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Abstract

Delineating the processes that contribute to the progression and maintenance of substance 

dependence is critical to understanding and preventing addiction. Several previous studies have 

shown inhibitory control deficits in individuals with stimulant use disorder. We used a Bayesian 

computational approach to examine potential neural deficiencies in the dynamic predictive 

processing underlying inhibitory function among recently abstinent methamphetamine-dependent 

individuals (MDIs), a population at high risk of relapse. Sixty-two MDIs were recruited from a 28-

day inpatient treatment program at the San Diego Veterans Affairs Medical Center and compared 

with 34 healthy control subjects. They completed a stop-signal task during functional magnetic 

resonance imaging. A Bayesian ideal observer model was used to predict individuals’ trial-to-trial 

probabilistic expectations of inhibitory response, P(stop), to identify group differences specific to 

Bayesian expectation and prediction error computation. Relative to control subjects, MDIs were 

more likely to make stop errors on difficult trials and had attenuated slowing following stop errors. 

MDIs further exhibited reduced sensitivity as measured by the neural tracking of a Bayesian 

measure of surprise (unsigned prediction error), which was evident across all trials in the left 

posterior caudate and orbitofrontal cortex (Brodmann area 11), and selectively on stop error trials 

in the right thalamus and inferior parietal lobule. MDIs are less sensitive to surprising task events, 

both across trials and upon making commission errors, which may help explain why these 

individuals may not engage in switching strategy when the environment changes, leading to 

adverse consequences.
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Amphetamine-type stimulants, which include methamphetamine, are the fastest rising drug 

of abuse worldwide and have become the second most widely used class of illicit drugs 
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worldwide (1,2). Moreover, methamphetamine dependence (MD) is associated with high 

likelihood of relapse (3). Whereas addiction research has heavily focused on reward 

processing, executive deficits have been consistently observed in stimulant abusers and 

implicated in the progression of abuse to dependence (4–6). Identifying precise 

neurocognitive processes of such deficits may therefore not only improve our understanding 

of how neurochemical changes in MD affect decision making, but also help identify robust 

neural predictors of relapse and treatment response.

Pharmacological, lesion, and neuroimaging studies suggest that neural alterations within the 

frontostriatal pathways, which appear to persist even during abstinence periods, may 

underlie the cognitive deficits observed in methamphetamine-dependent individuals (MDIs) 

(7–9). MDIs exhibit reduced integrity of dopaminergic and serotonergic neurons in 

dopamine-rich regions, including the anterior cingulate cortex (10,11), striatum (12), and 

limbic areas (13), and lower glucose metabolism in the striatum (14–16) and frontocingulate 

areas, including anterior cingulate, orbitofrontal, and dorsolateral prefrontal cortices (17–

19). Such neural patterns have been linked to inhibitory and impulse-control deficits on 

standard interference/Stroop tasks (20,21) and in delay discounting (22–24). MDIs further 

show difficulties in detecting trends and integrating new information to predict future 

outcomes during decision making (25,26), which may be particularly hindering within 

changing environments, in which one has to constantly monitor information to know what to 

expect. Such learning impairment could contribute to MDIs’ deficits in inhibitory control 

and other types of dynamic decision making (27). However, the cognitive processes 

underlying the relationship between neural damage and substance use in MDIs remain 

poorly understood.

In recent work, we showed that healthy individuals (28) and nondependent occasional 

stimulant users (29) continuously alter their response strategy in a standard inhibitory 

paradigm (stop-signal task), such that dynamic fluctuations in their reaction time and error 

rate are consistent with a particular Bayesian belief updating (30) and decision strategy (31). 

Here, we use the same Bayesian approach combined with event-related functional magnetic 

resonance imaging (fMRI) to model individuals’ real-time expectations of response 

inhibition need in the stop-signal task. This strategy allows us to identify any difference 

between MDIs and healthy control subjects (CSs) in their neural representation of trialwise 

expectations of inhibitory response and Bayesian prediction errors needed for updating those 

expectations.

Based on the reduced functional metabolism in prefrontal, anterior cingulate, and striatal 

areas observed in MDIs, and given the consistent involvement of these brain regions in 

encoding action-related expectations, value, and prediction errors (29,32–34), we 

hypothesized that inhibitory dysfunction in MDIs would be characterized by attenuated 

neural representation of the expectation of an inhibitory signal, as well as altered prediction 

error signals, coding the discrepancy between predicted and actual outcomes, which is 

critical for adjusting expectations and adaptive behavior to potentially adverse 

consequences.
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METHODS AND MATERIALS

Participants

The University of California, San Diego Human Research Protections Program approved the 

study protocol and all participants gave written informed consent. A total of 62 (21% 

female) recently abstinent (i.e., within the last month) MDIs were recruited from a 28-day 

inpatient Alcohol and Drug Treatment Program at the Veterans Affairs San Diego Health-

care System and Scripps Green Hospital.1 In addition, 34 healthy CSs (30% female) were 

recruited via flyers, internet ads (e.g., Craigslist), and local university newspapers. CSs were 

selected to be matched in age and IQ with MDIs. All subjects completed a clinical interview 

and a fMRI session during which they completed the stop-signal task (between the third and 

fourth week of treatment for MDIs). Lifetime DSM-IV Axes I and II diagnoses, including 

substance abuse and dependence (35), were assessed by the Semi-structured Assessment for 

the Genetics of Alcoholism II (SSAGA II) (36). Diagnoses were based on consensus 

meetings with a clinician specializing in substance use disorders (MPP) (see the Supplement 

for exclusion criteria).

Stop-Signal Task

Participants completed six blocks of a stop-signal task (75% go trials in each block) while 

undergoing fMRI. On go trials (n = 216, or 36/block), they had to press as quickly as 

possible the left button when an “X” appeared and the right button when an “O” appeared. 

On stop trials (i.e., whenever they heard a tone during a trial, at some time subsequent to the 

presentation of the go stimulus; n = 72), they were instructed not to press either button (see 

Figure 1A and Supplement for task instructions). Each trial lasted ≈1300 ms or until the 

participant responded, with a 200-ms interstimulus interval. Prior to scanning, participants’ 

mean go reaction time (i.e., average response latency [ARL]) from stimulus onset was 

determined to compute six levels of stop-signal delay (SSD), providing an individually 

customized range of difficulty [for more details see (29,37)].

Bayesian Model of Probabilistic Prediction

In recent work (28,31,38), sequential effects in the stop-signal paradigms, where recently 

experienced stop trials tend to increase reaction times (RTs) on a subsequent go trial and 

decrease error rate on a subsequent stop trial, have been shown to be well captured by a 

Bayes-optimal decision-making model. This Bayesian hidden Markov model adapted from 

the dynamic belief model (30) (see Figure 1B) assumes that an individual updates the 

previous probability of encountering stop trials, P(stop), on a trial-by-trial basis based on 

trial history and adjusts decision policy as a function of P(stop), with systematic 

consequences for go RT and stop accuracy in the upcoming trial. A higher predicted P(stop) 

is associated with a slower go RT and a higher likelihood of correctly stopping on a stop trial 

in healthy subjects (28,29). Briefly, the model assumes that the stop-signal frequency rk on 

trial k has probability α of being the same as rk – 1 and probability 1 – α of being resampled 

from a previous βdistribution p0(r). The probability of trial k being a stop trial, Pk(stop) = 

1To maintain sobriety during the program, participants were screened for the presence of drugs via urine toxicology.
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P(sk=1 | Sk – 1), where Sk = (s1, ... , sk) is 1 on stop trials and 0 on go trials, can be computed 

as follows:

The predictive probability of seeing a stop trial, Pk(stop), is the mean of the predictive 

distribution p(rk | sk–1), which is a mixture of the previous posterior distribution and a fixed 

previous distribution, with α and 1–α acting as the mixing coefficients, respectively:

with the posterior distribution being updated according to Bayes's rule:

Thus, to capture the persistent sequential effects, the model assumes that subjects 

continually update P(stop) with effectively the same learning rate, because they believe that 

the true rate of stop trials is undergoing changes in the environment: formally, with 

probability α, it stays the same as last trial, and with probability 1 – α, it is redrawn 

randomly from the generic previous distribution p0. A larger α corresponds to a belief in a 

less volatile environment, and therefore a longer time window during which previous trials 

can affect future P(stop) calculations, which results in smaller sequential effects due to the 

most recently experienced go/stop trial (relative to a longer relevant time history) (30,38).

In the present study, parameters for the βdistribution p0(r) and α were kept constant across 

all subjects and were based on simulations that sought to optimize behavioral fit at the group 

level—that is, maximizing R2 for the regression of P(stop) on RT. Such optimal parameters 

were p0 = β(a = 2.5, b = 7.5; s = a + b = 10; mean = 0.25) and α = 0.5. The fixed values 

were optimal for both groups.2 Given these parameters and sequence of observed stop/go 

trials experienced by participants, we computed the corresponding sequence of subjective 

P(stop). In subsequent fMRI analyses, the trial-by-trial estimation of Pk(stop) = P(sk = 1 | 

Sk–1) = 〈rk〉 (i.e., most up-to-date estimate of stop trial likelihood based on all previous 

trials) was used as a parametric regressor.

In previous work (30), we showed that the Bayesian belief updating model for P(stop) can 

be approximated by a linear-exponential filter of past observations, such that whether the 

previous trial was a stop trial (sk = 1) or a go trial (sk = 0) linearly contributes to the 

estimated P(stop) for the current trial, and the coefficient for each trial decays exponentially 

into the past. This model is also equivalent to a version of a delta rule, where P(stop) on each 

trial is an appropriately tuned linear combination of P(stop) on the last trial, how the most 

2We specifically examined whether the model predictions would be sensitive to parameters α and the previous distribution p0(r) at the 
individual level (29) and found that produced P(stop) values were highly correlated across parameter settings and did not differ 
significantly between individual level or group level settings (r > .9; R2 > .8). For this reason, we opted for fixed or universal 
parameter values across individuals.
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recent observation (sk = 1 or 0) differs from the last P(stop), in other words, a signed 

prediction error (SPEk = sk–Pk(stop)), and a constant bias term, which may be realistically 

implemented at the neural level (30).

Behavioral Statistical Analyses

We applied hierarchical generalized mixed-effect linear models to participants’ trial 

accuracy (stop-success [SS] vs. stop-error [SE]) and RTs (dependent variables), treating 

subject as a random effect (with varying intercepts and slopes, unstructured variance/

covariance assumed) and other independent variables as fixed effects (39). The first set of 

models for go RTs used a linear mixture of Bayesian model-based estimate of P(stop), 

group, previous trial type, and previous trial SSD. Go trials with a reaction time >1300 ms 

were automatically counted as go errors and were not included in those analyses. The second 

set of models for error data used a logit link function (40) in terms of linear mixtures of 

SSD, group, and P(stop). We report change in log-likelihood ratio (following a chi-squared 

distribution) and regression coefficients (when applicable) with associated t test and p 
values.

fMRI Analyses

Using a fast event-related fMRI design, six T2*-weighted echo planar imaging functional 

runs were collected for each participant, along with one T1-weighted anatomical image (see 

the Supplement for image acquisition and preprocessing details). Preprocessing and 

subsequent fMRI analyses were conducted using Analysis of Functional NeuroImages 

(AFNI) software (41).

First-Level Analyses—Three types of trials were distinguished (go, SS, and SE; go error 

trials were scarce and not included in these analyses), included as predictors in a general 

linear model (GLM), and convolved with a canonical hemodynamic response function. They 

were entered as linear regressors (multiplied by the mean of the computed P(stop) 

probabilities across all trials) and were parametrically modulated by P(stop) (29,42) in order 

to isolate neural activations associated with P(stop) independently of categorical trial type 

neural coding (i.e., categorical regressors). This model therefore included six task regressors 

(three categorical: go, SS, SE; and three model-based parametric: GoxPk(stop), SSxPk(stop), 

SExPk(stop)). To assess group differences in the updating processes related to P(stop), we 

created a second GLM with trialwise Bayesian signed prediction error [i.e., SPE: (outcome-

P(stop)] and unsigned prediction error [i.e., UPE: |outcome-P(stop)|] as parametric 

regressors of interest. This second model also included a parametric regressor modeling trial 

error (0 = correct or 1 = error) to control for performance error-related activity (28). Given 

the fixed parameter setting and pseudorandomized sequence of trials, the P(stop) and 

Bayesian UPE/SPE values were the same for all participants in these GLMs. Both GLMs 

included a baseline regressor (consisting of intertrial intervals), instruction phases, linear 

drift, and three motion regressors [pitch, yaw, roll (37)], go RTs, and SSD as parametric 

regressors of no interest (see the Supplement for regressor correlations). Images were 

spatially filtered (Gaussian full width half maximum 4 mm) to account for individual 

anatomical differences. Anatomical and functional images were manually transformed into 

Talairach space.
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Second-Level Analyses—At the between-subject level, the coefficients of our first-level 

GLM were modeled with voxel-wise mixed-effects linear models analyses, performed with 

R statistical software (R Foundation for Statistical Computing, Vienna, Austria) (43), in 

terms of a linear mixture of subject-level effects and group (CS, MDI). Specifically, we 

tested for second-level effects of group and its interaction with P(stop) under each trial type 

(GoxPk(stop), SSxPk(stop), SExPk(stop)), with subject treated as a random effect.3 In the 

first analysis, we isolated P(stop)-modulated activations for go versus stop trials (SS and SE 

were averaged). Whole brain statistical maps were obtained for the group main effect 

(reflecting areas tracking previous P(stop) values irrespective of trial type or accuracy) and 

the groupxP(stop) modulated trial type interaction. We then conducted an additional contrast 

on stop trials only, comparing P(stop) modulated activation for SS versus SE trials and 

obtained statistical maps for the groupxP (stop) trial type (SE vs. SS) interaction. To correct 

for multiple comparisons, we used a cluster threshold adjustment based on Monte Carlo 

simulations (generated with AFNI's 3dClust-Sim program), based on whole-brain voxel size 

and 4-mm smoothness. A minimum cluster volume of 768 μL was used, with a minimum 

voxelwise significance of p < .005, corrected for multiple comparisons at familywise error 

rate = p < .01.

Group Difference in Bayesian Prediction Errors—Based on previous work (28,29), 

we further selected from areas identified in the interaction contrast of the above-mentioned 

analyses [interaction of group and P(stop)-modulated trial type, i.e., GoxP(stop), 

StopxP(stop)] those that were consistent with a group difference in either type of Bayesian 

prediction errors (UPE and SPE). Specifically, we identified those regions with nonzero 

P(stop) activations in CSs of opposite signs and same signs across go and stop trials, 

reflecting UPE and SPE activations respectively (see the Supplement).

RESULTS

Subject Characteristics

MDI did not differ from CS in ethnicity, sex, age, and verbal IQ (p > .05). On average, CSs 

had a higher level of education (p < .001). MDIs endorsed greater cocaine and cannabis 

intake (p < .001), and they used alcohol and nicotine more frequently and in larger quantities 

than did CSs (p < .05) (see Table 1 and the Supplement).

Behavioral Performance and Model-Based Behavioral Adjustment

Reaction Times—Consistent with our model's assumptions (28,31,38), a positive linear 

relationship between go RT and P(stop) was observed across both groups (B = 274 ms, t(94) 

= 4.6, p < .001, model omnibus test: χ2(1) = 19.4, p < .001; mean Pearson Correlation 

Coefficient: r = .15, adjusted R2 = .05). The group main effect on go RT was not statistically 

significant (χ2(1) = 0.48, p = .49); mean RT: CS = 624 ms; MDI = 590 ms) (see Figure 2A 

for go RT distributions). By P(stop) interaction, the group was marginally significant (χ2(1) 

= 3.8, p = .05), showing a trend for smaller positive slope for RT as a function of P(stop) in 

3Reported lifetime uses of marijuana and typical numbers of alcoholic drinks and cigarettes per day were included as covariates in the 
longitudinal mixed effects analysis to control for the effect of nonstimulant drug use.
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CSs. Whereas the regression slope was steeper in MDIs, we surmise that this pattern relates 

to the wider RT range (more short RTs) and the larger sample size in MDIs, rather than 

reflecting a meaningful group difference in model fit and related neural processes. A positive 

linear relationship between go RT and P(stop) was observed within each group (CS: B = 

105, p < .01; χ2(1) = 7.7, p < .01; MDI: B = 365, p < .001; χ2(1) = 144, p < .001). For 

illustration of the linear trends, Figure 2B shows data collapsed across all subjects for MDIs 

and CSs separately, where go trials were binned by P(stop) and average RT calculated for 

each bin separately. MDIs and CSs did not differ in stop signal reaction time (mean CS = 

239 ms; mean MDI = 231 ms, t(94) = .49, p = .61) (see the Supplement for stop signal 

reaction time computation).

Poststop Slowing—An overall slowing in go RT was observed following stop relative to 

go trials (χ2(1) = 124, p < .001), which was true for both SS (B = +17, p < .001) and SE (B 
= +35, p < .001) trials. Moreover, there was a group by previous trial type interaction (χ2(1) 

= 41, p < .001). Specifically, CSs had similar RTs following SS and go trials (B = 6, t(33) = 

−1.3, p = .18) but exhibited significant slowing following SE trials (B = 16, t(32) = 2.9, p < .

01). In contrast, MDIs were overall slower following SS relative to go trials (B = 31, t(62) = 

5.4, p < .001) but did not exhibit additional slowing after SE relative to SS trials (B = 10, 

t(62) = −1.5, p = .19) (see Figure 2C and the Supplement).

Performance Accuracy—As expected, participants had a higher likelihood of error on 

trials with longer SSD (odds ratio = 2.6, Wald z = 39, p < .001; omnibus test: χ2(1) = 250, p 
< .001). The group difference in stop error rates did not reach statistical significance (group 

main effect: χ2(1) = 2.3, p = .13; mean error rates: CS = 0.44; MDI = 0.49); however, the 

group by SSD interaction was significant (χ2(1) = 4.8, p < .05) with higher error likelihood 

in MDI for longer SSD (i.e., more difficult SSD) (see Figure 2D). Moreover, as predicted by 

our model (28,31,38), we found a negative relationship between error likelihood and P(stop), 

with higher P(stop) overall prompting a smaller likelihood of error (odds ratio = 0.10, Wald 

z = −3.38, p < .001; omnibus test: χ2(1) = 11.4, p < .001). Other interactions (i.e., 

P(Stop)xGroup, P(stop)xSSD, P(stop)xSSDxGroup) did not reach statistical significance (p 
> .05).

fMRI Analyses

Bayesian Prediction of Inhibitory Response (P(Stop))—Testing for any group 

differences in brain activation associated with P(stop), after regressing out any variance 

correlated with actual stimulus outcome (stop vs. go), we found no areas consistent with 

such neural pattern.

Modulation of Bayesian Prediction of Inhibitory Response (P(Stop)) by Trial 
Type (Stop vs. Go)—Seven regions were associated with a significant interaction between 

groups (CS vs. MDI) and P(stop)-modulated trial type [StopxP (stop) vs. GoxP(stop)]. These 

regions and their coordinates are listed in Table 2. In five of those regions (right hemisphere 

regions and left caudate), MDIs showed a positive activation associated with P(stop) on stop 

trials (p < .05), but no significant P(stop) activation on go trials (p > .05). CSs showed no 

significant P(stop) activations to go or stop trials in these regions (p > .05).
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In the other two regions (left posterior caudate and orbitofrontal cortex [OFC]/Brodmann 

area 11 [BA 11]) (see Figures 3A and 4A), CSs showed a negative correlation with P(stop) 

on stop trials and positive correlation with P(stop) on go trials, consistent with a positive 

UPE (UPE = |outcome-P(stop)|) (see Supplement). However, unlike CSs, MDIs failed to 

show a differential P(stop) activation to go versus stop trials in those regions (see Figures 3B 

and 4B). Importantly, based on supplemental analyses, CSs showed activation positively 

correlated with a UPE in these areas, whereas MDIs had significantly attenuated UPE 

activations, which was not statistically different from zero (Cohen's d = .45 and .42 for left 

posterior caudate and OFC/BA 11, respectively) (see Figure 3C and 4C).

Modulation of Bayesian Prediction of Inhibitory Response (P(Stop)) by Stop 
Accuracy (SS vs. SE)—Activation in several neural regions were associated with a 

significant interaction between group and P(stop) modulated stop accuracy (SS vs. SE trials) 

(see Table 3 for coordinates). In all regions, CSs exhibited a significant negative correlation 

to P(stop) on SE trials and a positive correlation to P(stop) on SS trials (p < .05), whereas 

MDI showed no significant P(stop) activation on either SS or SE trials (p > .05).

To further assess whether these activation patterns may be linked to group difference in the 

coding of Bayesian predication errors, we extracted activation associated with both UPE and 

SPE in those five regions. Only two of these areas (right thalamus and right inferior parietal 

lobule [IPL]/BA 40) (see Figures 5A and 6A) were associated with activation patterns 

consistent with a selective encoding of a positive UPE on SE trials among CSs. In contrast, 

MDIs showed no significant activations to UPE on SE or any other trials (Cohen's d = .41 

and .62 in right thalamus and IPL, respectively) (see Figures 5B–C and 6B–C). Correlational 

analyses further showed that such UPE activation on SE trials among CSs (not significantly 

different from zero in MDIs) was associated with lower error rates for difficult trials (r = −.

47, p < .05) (see Figure 6D).

DISCUSSION

The goal of this investigation was to better delineate which processes are dysfunctional in a 

group of recently abstinent MDIs. We applied a Bayesian model to evaluate the probability 

of a stop signal and used this probability to quantify the degree of neural processing of “the 

need to stop,” and of the discrepancy between observations and actual outcomes—that is, 

sensitivity to surprising outcomes—based on associated prediction errors. MDIs exhibited a 

pattern of reduced neural activation associated with trial-level Bayesian prediction error 

signals (i.e., more surprise) in orbitofrontal frontal, parietal, and subcortical areas (caudate 

and thalamus). Consistent with evidence of impaired inhibitory function in this population 

(20,21,44), MDIs compared with CSs were less accurate during more difficult trials (i.e., 

longer SSD). In addition, MDIs did not show evidence of strategic adjustment after a stop 

error; in other words, they did not show response time slowing after an error. Nevertheless, 

both CSs and MDIs maintain and use an internal representation of stop trial probability to 

make anticipatory adjustments for inhibitory control (e.g., in their reaction times) based on 

trial history, which supports our modeling approach and is consistent with previous work 

(28,29).
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Relative to CSs, MDIs had attenuated neural activation associated with a Bayesian model-

based UPE in the left OFC and posterior caudate. Whereas both the OFC and caudate have 

been implicated in stimulus-reward learning and value-based decision making (45,46), these 

areas are also critical for prediction and processing of performance feedback during decision 

making (26,47,48), including signaling expectation violation (49) and prediction errors 

(34,50–53). Importantly, failure to recruit the OFC has been linked to impulsivity and poor 

inhibitory function (54), as well as to impaired learning of stimulus-outcome contingencies 

in MDIs (26). A group difference in unsigned Bayesian prediction error, as opposed to an 

action-dependent SPE or nonmodel-based error activity, may further suggest specific deficits 

among MDIs in tracking the overall inconsistency between environmental demands and their 

internal belief/prediction model (i.e., a “goodness-of-fit” estimate), rather than action-

specific inconsistency, with negative consequences on inhibitory performance. Thus, rather 

than promoting a failure to recruit specific frontostriatal regions to predict appropriate 

actions, MD may impair neural tracking of model-based expectancy violation, which may be 

useful more generally in preparing individuals for switching strategy in response to 

significant changes in the environment (30,55) (e.g., sudden change in reward rate), rather 

than in model updating (i.e., P(stop) estimation). The absence of group difference in overall 

p (stop) activations across trial type indeed suggests that groups did not differ in their mean 

estimates of P(stop), which lends credence to this interpretation.

Interestingly, MDIs further exhibited poorer neural encoding of stopping expectations [i.e., 

P(stop)] on SE trials in a set of parietal and subcortical regions, consistent with their failure 

to slow down following SE trials. Specifically, CSs but not MDIs activated the right 

thalamus and IPL proportionally to a positive UPE on SE trials relative to other trials (go 

and SS). Such UPE activations were associated with lower error rates for difficult trials 

among CSs, suggesting that this selective UPE encoding (attenuated or absent in MDIs) may 

be particularly important to adjust and improve inhibitory performance. Such results are 

congruent with evidence of prediction error signaling in the thalamus (56,57) and the IPL, 

with functional connections to the dorsal caudate (58) and premotor areas (59), which has 

also been implicated in predictive coding (60,61), and most recently in instrumental (action-

reward) contingency learning (62) and tracking the degree of divergence/volatility in 

instrumental action probability distributions (63).

This study has several limitations. First, we recognize that our computations of prediction 

errors are not inherently Bayesian, and they overlap with Bayesian and Information Theory 

estimates of precision, volatility (64), and surprise (65). Brain processes associated with 

UPE/SPE are, however, an important first step and provide good approximations of the 

optimal Bayesian model updating (30,55). Nevertheless, the present study did not explicitly 

measure volatility and model accuracy or precision, and thus cannot address whether the 

observed neural difference in UPE may reflect a difference in Bayesian estimates of 

volatility (i.e., degree of expectancy violation) or in precision (inversely related to the 

variance around mean expectation). Second, our model could be refined by including a more 

direct prediction of behavior such as RTs, as we have done behaviorally in previous work 

(31). Such approach, however, would require significantly larger data collection owing to 

additional model parameters, which was not feasible for this fMRI study. Finally, we note 

that participants’ interpretation of the SST instructions, which include incentives to limit 
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poststop error slowing, may lend some level of confound in the interpretation of our results, 

for example, reduced poststop slowing could relate to more rigid instructions following in 

MDIs.

In summary, the present findings suggest that both cortical and subcortical structures in 

MDIs fail to adequately track the changes in environmental characteristics that would help to 

predict the need for increased inhibition. Importantly, using the same parameter values 

across groups allowed us to assess group differences in an objective measure of the “need to 

stop” and the “surprise” associated with each trial (i.e., participant's sensitivity to surprising 

or informative trials) in terms of their behavioral and neuronal responses. Our results further 

suggest this group difference may reflect MDIs’ poorer tracking of expectancy violation 

(i.e., weaker sensitivity to surprising task events), rather than real-time mean predictions per 

se. Although we did observe a relationship between UPE activations in the IPL and error 

rates, suggesting a negative impact of such weaker activations in MDIs on their behavioral 

performance, future studies are needed to determine how such neural alterations may 

specifically relate to Bayesian estimates of volatility and precision, and how they may 

directly impact performance. This study highlights the utility of Bayesian learning models 

for investigating subtle cognitive alterations guiding goal-directed actions in addiction and 

other psychiatric populations, which can be used to develop precise addiction medicine 

approaches for better diagnosis and treatment of this disorder.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Stop signal task. Participants completed a total of 288 trials, including 216 go trials 

(baseline condition), and 72 stop trials. Each trial lasted 1300 ms and trials were separated 

by 200-ms interstimulus intervals (blank screen). Participants performed six blocks of 48 

trials (25% stop and 75% go trials in each block). Trial order was pseudo-randomized 

throughout the task and counterbalanced. Prior to scanning, participants performed the stop 

task outside the scanner in order to determine their average response latency ([ARL]; i.e., 

mean reaction time on go trials). Such individual measures were used to determine the stop 

signal delay for the six different stop trial types, providing a subject-dependent jittered 

reference function. Specifically, stop signals were delivered at 0 (ARL-0), 100 (ARL-100), 

200 (ARL-200), 300 (ARL-300), 400 (ARL-400), or 500 (ARL-500) ms less than the mean 

reaction time after the beginning of the trial, thus providing a range of difficulty level; ARL 

ranged from 504 to 925 ms (mean = 664 ms, SD = 112 ms). Task instructions: Participants 

were instructed to “press as quickly as possible the left button when an ‘X’ appears, or the 

right button when an ‘O’ appears.” They were also instructed not to press either button 

whenever they heard a tone during a trial (stop condition). (B) Bayesian hidden Markov 

model used, a version of the dynamic belief model (30), which computes trialwise sequential 

predictions about the frequency of stop trials. The model assumes that subjects constantly 

anticipate the likelihood of encountering stop trials, P(stop), on a trial-by-trial basis based on 

trial history, whereby experienced stop trials increase P(stop) and go trials decrease P(stop). 

A change in P(stop) then changes the decision strategy within a trial, such that the overall 
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objective function, encompassing costs related to response delay, stop errors, and go errors, 

is optimized by an ideal observer who, faced with a larger P(stop), reduces stop error costs 

by lowering stop error rate and increasing go reaction time. The previous probability of 

encountering a stop signal on trial k, Pk(stop), is compared with the actual trial outcome (0 = 

go; 1 = stop) to produce a signed prediction error ([SPE]; i.e., outcome-Pk(stop)), which is 

combined with the prior to produce a new updated prior for the next trial k + 1 (see the 

Supplement). UPE, unsigned prediction error (i.e., |outcome-P(stop)|).
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Figure 2. 
(A) Histograms of go reaction times (RT) for both control subjects ([CSs]; gray; n = 36) and 

methamphetamine-dependent individuals ([MDIs]; red; n = 63) groups. (B) Bayesian model 

prediction and behavioral data presented for each group: red for MDI, black for CS. As 

predicted by our Bayes optimal decision-making model, a significant positive relationship 

was observed between individuals’ go RT and trialwise P(stop) model estimates in each 

group. CS (black) and MDI (red) model lines represent best linear regression fit to mean go 

RT. Error bars are SEM for P(stop) bins. (C) Go RTs on trials following a go, successful 

stop (stop success), or failed stop trial (stop error). CSs had similar RTs following go and 

successful stop trials, but exhibited slower reaction times following stop error trials (p < .

05). MDIs were generally slower on stop trials relative to go trials, but they did not exhibit a 

similar slowing after stop error trials relative to stop success trials (p > .05). Error bars are 

within-group SEM. (D) Fitted logistic inhibitory functions by group representing the 
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likelihood of error on stop trials as a function of the stop signal delay, that is, individual 

mean go RT (i.e., average response latency [ARL]) – X with X ranging from 500 ms to 0 

ms. n.s., not significant.
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Figure 3. 
Group difference in sensitivity to surprising trials, that is, in activation to Bayesian unsigned 

prediction error (UPE), in the left posterior caudate. (A) Blood oxygen level–dependent 

signal in the posterior caudate showing group difference in percentage signal change 

modulation by UPE (red cluster). Yellow areas are other regions surviving whole brain 

analysis for a significant interaction between group and P(stop)-modulated trial type, but in 

which activation patterns are not consistent with a neural response correlated with a 

Bayesian UPE or signed prediction error. (B) Bar graph displays average P(stop) modulation 

of percentage signal change by trial type (go vs. stop) and group (control subjects [CSs]: n = 

34; methamphetamine-dependent individuals [MDIs]: n = 62; error bars indicate ±1 SEM). 

In this area, CS (gray bars) demonstrated a neural response consistent with a positive UPE (|

outcome - P(stop)|), in other words, a positive correlation between percentage signal change 

and P(stop) on go trials and a negative correlation on stop trials, whereas MDIs (maroon 

bars) failed to show such differential P(stop)-dependent activation. (C) Average percentage 

signal change correlation with a positive Bayesian UPE (|outcome - P(stop)|) for each group 

(error bars: ±1 SEM). Relative to CSs (gray, black stripes), MDIs (maroon, black stripes) 

showed attenuated UPE-dependent activation (Cohen's d = .45). β was not statistically 

different from 0 in the MDI group (p > .05).
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Figure 4. 
Group difference in sensitivity to surprising trials, that is, in neural activation to a Bayesian 

unsigned prediction error (UPE) in the left middle frontal gyrus (Brodmann area 11). (A) 
Blood oxygen level–dependent signal in the left middle frontal gyrus a showing group 

difference in percentage signal change modulation by UPE (red cluster). Yellow areas are 

other regions surviving whole brain analysis for a significant interaction between group and 

P(stop)-modulated trial type, but in which activation patterns are not consistent with a neural 

response correlated with a Bayesian UPE or signed prediction error. (B) Bar graph displays 

average P(stop) modulation of percentage signal change by trial type (go vs. stop) and group 

(control subjects [CSs]: n = 34; methamphetamine-dependent individuals [MDIs]: n = 62; 

error bars indicate ±1 SEM). In this area, CSs (gray bars) demonstrated a neural response 

consistent with a positive UPE (|outcome - P(stop)|), in other words, a positive correlation 

between percentage signal change and P(stop) on go trials and a negative correlation on stop 

trials, whereas MDIs (maroon bars) failed to show such differential P(stop)-dependent 

activation. (C) Average percentage signal change correlation with a positive Bayesian UPE (|

outcome - P(stop)|) for each group (error bars: ±1 SEM). Relative to CSs (gray, black 

stripes), MDIs (maroon, black stripes) showed attenuated UPE-dependent activation 

(Cohen's d = .42). β was not statistically different from 0 in the MDI group (p > .05).

Harlé et al. Page 19

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2017 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Group difference in the modulation of neural activation correlated with P(stop) by inhibitory 

success (right thalamus). (A) Blood oxygen level–dependent signal regions representing a 

significant interaction between group and P(stop)-modulated activation for stop success (SS) 

vs. stop error (SE) trials (yellow and red clusters). The right thalamus (red cluster), one of 

these regions, further showed an activation pattern consistent with a group difference in 

percentage signal change correlated with unsigned prediction error (UPE) on stop error 

trials. (B) Bar graphs represent average percentage signal change for parametric regressors 

SE × P(stop) and SS × P(stop) in control subjects ([CSs]; n = 34) and methamphetamine-

dependent individuals ([MDIs]; n = 62). Percentage signal change in CSs (gray bars) was 

negatively correlated with P(stop) on SE trials and positively correlated with P(stop) on SS 

trials. MDIs (maroon bars) had significantly lower P(stop)-modulated activation on both SS 

and SE trials, which was not significantly different from 0 (p > .05). (C) Region of interest 

analysis (right thalamus). In this region, percentage signal change was selectively positively 

correlated with a Bayesian UPE, in other words, the amount of surprise or expectancy 

violation, on SE trials among CSs (gray striped bars), and not significantly correlated with a 

UPE on successful go and stop trials. In contrast, no statistically significant UPE-dependent 

activation was observed in MDIs for any type of trial (successful or errors; p > .05; group 

difference on SE: Cohen's d = .41); error bars indicate ±1 SEM.

Harlé et al. Page 20

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2017 September 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Group difference in the modulation of neural activation correlated with P(stop) by inhibitory 

success (right inferior parietal lobule [IPL]; Brodmann area 40). (A) Blood oxygen level–

dependent signal regions representing a significant interaction between group and P(stop)-

modulated activation for stop success (SS) vs. stop error (SE). The IPL (red cluster), one of 

these regions, further showed an activation pattern consistent with a group difference in 

percentage signal change correlated with unsigned prediction error (UPE) on SE trials. (B) 
Bar graphs represent average percentage signal change for parametric regressors SE × 

P(stop) and SS × P(stop) in control subjects ([CSs]; n = 34) and methamphetamine-

dependent individuals ([MDIs]; n = 62). Percentage signal change in CSs (gray bars) was 

negatively correlated with P(stop) on SE trials and positively correlated with P(stop) on SS 

trials. MDIs (maroon bars) had significantly lower P(stop)-modulated activation on both SS 

and SE trials, which was not significantly different from 0 (p > .05). (C) Region of interest 

analysis. In this region (right IPL), percentage signal change was selectively positively 

correlated with a Bayesian UPE, that is, the amount of surprise or expectancy violation, on 

SE trials among CSs (gray striped bars), and not significantly correlated with a UPE on 

successful go and stop trials. In contrast, no statistically significant UPE-dependent 

activation was observed in MDI for any type of trial (successful or errors; p > .05); group 

difference on SE trials: Cohen's d = .62; error bars indicate 61 SEM. (D) This UPE 

activation on SE trials in the right IPL among CSs was further associated with lower error 
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rates on difficult trials (stop signal delays > mean reaction time 200 ms). Graph shows the 

scatter plot for this significant negative correlation (r = −.47, p < .05; we note that a 

significant correlation was maintained with removal of outlier with high UPE value, i.e., r = 

−.36, p < .05; scatter for MDIs not shown because UPE activation was not significantly 

different from 0).
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Table 1

Participants’ Characteristics as a Function of Group Status (n = 96)

Methamphetamine-Dependent Individuals (n = 62) Control Subjects (n = 34)

Mean SD Mean SD t Test, p Value

Demographics

    Age, years 38.0 10.4 36.1 11.1 .39

    Education, years 13.0 1.7 14.8 1.6 <.001

    Verbal IQ, WTAR 109.1 8.7 111.6 9.7 .26

    Alcohol, typical drinks/week 22.1 38.6 3.9 4.5 <.05

    Alcohol, typical days/week 3.1 3.0 1.9 2.2 <.05

    Nicotine, typical cigarettes/day 14.0 8.6 1.5 4.0 <.05

    Nicotine, typical days/week 6.2 2.2 1.2 2.5 <.05

Lifetime Drug Use

    Methamphetamine 14,267.8 29,028.0 0.0 0.0 N/A

    Cocaine 2560.5 6064.4 1.3 4.6
<0.001

a

    Prescription stimulant 56.7 417.5 0.0 0.2
.25

a

    Cannabis 8853.2 25738.0 40.0 168.9
<.001

a

IQ, intelligence quotient; N/A, not applicable; WTAR, Wechsler Test of Adult Reading.

a
t test computed using natural log transformed + 0.5 values (due to nonnormal distributions) replicated results for raw data.
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Table 2

BOLD Activation Foci for Group by P(Stop)-Modulated Trial Type (Go vs. Stop) Interaction

Region Peak Voxel Talairach Coordinates (x, y, z) Peak Voxel Z statistics 
(p Value)

Cluster Size (Voxels)

Right Anterior Cingulate Cortex (BA32) 20 36 12 4.71 (.00001) 215

Left Frontal Caudate −16 22 11 3.81 (.00014) 53

Right Dorsolateral Prefrontal Cortex (BA 9) 44 17 39 4.21 (.00003) 34

Right Inferior Frontal Gyrus (BA 44) 53 16 18 3.31 (.00093) 17

Left Posterior Caudate −15 −14 26 3.57 (.00036) 16

Left Orbitofrontal Gyrus (BA 11) −38 47 −11 3.42 (.00063) 14

Right Middle Temporal Gyrus (BA 22) 51 −33 0 2.90 (.00373) 13

Whole brain random effect analysis; corrected for clusterwise significance: p < .01; minimum voxel significance is p < .005 and minimum cluster 
size is 12 voxels/768 μL).

BA, Brodmann area; BOLD, blood oxygen–level dependent.

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2017 September 29.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Harlé et al. Page 25

Table 3

BOLD Activation Foci for Group by P(Stop)-Modulated Stop Trial Type (SS vs. SE) Interaction

Region Peak Voxel Talairach Coordinates (x, y, z) Peak Voxel Z statistics (p 
Value)

Cluster Size (Voxels)

Left Precentral Gyrus −26 4 33 3.71 (.00021) 19

Right Caudate (BA 25) 3 19 5 3.18 (.00147) 15

Right Thalamus 11 −18 19 2.99 (.00279) 14

Left Postcentral Gyrus (BA 2) −54 −18 32 3.25 (.00115) 13

Left Inferior Semilunar Lobule −18 −77 −36 3.74 (.00018) 12

Right Inferior Parietal Lobule (BA 40) 54 −51 41 3.39 (.00070) 12

Whole brain random effect analysis; corrected for clusterwise significance: p < .01; minimum voxel significance is p < .005 and minimum cluster 
size is 12 voxels/768 μL).

BA, Brodmann area; BOLD, blood oxygen level dependent; SE, stop error; SS, stop success.
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