578T breast cancer cells overexpression of fish AhRR (F. 
heteroclitus)

reduced constitutive AhR activity; no effect on cell 
proliferation

127

Hs578T cells overexpression of fish AhRR (F. 
heteroclitus)

increased expression of the proto-oncogene c-myc 128
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